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Main Points

• There is still much that we do not understand about V1 function.

• Acknowledging this fact opens the door to new theories.









The “standard model”
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V1 space-time receptive field

(Courtesy of Dario Ringach)



The problem

• Neurons are highly nonlinear

• Recurrent circuits of neurons are even more nonlinear

• There is no general method for characterizing nonlinear systems
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Nonlinearities

• Action potentials

• Adaptation

• Dendritic trees



be difficult to achieve ([71]; see also Figure 7 in [72]). The

precise lower limit on compartment size in the thin

dendrites of pyramidal cells remains to be determined,

perhaps through the use of voltage-sensitive dyes [73] and

highly focal uncaging techniques [74].

Getting at the inner neuron
What are the implications of these findings for single-

neuron computation? Could there be an underlying prin-

ciple that permits the full complexity of a dendritic tree to

be represented in highly simplified terms? The available

data suggest that the thin terminal branches of the apical

and basal trees of pyramidal cells provide a set of inde-

pendent non-linear ‘subunits’ that sum up their synaptic

inputs and then apply a sigmoidal thresholding non-

linearity to the output. In this scenario, how should the

outputs of multiple subunits be combined to influence

the cell’s overall response? In the few experimental

studies that have addressed the question of location

dependent synaptic summation, so far only involving

simple spatial integration scenarios, the data are most

consistent with a linear or sublinear summation rule for

signals that originate in different dendritic branches

[30,75–78]. Building on these findings, one can formulate

a working model in which the thin branches are the

integrative subunits of pyramidal neurons. According to

this model, each thin-branch subunit sums up its synaptic

drive and then applies a sigmoidal thresholding non-

linearity to the result, and the subunit outputs are

summed linearly within the main trunks and cell body

before output spike generation. This hypothesis is inter-

esting, in that it states that an individual pyramidal

neuron functions something like a conventional two-layer

abstract ‘neural network’ [12], in which the thin dendritic

branches themselves act like classical point neurons

(Figure 3b).

Poirazi and co-workers [79��] used a detailed CA1 pyr-

amidal cell model [80�] to test the two-layer neural net-

work hypothesis. The authors used a complex set of
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Current Opinion in Neurobiology

Simplified models of pyramidal cells. (a) CA1 pyramidal cell morphology [123]. A grey triangular soma was added for clarity. (b) Two-layer sum-of-

sigmoids model as discussed by Poirazi et al. [79��]. All thin branches are treated as independent subunits with sigmoidal thresholds whose outputs

are summed linearly in the main trunks and cell body. Small grey circles labelled ai represent subunit weights, which might vary as a function of

location or branch order. (c) A next generation single neuron model could include a multiplicative interaction between proximal and distal integrative

regions of the cell. Overall output of such a three-layer model might be expressed using the form y1 þ ay2.

Dendrites, bug or feature? Häusser and Mel 377
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The reductionist approach

• Use simple, “controlled” stimuli (bars, spots, gratings)

• Record from one neuron at a time



Five problems with the current view of V1

1. Biased sampling

2. Biased stimuli

3. Biased theories

4. Interdependence and context

5. Ecological deviance



1. Biased sampling

• Neurons with large (extracellular) action potentials

• “Visually responsive” neurons

• Neurons with high firing rates
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Extreme sparse coding

• Gilles Laurent - mushroom body, insect

• Michael Fee - HVC, zebra finch

• Tony Zador - auditory cortex, mouse

• Bill Skaggs - hippocampus, primate

• Harvey Swadow - motor cortex, rabbit

• Michael Brecht - barrel cortex, rat

• Christof Koch - inferotemportal cortex, human



Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code

underlies the generation of neural sequences in a songbird. Nature, 419,

65-70.



Exponential firing rate distribution
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Sampling bias
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Estimated fraction of population characterized

• Missed neurons due to small action potentials (5-10%)

• Missed neurons due to unresponsiveness (5-10%)

• Missed neurons due to low firing rates (50-60%)

Even allowing for some overlap among these populations would yield the
generous estimate that 40% of the population has been adequately sampled.



2. Biased stimuli



Searching the entire stimulus space is impossible

...

8×8 patch with 6 bits of gray level = 2384 > 10100 possible combinations.



3. Biased theories

• Emphasis on “telling a story” encourages investigators to demonstrate
when a theory explains data, not when a theory provides a poor model.

• Data-driven vs. functional theories (e.g., spatial-frequency tuning).

• Simple/complex/hypercomplex - are these categories real, or the result
of the way neurons were stimulated with bars of light?



