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Motivation 
The sensors of humans are plagued by noise, and likewise our muscles produce noisy 
outputs. Even if we had perfect sensors they would only tell us about the part of the 
world that we can currently sense. Uncertainty that stems from noise or the lack of 
complete knowledge places estimation of attributes of the worlds and control of our 
actuators firmly within a statistics framework. Bayesian statistics is the principled 
way of dealing with such problems. 
Much research in the field of machine learning addresses how artificial systems can 
optimally solve such problems . Bayesian learning and inference are thriving fields 
and the developed algorithms now allow efficient handling of complicated real world 
data.  
Recently many counterintuitive finding, such as visual illusions, in neuroscience can 
be understood by considering the brain is performing Bayesian estimation. At the 
same time studies start to appear where the neural correlate of such statistical 
processing is analyzed. Therefore the Bayesian approach may provide a framework to 
understand and macroscopic and microscopic attributes of neural function.  
In the studies described in this paper it was analyzed how human performance can be 
understood in terms of statistically optimal processing. These studies address how the 
human nervous system can use information to perform optimally in a world full of 
uncertainties. 
 

Description of the theory 
Bayesian statistics can be used to infer the states of variables that are not directly measured, a process 
called Bayesian inference. The way inference is done is the following: 
 
1) The prior knowledge about the system is specified. The structure of the problem is defined, 
specifying which variables depend on which other variables in which way. 2) Bayesian methods are 
used to infer how probable each state of the unobserved variables is given the values of the observed 
variables. There are numerous methods available towards this goal. Some methods deliver an 
approximate answer efficiently while some other methods deliver exact solutions to impler problems.  
 
Numerous articles summarize the mathematical(Cox 1946) and philosophical(Freedman 1995) ideas 
that are behind Bayesian statistics and how to use them. The main focus of this article is on the 
concepts behind Bayesian methods that are used to understand the human brain. 

Notation: 
Upper case letters denote random variables (e.g. the position of my hand), lower case letters denote a 
particular value that a random variable can take(e.g. 10cm ). 
 

( )p A a= is the probability that a random variable A  takes on a specific value a, given that there is no 
additional knowledge about other related variables. 
 

( | )p A a B b= = is the probability of observing A=a given that the statistician has the knowledge that 
the variable B has the value of b (conditional probability). 
 



( , )p A a B b= =  is the probability that A=a and B=b. It can be rewritten to be: 
( , ) ( ) ( | )p A a B b p A a p B b A a= = = = = =  

Conditional independence and graphical Bayesian models 
Statistical problems become a lot easier once we understand their structure. If we have 3 variables, A, B 
and C we could for example know that A causes B and C and that B and C do not interact. As an 
example, A could be the size of an object, B is the size as reported by our sense of touch alone and C is 
the size reported by our visual system alone. B and C thus show conditional independence on A. As 
many problems have such structure often graphs are drawn to depict how variables depend on one 
another. There is a range of variants of such graphs, but for the problems considered here graphical 
Bayesian networks (directed acyclic graphs) are used. If there exists no direct link between two 
variables B and C then they are independent conditional on the other variables that are “in-between”: 
p(B=b|C=c,Others=o)=p(B=b|Others=o). 

Using Bayes rule: ball positions in tennis 

Figure 1: A) Example: The other player is hitting the ball. Seeing the ball we can estimate that it will land in the red 
region (with a likelihood proportional to the saturation). We have prior knowledge that the ball is likely to land in the 
green region (with a probability proportional to the saturation). The black ellipses denote the posterior, the region where 
the Bayesian estimate would predict the ball to land. B) Structure: The position influences the perceived position. C) 
Human subjects had to estimate a position. From these measurements their priors were inferred (blue lines). The real 
distribution is shown in red. 
 
If we are playing tennis we want to estimate where the ball will hit the ground (see Fig. 1A). Because 
vision does not provide perfect information about the balls speed there is uncertainty about where the 
ball will land. If we, however, played a lot of tennis before we can have knowledge about where our 
partner is likely to play to. We want to combine this knowledge with what we see to obtain an optimal 
estimate of where the ball will hit the ground. 
This example can be abstracted the following way (Fig. 1B): The physical properties of the ball define 
the position X x=  where the ball will hit the ground. The visual system, however, does not perceive 
where the ball will really hit the ground but rather some noisy version thereof, Y=y. Knowing the 
uncertainties in the visual system we know how likely it is to perceive the ball being at Y=y if it really 
is at X=x’. This is called likelihood ( p(Y=y|X=x'|) ) and is sketched in red in Fig. 1A. Just based on this 
knowledge we could ignore any other knowledge we might have and our best estimate would be in the 
middle of the red cloud, at y. This procedure however ignores that we can have prior knowledge about 
the way our partner plays. In particular over the course of many matches the positions where the ball 
hits the ground will not be uniformly distributed but highly concentrated within the confounds of the 
court and if our enemy is a good player highly peaked near the boundary lines where it is most difficult 
to intercept them. This distribution of positions where the ball hits the ground , p(X=x), is what is called 
a prior and which could be learnt using methods of Bayesian learning. We can apply Bayes Rule to 
compute the posterior ( ( | )p X x Y y= = ), the probability of the ball landing taking into account the 
prior and the new evidence: 

( )( | ) ( | )
( )

p X xp X x Y y p Y y X x
p Y y

=
= = = = =

=
. Our uncertainty about its position is thus set in terms of 

probability. We know where we can expect the ball to land with which probability, given everything 
we know about it.  
  
