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Main Points

e There is still much that we do not understand about V1 function.

e Acknowledging this fact opens the door to new theories.



Lewis & Van Essen (2000)
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V1 space-time receptive field

(Courtesy of Dario Ringach)
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The problem

e Neurons are highly nonlinear
e Recurrent circuits of neurons are even more nonlinear

e There is no general method for characterizing nonlinear systems
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Nonlinearities

e Action potentials
e Adaptation

e Dendritic trees
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The reductionist approach

e Use simple, “controlled” stimuli (bars, spots, gratings)

e Record from one neuron at a time



Five problems with the current view of V1

. Biased sampling

. Biased stimuli

. Biased theories

. Interdependence and context

. Ecological deviance



1. Biased sampling

e Neurons with large (extracellular) action potentials
e “Visually responsive” neurons

e Neurons with high firing rates
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Brain Signaling-Related Energy Expenditure

Distribution of ATP consumption for a mean action potential rate of 4 Hz
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(Ignores the energy expenditure unrelated to signaling as well as glial
glycolysis associated with transient increases in activity)

Adapted From Attwell & Laughlin
JCBF&M 21:1133-1145, 2001



Extreme sparse coding

Gilles Laurent - mushroom body, insect
Michael Fee - HVC, zebra finch

Tony Zador - auditory cortex, mouse
Bill Skaggs - hippocampus, primate
Harvey Swadow - motor cortex, rabbit
Michael Brecht - barrel cortex, rat

Christof Koch - inferotemportal cortex, human



Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code
underlies the generation of neural sequences in a songbird. Nature, 419,
65-70.
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Sampling bias
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Estimated fraction of population characterized

e Missed neurons due to small action potentials (5-10%)
e Missed neurons due to unresponsiveness (5-10%)

e Missed neurons due to low firing rates (50-60%)

Even allowing for some overlap among these populations would yield the
generous estimate that 40% of the population has been adequately sampled.



. Biased stimuli




Searching the entire stimulus space is impossible

g

8x 8 patch with 6 bits of gray level = 23%% > 10!%0 possible combinations.




3. Biased theories

e Emphasis on “telling a story” encourages investigators to demonstrate
when a theory explains data, not when a theory provides a poor model.

e Data-driven vs. functional theories (e.g., spatial-frequency tuning).

e Simple/complex/hypercomplex - are these categories real, or the result
of the way neurons were stimulated with bars of light?



How do you classify simple vs. complex?

Skottun et al. (1991) Kagan et al. (2002)
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Mata & Ringach (2004)
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Do V1 neurons act as feature detectors?
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Vision is a difficult problem.

Good theories need to be functionally driven as well as data driven.



Surface representation

e We live in a three-dimensional world.

e The fundamental causes of images are surfaces reflecting light, not
two-dimensional features such as spots, bars, edges or gratings.

e We rarely see the surface of an object in its entirety.

Nakayama K, He ZJ, and Shimojo S. (1995) Visual surface representation:
a critical link between lower-level and higher level vision. In: S.M.
Kosslyn and D.N. Osherson, Eds, An Invitation to Cognitive Science. MIT
Press, pp. 1-70.
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Example: ‘Mooney faces’




Completion depends upon occlusion




4. Interdependence and context

e < 5% of the excitatory input in layer 4 arises from LGN (Peters & Payne,
1993).

e Geniculate input is responsible for < 35% of a V1 neuron’s response
(Chung & Ferster, 1998).

e Ongoing population activity can account for 80% of an individual V1
neuron's response variance (Arieli et al., 1996).



How to study effects of context?

Sillito et al. (1995)

Knierim & Van Essen (1992)
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Context in natural scenes sparsifies responses

Vinje & Gallant (2000, 2002)
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Contour integration

Bosklng Zhang Schofleld & Fltzpatrlck (1997)




Models of contour integration
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5. Ecological deviance

Neural responses to time-varying natural scenes deviate significantly from
the predictions of current models.

e David, Vinje & Gallant (1999) - can account for 20-30% of response
variance with current models.

e Gray & Baker (unpublished observations) - responses to natural movies
are often not predicted by simple receptive field models.

e Machens, Wehr & Zador (2004) - can account for 11 % of response
variance in Al using STRF models.



V1 neural responses to natural scenes deviate from
predictions of simple receptive field models

Data from Gray lab (J. Baker)
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Same thing in Al
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Single unit recording
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Bottom line
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Conclusions

We still do not understand the vast majority of what V1 is doing under
natural conditions.

What is needed:

— Natural scenes, surfaces
— Simultaneous recordings from large populations of neurons

We should be prepared for some surprises.