How do you classify simple vs. complex?

Skottun et al. (1991) Kagan et al. (2002)Minireview 1083 
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Fig. I. The distribution of relative modulation for cells from 
the cat’s striate cortex that were independently classified 
as simple or complex using classical criteria. A and B are 
combinations of the data in panels B, C and D of Dean and 
Tolhurst’s (1983) Fig. 5 (A) The distribution of 391 cells 
whose receptive fields were mapped qualitatively. Based 
on these maps cells were classified as simple or complex 
according to spatial summation ratio and ON and OFF 
region overlap. In this way 231 cells were classified as simple 
(hatched areas) and 160 as complex cells (unhatched areas). 
(B) The distribution of 67 cells whose fields were mapped 
with a quantitative technique. Out of 67 cells, 33 were 
classified as simple (hatched areas) and 34 as complex cells 
(unhatched areas). (C) The distribution of 255 cells from the 
striate cortex of the cat, previously unpublished (method of 
Schumer & Movshon, 1984). The hatched areas represent 
cells classified as simple according to the separation of the 

ON and OFF regions. 

We conclude that virtually all cells with 
relative modulation values above 1.0 are 
classified as simple by conventional tests, while 
cells with modulation values below 1.0 are 
classified as complex. The few discrepant cases 
involve cells with relative modulations near 1 .O, 
and some of these may represent cells that could 
not be classified decisively with any test. The 
introduction by some investigators of inter- 
mediate classes (Henry, 1977; Orban, 1984), and 
our own experience, suggests that there exist 

cells that cannot be unambiguously classified by 
any of the conventional criteria. 

IS THERE A BIMODAL DWTRIBUTION 
OF CELLS WITH RECARD TO 

RELATIVE MODULATION? 

We can now address the question of whether 
there are in fact two distinct classes of cells, 
corresponding to simple and complex, classifi- 
able on the basis of relative modulation. The 
first indication that there might be a bimodal 
distribution of neurons with regard to response 
modulation came from Schiller et al. (1976), 
who, working in the monkey, used a measure 
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Fig. 2. Distribution of cells with regard to modulation of 
the response to drifting gratings. (A) Distribution of cells 
from the cat’s striate according to the criterion of relative 
modulation as used by Dean and Tolhurst (1983) (see text), 
redrawn from their Fig. 5A. (As to the number of cells in 
this distribution, Dean and Tolhurst wrote that it contained 
563 cells. By our count there are 577 cells.) (B) The distri- 
bution of relative modulation found in 1061 cells in cat 
striate cortex recorded in five laboratories, excluding the 
data of Dean and Tolhurst shown above. (C) The distri- 
bution of relative modulation in 513 cells of monkey VI, 

recorded in two laboratories. 

RM �
F1

F0 � F0base

(2)

The mean ongoing firing rate with a uniform field of 1 cd/m2 was
used as a measure of baseline activity (F0base).

The phase (in degrees) of response harmonics was calculated as
phase � [angle(DFT)��/2] � 180/�, where angle(DFT) � imag(log
(DFT)) is the phase of the elements in a complex DFT vector. To
eliminate discontinuities (jumps) due to phase wrapping, a simple
“unwrapping” algorithm was applied. The algorithm minimized the
SD of a set by adding 2� to each phase (1 at a time), re-calculating it,
and then choosing the minimal SD.

Statistical analysis

Individual cells’ PSTHs were plotted with a 10-ms binwidth. Sta-
tistical comparisons were based on the following tests: for non-
Gaussian-distributed variables (e.g., OI), the Mann-Whitney U test
and the Wilcoxon matched-pairs signed-rank test; for Gaussian vari-
ables (e.g., AR width), t-test and paired t-test. Correlations between
variables were calculated using the Spearman r or the Pearson r.
Values reported for individual parameters are means � SD. Analyses
were done with custom software written in Matlab 5.3 (MathWorks).

R E S U L T S

A total of 228 V1 cells with receptive fields at 2–9° (mostly
at 2–5°) eccentricity were studied. All cells were tested with
sweeping bars, 101 cells were tested with flashing bars, and
114 were tested with sinusoidal gratings. Recording sites in-
cluded a broad sample of all laminar locations.

We will refer to individual increment (INC)- and decrement
(DEC)-responsive regions as activating regions (ARs) and the
total region of space occupied by the activating regions as the
classical receptive field (CRF). We describe first the spatial
arrangement of the INC and DEC ARs within the CRF as
measured with sweeping bars, along with information from
flash responses. Then we consider the effects of fixational eye
movements on the neuronal responses to sinusoidal gratings.
Finally, we present a detailed analysis of the modulation of
neuronal firing by gratings and its relationship to the spatial
arrangements of the ARs.

Spatial organization of receptive fields

NEURONS WITH TWO OR THREE ACTIVATING REGIONS. Previous
studies have shown that saccadic eye movements modify re-
sponses to sweeping bars (Gur and Snodderly 1997a; Gur et al.
1997; Snodderly and Gur 1995), even while compensating for
the eye movements of fixation (image stabilization). Consistent
with this observation, AR widths measured when all time
periods were included (32 � 16 minarc; “all data” ) were
inflated (P � 0.0001) compared with widths calculated from
time periods �150 ms after any preceding saccade (28 � 15
minarc, “no saccades” ). Consequently, we base our spatial

FIG. 2. Distribution of overlap index (OI) for cells with 2 ARs. A–D:
individual examples of CRF spatial maps. Each histogram is an average of
several responses to a bar sweeping in the preferred direction with spatial
position defined as the product of time and the velocity of the stimulus.
Because the 10-ms time bin is scaled by the stimulus velocity, the spatial
binwidth varies with the velocity. OI is displayed at the left of each set of
histograms. A: simple cell 10982: INCw and DECw, 8 minarc; CRF, 24
minarc. B: simple cell 20681: INCw, 23 minarc; DECw, 26 minarc; CRF, 41
minarc. C: complex cell 28685: INCw, 21 minarc; DECw, 24 minarc; CRF, 29
minarc. D: complex cell 27766: INCw, 25; DECw, 24 minarc; CRF, 25 minarc.
Bar width was 6 minarc in A and B, 4 minarc in C, and 5 minarc in D. E:
distribution of OI for 211 cells with 2 ARs. �, simple cells; ■ , complex cells;
mean OI values for simple, ‚ (	0.04 � 0.17) and complex, Œ (0.82 � 0.12)
cells.

2560 I. KAGAN, M. GUR, AND D. M. SNODDERLY

J Neurophysiol • VOL 88 • NOVEMBER 2002 • www.jn.org



Mata & Ringach (2004)



Do V1 neurons act as feature detectors?
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Vision is a difficult problem.

Good theories need to be functionally driven as well as data driven.



Surface representation

• We live in a three-dimensional world.

• The fundamental causes of images are surfaces reflecting light, not
two-dimensional features such as spots, bars, edges or gratings.

• We rarely see the surface of an object in its entirety.

Nakayama K, He ZJ, and Shimojo S. (1995) Visual surface representation:
a critical link between lower-level and higher level vision. In: S.M.
Kosslyn and D.N. Osherson, Eds, An Invitation to Cognitive Science. MIT
Press, pp. 1-70.



Example: ‘Mooney faces’



Example: ‘Mooney faces’



Completion depends upon occlusion



4. Interdependence and context

• < 5% of the excitatory input in layer 4 arises from LGN (Peters & Payne,
1993).

• Geniculate input is responsible for < 35% of a V1 neuron’s response
(Chung & Ferster, 1998).

• Ongoing population activity can account for 80% of an individual V1
neuron’s response variance (Arieli et al., 1996).



How to study effects of context?

Knierim & Van Essen (1992) Sillito et al. (1995)

964 J. J. KNIERIM AND D. C. VAN ESSEN 
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FIG. 2. Examples of cells showing a general suppression effect. A : orien- 
tation-biased cell with a strong suppressive effect of surround texture. Cell 
89c4A. B: orientation-insensitive cell with a moderate surround suppres- 
sion. Cell 87a93B. 

Another example is shown in Fig. 2B. This cell had no 
orientation preference at all (C vs. C’). The surround ele- 
ments presented in conjunction with the center element 
once again suppressed the firing of the cell, even though the 
surround elements alone (S and S’) had a small but signifi- 
cant e~citatovy influence on the cell. All of the surround 
elements were located outside the plotted CRF. Such small 
excitatory influences from the surround textures presented 
alone were seen on occasion (see also Fig. 15) ; however, 
when they had any influence on the response to the center 
element, it was almost always suppressive. 

We quantified the amount of general suppression in- 

duced by the texture background by computing a general 
suppression index (GSI) for each cell. We first calculated 
an average suppression index (ASI) for the optimal center 
orientation based on the responses (above background ac- 
tivity) to the center element alone (R,) and to the contrast 
and uniform textures ( Rccs, Rczs) 

AS1 = 1 - Avewewc=,, R,.,) 
Rc 

An analogous index (ASI’) was calculated for the orthogo- 
nal center element (C’). The GSI was then calculated from 
the two ASIs after weighting by the response to the center 
element alone: 

GSI = - R,(ASI) + &.( ASI’) 
R, + R,. 

Thus the GSI for a cell represents the average fractional 
suppression induced by the texture backgrounds relative to 
the responses to the center elements alone, reversed in sign 
so that suppression is negative and enhancement is positive. 
A high positive GSI indicates that the cell’s response was 
highly enhanced by the texture background ( 1 .O indicating 
a 100% increase); a high negative GSI indicates that the 
cell’s response was highly suppressed by the texture 
surround ( - 1 .O indicating 100% suppression) ; and a value 
of 0 indicates no net effect of the texture surrounds. The 
GSIs for the cells illustrated in Fig. 2 are -0.85 (A) and 
-0.42 (B). 

Figure 3 shows the distribution of GSIs for the sample of 
122 cells. The mean GSI was -0.34, which is highly statisti- 
cally different from 0 (2-tailed t test, t = 1 1.33, P < 0.00 1). 
Thus, on average, the presence of a texture background 
suppressed V 1 cells by 34%. 

Orientation-dependent suppression 

For 4 1% of the cells, there was a significant difference in 
the amount of suppression induced by the two different 
texture backgrounds. Importantly, the great majority of 
these cells fired more strongly in response to the orientation 
contrast texture than in response to the uniform orientation 
texture. Examples of these cells are shown in Fig. 4. The cell 
in Fig. 4A showed no orientation selectivity for the center 

mean = -0.34 
t = 1 1.33, p < -00 1 
n= 122 

-1.5 0 1.5 
Highly Suppressed Highly Enhanced 

Distribution of general suppression index (GSI ). - 1 .O indi- 
cates 100% suppression; + 1 .O indicates 100% enhancement. A value sur- 
passing - 1 .O can result from response suppression below the baseline activ- 
ity for-that cell. The average amount of suppression is 34Y0. 



Context in natural scenes sparsifies responses

Vinje & Gallant (2000, 2002)

metabolic load by lowering mean spike rates. Furthermore, these
three findings suggest that nCRF stimulation reduces the effective
bandwidth of single neurons, thereby restricting the range of
stimuli that they represent.

nCRF stimulation increases information
transmission rate
Does this shrinkage in effective bandwidth reduce the amount of
information represented by V1 neurons? If information is lost,
then the stimulus representation will be coarsened rather than
made sparser (Foldiak and Young, 1995; Olshausen and Field,
1997; Barlow, 2001). Information must be preserved if nCRF
stimulation truly increases sparseness. Information transmission
can be preserved in numerous ways. One possibility is that the
overall information transmission rate might be preserved at the
level of individual neurons. Alternatively, some neurons may
increase their information transmission rates while other neurons
transmit less information.

Information transmission rates (bits per second) for our sample
of V1 neurons are shown in Figure 6A–D. For each neuron at
each stimulus size, we compared information rates observed with
and without nCRF stimulation. Neurons with significantly in-
creased information rates are shown in black, while those with sig-
nificantly decreased rates are shown in white (p � 0.01). The effects
of natural nCRF stimulation vary across neurons. Some exhibit
decreases in information transmission rates, whereas others exhibit
increases. Interestingly, significant increases in information trans-
mission rates occur more frequently than significant decreases. The
ratio of significant increases to significant decreases is 3.8:1 at 2 �
CRF, 3.4:1 at 3 � CRF, and 3.7:1 at 4 � CRF.

For our sample of neurons, the average information transmis-
sion rate also increases with stimulus size (Fig. 6E). The increase
in mean rate is modest but statistically significant for stimulus
sizes of 2 � CRF and 3 � CRF (p � 0.05) and is marginally
significant for stimuli of 4 � CRF diameter (p � 0.07).

Table 1 shows the average information rate as a function of
stimulus size and time-bin duration. In general, the average rate
increases as time-bin duration decreases. From 50 msec to 4.6
msec, the information transmission rate increases by �250%. The
increase in information rates for short binning times is commonly
observed in neurophysiological data sets (Strong et al., 1998) and

occurs because H(r) increases more rapidly than H(r�s) as bin
duration shrinks.

Our second prediction is that the average information trans-
mission rate should not decrease as stimulus size increases. Our
results demonstrate that information transmission actually in-
creases with stimulus size. This is consistent with the predicted
preservation of information. It also suggests that nCRF stimula-
tion may be necessary to fully realize the information-processing
potential of V1 neurons.

nCRF stimulation increases information per spike
As discussed in the introductory remarks, sparse coding offers
several potential advantages to the nervous system. It may sim-
plify development of neural connections, increase learning rates,
and increase memory capacity (Barlow, 1961, 2001). Sparse cod-
ing also reduces the number of action potentials required to
represent a scene and thereby decreases the metabolic demands
of information processing (Srinivasan et al., 1982; Laughlin et al.,
1998). If the system is to maintain the fidelity with which a scene
is represented, this reduction in spiking activity must be accom-
panied by an increase in the average amount of information each
spike provides about the stimulus. Thus, natural nCRF stimula-
tion should increase the average information carried by each
spike.

The average information that a spike transmits about the stim-
ulus is found by simply dividing the information per second by the
mean number of spikes per second: Ispike � Isec/�, where � is the
mean spike rate of the neuron for all stimuli of a given size.

Information transmission per spike is shown in Figure 7A–D.
Figure conventions are identical to those used in Figure 6. Stim-
ulation of the nCRF can increase or decrease the information per
spike, but the trend is strongly toward increasing the information
content of spikes. The ratio of neurons with significant increases
to those with significant decreases is 6.5:1 at 2 � CRF and 26:1 at
3 � CRF. For data obtained with stimuli of 4 � CRF diameter,
all significantly modulated neurons show increases in their infor-
mation transmission per spike.

The mean information per spike also increases substantially as
a function of stimulus size (Fig. 7E, black circles). For stimuli of
4 � CRF diameter, the mean information per spike is 1.85 times
larger than that of the value obtained with CRF-sized stimuli. All

Figure 4. The nCRF modulates responses dur-
ing natural vision. A, PSTH obtained from one
V1 neuron in response to a natural-vision movie
confined to the CRF. Responses are weakly mod-
ulated by the simulated fixations (information per
second, 13.1 bits/sec; information per spike, 0.18
bits/spike; efficiency, 10%; selectivity index, 13%).
B, Responses of the same cell to a natural-vision
movie composed of the CRF stimulation used in
A plus a circular surrounding region. The overall
stimulus size was 4 � CRF diameter. Stimulation
of the nCRF dramatically increases variation of
responses across fixations (information per sec-
ond, 28.4 bits/sec; information per spike, 0.67 bits/
spike; efficiency, 26%; selectivity index, 51%). Re-
sponses to some stimuli are significantly enhanced
(black bins; p � 0.01). For this neuron, enhance-
ment is concentrated in the onset transients oc-
curring at the beginning of simulated fixations.
Other responses are strongly suppressed (white
bins; p � 0.01). The under-bar highlights those
time bins where significant enhancement and sup-
pression occur.

Vinje and Gallant • nCRF Stimulation Increases Efficiency of V1 Cells J. Neurosci., April 1, 2002, 22(7):2904–2915 2909



Synchrony

Proc. Natl. Acad. Sci. USA 86 (1989) 1699

responses and the relationship between the two signals: the
autocorrelation function (ACF) of the MUA, the power
spectrum ofthe fast Fourier transform of the LFP, the spike-
triggered average of the LFP, and the orientation tuning
curves of both the MUA and the LFP.

Multiunit histogram tuning curves were computed by
counting the number of spikes within a 1-sec interval cen-
tered on the peak of the response. Tuning curves of the LFP
amplitudes were computed by integrating the average power
spectrum within a frequency range of 25-65 Hz. This choice
of frequency range was based on the finding that the average
peak frequency of the stimulus-evoked LFP was near 40 Hz.
Power spectra were computed on each trial from data
samples of 1-sec duration taken at a latency of 0 sec for
control and at latencies centered on the peak of the multiunit
responses for both directions of stimulus movement.
For calculating the spike-triggered averages ofthe LFP the

signals were first divided into two 5-sec epochs for each
direction of stimulus movement and then digitally bandpass-
filtered at 20-80 Hz to retain only the stimulus-evoked
frequency components. The resultant distributions ofvoltage
values were then normalized to their Z scores by subtracting
the mean and dividing by the standard deviation (SD) of the
LFP voltages recorded during each epoch. Each occurrence
of a spike in the signal filtered for multiunit recording was
then used as a trigger point to compute the average distri-
bution of the LFP voltage + 50 msec in time centered on the
occurrence of the spikes. The resultant spike-triggered av-
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erages were expressed in units of the SD of the LFP voltage
at a resolution of 0.1 SD.
To further reveal the temporal structure of the LFP

responses a finer grained spectral analysis was performed on
selected sets of individual trials. The LFP signal from each
trial was subdivided into forty 256-msec epochs, and the
power spectrum was computed for each epoch. The resulting
set of 40 power spectra were displayed as a compressed
spectral array for each trial.

RESULTS
A typical response of both the MUA and LFP recorded from
area 17 in an adult cat is shown in Fig. 1A. When a light bar
of optimal orientation, velocity, and preferred direction of
movement was passed through the receptive field of the
recorded neurons we consistently observed a rhythmic firing
pattern in the neuronal spike train that was associated with a
high-amplitude oscillation of the LFP. Close examination of
the records revealed that the spikes occurred during the
negative phase of the LFP oscillations (Fig. LA, lower two
traces). Computation of the power spectra of the LFPs
demonstrated that the oscillatory activity was clearly stim-
ulus-dependent (Fig. 1C). In the absence of a sensory
stimulus in the receptive field the spontaneous activity of the
neurons was associated with large amplitude fluctuations of
the LFP in the frequency range of 1-10 Hz. The presentation
of an optimal stimulus in the receptive field evoked a broad

4 6
TIME (sec)

FREQUENCY (Hz)

FIG. 1. MUA and LFP responses recorded from area 17 in an adult cat to the presentation of an optimally oriented light bar moving across
the receptive field. (A) Oscilloscope records ofa single trial showing the response to the preferred direction ofmovement. In the upper two traces,
at a slow time scale, the onset of the neuronal response is associated with an increase in high-frequency activity in the LFP. The lower two
traces display the activity at the peak of the response at an expanded time scale. Note the presence of rhythmic oscillations in the LFP and
MUA (35-45 Hz) that are correlated in phase with the peak negativity of the LFP. Upper and lower voltage scales are for the LFP and MUA,
respectively. (B) Poststimulus time histogram of the MUA recorded over 10 trials illustrating a clear directional preference (PPS, pulses per
second). (C) Average LFP frequency spectra computed from 1-sec data epochs (1024 points) over 10 trials at three separate latencies after the
onset of each trial [control = 0 sec, direction 1 (DIR1) = 2.2 sec, direction 2 (DIR2) = 7.0 sec]. The LFP signals were digitally lowpass-filtered
at 80 Hz. As the stimulus passes through the receptive field there is a simultaneous reduction of low frequencies and an increase in amplitude
of high frequencies in the LFP that is more pronounced for the preferred direction of movement.

Neurobiology: Gray and Singer



Contour integration

Bosking, Zhang, Schofield & Fitzpatrick (1997)

Figure 3. Alignment of bouton distributions to optical imaging data (case 9509). A, The image in the background is a reference image taken during the
optical imaging phase of the experiment. The yellow overlay is a computer-assisted drawing of blood vessel outlines and radial vessel profiles seen in the
first tissue section. The drawing has been scaled, rotated, and translated to align with the reference image. The blue overlay is a computer-assisted drawing
of radial vessel profiles and the section outline from a deeper section that contained labeled boutons. This section has been independently scaled, rotated,
and translated to align with the reference image and the first tissue section. The precision of both stages of the alignment can be seen in the inset. B, Same
animal and field of view as seen in A. The reference image has been replaced with a difference image showing areas active for a 908 stimulus in black.
Bouton distribution information has been added using the same transforms used to align the blue section in A. The green symbols indicate cells that took up
and transported the biocytin. Red symbols indicate locations of labeled boutons. Scale bar, 400 mm for inset in A.

Bosking et al. • Specificity of Horizontal Connections in Striate Cortex J. Neurosci., March 15, 1997, 17(6):2112–2127 2117



Models of contour integration

Ben-shahar & Zucker (2004)

Projection Patterns of Long-Range Horizontal Connections in V 461
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Figure 8: Illustration of connection fields for curves (top, based on co-circularity,
Parent & Zucker, 1989) and textures (bottom, based on right helicoidal model,
Ben-Shahar & Zucker, 2003b). Each position in these fields represents one orien-
tation hypercolumn, while individual bars represent the orientation preference
of singe neurons, all of which are connected to the central cell in each field. Multi-
ple bars at any given point represent multiple neurons in the same hypercolumn
that are connected to the central cell, a result of the dilation of the compatible
structure due to broad RF tuning (see the caption of Figure 7). All fields assume
that orientation tuning is quantizied to 10 degrees and their radius of influence
is set to four to five nonoverlapping hypercolumns to reflect a 6 to 8 mm corti-
cal range of horizontal connections (Gilbert & Wiesel, 1989) and hypercolumn
diamater of 1.5 mm (to account for ocular dominance domains). (a–d) Examples
of co-circularity projection fields (Parent & Zucker, 1989) for cells with orien-
tation preference of 150 degrees (center bars) and different values of curvature
tuning based on the implementation by Iverson (1994). (a) κ = 0.0 (curvature
in units of pixels−1). (b) κ = 0.08. (c) κ = 0.16. (d) κ = 0.24. (e) The union of
all projection fields of all cells with same orientation preference (0 degrees in
this case) but different curvature tuning. Note the similarity to the shcematic
association field in Figure 6b. (f–j) Examples of the texture flow projection fields
(Ben-Shahar & Zucker, 2003b) for cells with horizontal orientation preference
(center bars) and different curvature tuning. Note the intrinsic dependency on
curvatures and the qualitatively different connectivity patterns that they in-
duce. (f)(κT, κN) = (0.0, 0.0). (g) (κT, κN) = (0.2, 0.0). (h) (κT, κN) = (0.0, 0.2).

(i) (κT, κN) = (0.1, 0.1). (j) (κT, κN) = (0.2, 0.2). Note that while the majority of
connections link cells of roughly similar orientation, some connect cells of large
orientation differences. The fields shown are just a few examples sampled from
the models, both of which contain similar (rotated) connection fields for each
of the possible orientation preferences in the central hypercolumn. The circles
superimposed on d and i are used to characterize retinotopic distance zones for
the predictions made in Figure 15.



5. Ecological deviance

Neural responses to time-varying natural scenes deviate significantly from
the predictions of current models.

• David, Vinje & Gallant (1999) - can account for 20-30% of response
variance with current models.

• Gray & Baker (unpublished observations) - responses to natural movies
are often not predicted by simple receptive field models.

• Machens, Wehr & Zador (2004) - can account for 11 % of response
variance in A1 using STRF models.



V1 neural responses to natural scenes deviate from
predictions of simple receptive field models

Data from Gray lab (J. Baker)
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Receptive field models fail to predict responses of V1 neurons to natural movies
Bruno A. OIshausen*, Jonathan Baker, Shih-Cheng Yen, and Charles M. Gray

Department of Cell Biology and Neuroscience, Montana State University, Bozeman
*Redwood Neuroscience Institute and Center for Neuroscience, UC Davis

Introduction

Much effort has gone into characterizing the receptive field properties of visual 
cortical neurons.  However, the extent to which receptive field models are capable of 
accounting for the responses of visual neurons to natural scenes is largely 
unexplored.   In this study, we compare the activity of neurons in area V1 of the 
anaesthetized cat, recorded in response to a natural movie, to the predictions of a 
simple-cell receptive field model.  We find that in most cases the receptive field 
model fails to adequately capture neural responses.

Model
A commonly accepted model of V1 simple cells is based on taking a linear weighted 
sum of image pixels over space and time, normalizing this value by the responses of 
other neurons, and passing the result through a point-wise nonlinearity.  

Here we consider a somewhat simpler version without the response normalization 
step.   The neuron's response r is modeled by computing the convolution of the 
image I(x,y,t) with a space-time kernel K(x,y,t) and passing the result through a 
point-wise non-linearity, plus an offset:

       r(t) = α f(u(t) + θ) + r0

        u(t) = Σ K(x,y,t) * I(x,y,t)

       f(x) = x^p if x>0, 0 otherwise

The receptive field kernel, K, was obtained via reverse correlation with an M-
sequence.  The kernel was then convolved with the movie to generate the 
intermediate response u.  The parameters α, θ, r0, and p where then adapted to 
minimize the squared error between the predicted response r(t) and the psth of the 
neuron recorded in response to the same movie.

Movies

Results

Results are shown in the boxes at right.  For all plots the following legend applies:

Predicted response

Actual response (psth)
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Discussion and Conclusions

For nearly all cells studied (for which we were able to 
obtain receptive field maps), the receptive field model 
failed to predict the actual response of the neuron.  
Correlation coefficients hover well below 0.5, 
meaning that the receptive field map per se is of 
limited value in helping us to understand how a 
neuron behaves under realistic conditions.  

Obviously we will have to take into account other 
factors in order to explain how V1 neurons respond 
under natural conditions.  In addition to their 
feedforward input from the LGN, neurons in layer 4 
receive massive input from other cortical neurons:

Image

I(x,y,t)

K (x,y,t)
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Lumping together the effects of feedforward input 
from the LGN and recurrent input from cortex and 
calling it the "receptive field" is not a good idea.  In 
order to properly understand what cortical neurons 
are doing, it may well be necessary to model their 
response as a function of not only the input, but 
of other simultaneously recorded cortical neurons 
as well.

Single unit, Big Lebowski Single unit, Cats

Two simultaneously recorded units, Big Lebowski Two simultaneously recorded units, Cats

Two simultaneously recorded units
Animals (2501:3350) Animals (8001:8850) Everest

Three simultaneously recorded units, Cats

Three simultaneously recorded units
Big Lebowski (1002:1501) Big Lebowski (3402:3951)





Same thing in A1

Machens, Wehr & Zador (2004)

Qualitative characterization of the failures
The widespread failure of the linear model to predict responses
for many but not all complex stimuli indicates a high but
stimulus-dependent degree of nonlinearity. By comparing the
predicted and actual responses, we can characterize the different
failure modes of the STRF model.

Three sample predictions are shown in Figure 7, A–C, for the
same data as in Figures 2, D and E, and 3, A and B. Although the
predicted trace (red line) in Figure 7A accounts for the approxi-
mate times at which PSPs occur, it does not capture their precise
shape. This observation can be quantified by spectrally resolving
the prediction success. For that purpose, we again use the coher-
ence function as a measure of the correlation at each frequency
(in this case, between actual and predicted response) (Fig. 7D,
solid line). Clearly, this particular STRF does not predict any
response fluctuations faster than �10 Hz. As a comparison, recall
that the response is reliable up to at least 20 Hz (Fig. 7D, dashed
line).

Figure 7B shows a natural stimulus that elicited a highly reli-
able response that the STRF predicted only poorly. The example
uses the same data as in Figure 2, D and E (central panel). Al-

though the STRF predicts the timing of the PSPs, it underesti-
mates their amplitudes (Fig. 7B, arrows).

As demonstrated by Figure 7C, the linear model can some-
times fail completely in predicting PSPs. The arrows point to
PSPs that occurred reliably in the actual response but were not
predicted by the STRF. Such failures lead to a correspondingly
weak coherence (Fig. 7F) and a small prediction success (in this
case, 8%).

The inability of the STRF to predict the correct size of the PSPs
and its occasional failure to predict the occurrence of PSPs can be
visualized in a calibration plot in which the actual response is
plotted against the predicted response (Fig. 7G–I). In Figure 7G,
most dots cluster around the identity line, suggesting an overall
match between actual and predicted response. In Figure 7, H and
I, however, most of the dots fall clearly above the identity line,
corresponding to underestimated PSP amplitudes or PSPs that
were missed by the STRF.

Ruling out trivial nonlinearities
Although the failure to predict PSPs suggests the existence of
complex nonlinearities, the incorrect size of predicted PSPs could

Figure 7. Prediction success and failures. A–C, Spectrogram, measured and predicted responses for the same data as shown in Figure 2. In A, the prediction (red) captures the gross features of
the mean response (black) but not the fine details. In B, the STRF rightly predicts the occurrence of most PSPs but markedly fails to predict their overall size (arrows). In C, the STRF not only
underestimates the size of PSPs but, at times, completely fails to predict their overall occurrence (arrows), hinting at more complicated nonlinearities. D–F, Coherence between measured and
predicted responses (solid lines), corresponding to the data shown in A–C, respectively. The coherence functions underpin the observation that the STRF succeeds at best in capturing slower temporal
components. For comparison, the dashed lines replot the coherence between a single trial and the mean (compare Fig. 3B), which provide an upper bound. G–I, Calibration plot (same data as in A–C,
respectively). Plotting the predicted versus the actual response reveals any static, systematic errors inherent to the linear model. The black lines show the baselines of the actual responses. Although
the plot in G suggests an overall linear relationship between actual and measured responses, the plots in H and I demonstrate the presence of nonlinearities. The vertical alignment of the clouds of
dots indicate failures of the STRF to predict PSPs or strong underestimation of the PSP amplitude.

Machens et al. • Linearity of Cortical Receptive Fields J. Neurosci., February 4, 2004 • 24(5):1089 –1100 • 1097



Single unit recording
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Conclusions

• We still do not understand the vast majority of what V1 is doing under
natural conditions.

• What is needed:

– Natural scenes, surfaces
– Simultaneous recordings from large populations of neurons

• We should be prepared for some surprises.