If we can assume that the prior distribution ( )p X x= is a symmetric two dimensional Gaussian with 
variance 2

pσ and mean µ̂ and the likelihood ( | )p Y y X x= =  is also a symmetric two dimensional 

Gaussian with variance 2
Vσ   and mean y it is possible to compute the optimal estimate x̂  as: 
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prior knowledge. But not only is it possible to calculate what the optimal strategy is, it is also possible 
to calculate how much better the estimate is compared to a strategy ignoring prior knowledge: The 
variance of the estimate if only the visual feedback is used is 2

Vσ  if however the prior is used to the 
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which is always less than the variance of the non-Bayesian estimate. If the prior 

has the same variance as the likelihood then the variance of the Bayesian estimate is half the variance 
of the non-Bayesian estimate. 
 
 
 
In a recent experiment (Körding & Wolpert 2004) it was tested if people use such a Bayesian strategy. 
Subjects had to estimate the value of a one dimensional variable, the displacement of a cursor relative 
to the hand, in close analogy of estimating the position where the ball will land. This variable was 
drawn randomly each trial out of a Gaussian distribution defining a prior distribution and subjects 
received extensive training so that they can know the prior. In addition they saw the position thus 
receiving the likelihood. The experiment allowed measuring the subject’s estimate of the displacement. 
Out of this data it is possible to infer the prior that people are using. If they ignore the prior information 
the prior should be flat. The data shown in Fig. 1C (blue) shows that people used a prior that was very 
close to the optimal one (shown in red). This experiment thus showed that people can use Bayes rule to 
estimate the state of an important variable.  
It has been shown in other experiments that people equally use Bayes rule when they estimate a force 
(Körding et al 2004 - in press). It is possible to use the same method used here for combining prior 
knowledge with new evidence to combine information obtained from two different sensors, for 
example feeling (haptic information) and seeing something and then having to estimate its size. A 
recent experiment also showed that people use Bayesian methods to combine visual and haptic 
information (Ernst & Banks 2002). 

Kalman Controllers: hand position in the dark  

 
Figure 2: A) Example: The hand is moving in the dark, we want to estimate where it is. The uncertainty about the state of 
the hand is sketched in red.   B) Structure: The state at time t is influenced only by the previous state and the motor 
command. The perceived state is the state with added noise. C) The error of the human estimates of travelled distance is 
shown as a function of the duration of the movement. The optimal (assuming overestimated force) Kalman controller 
predicts the red curve. 
 
If we move our hand in the dark we have uncertainty about its exact position or velocity because our 
proprioceptive sensors are not perfect (Fig 2A). We are thus faced with the problem of estimating the 
state X of the hand, which is characterized by the position and velocity. From experience people know 
how the state of the hand changes over time. In particular they know that the position changes 
proportional to its velocity and that the velocity changes proportional to the force applied, although 
there might be noise in this process. The subjects thus have prior knowledge that they can combine 
with the likelihood provided by their sensors. In this case however they constantly have to update their 
estimate thus effectively using Bayes rule at every time-step.  
The model for the hand is shown in Fig. 2B. Assuming that the real state X of our hand is X=x then the 
perceived state Y will be some noisy version thereof and U=u is the motor command we are sending to 
our muscles. We know something about the structure of the problem: The state of the hand at time t 
only depends on the state of the hand at time t-1 and the applied force, this is the Markov property. The 
state of the hand does not explicitly depend on the state of the hand at any but the preceding time. 
Using Bayes rule twice it is possible to obtain: 



1 1 1 1( | , , ) ( | , ) ( | )t t t t t t t t t t t t t t t t tp X x X x Y y U u p X x X x U u p Y y X x− − − −= = = = ≈ = = = = =
Where 1 1( | , )t t t t tp X x X x M m− −= = =  is the probability of finding oneself in state tx  at time t 

after having been in state 1tx −  at t-1. People can be expected to have a model for their hand in terms of 
these variables (called forward model) that they acquired from past experience.  
Figure 2B shows the graph with the relations between the variables.  
Assuming that random variables have n-dimensional Gaussian distributions, the equations obtained 
describe the optimal Kalman controller and it is possible to derive the optimal strategy(Wolpert et al 
1995) for predicting the state of the hand: 

[ ]ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x t Ax t Bu t K t y t x t= + + −&  where x̂ is the current optimal estimate, x̂&  is the change of the 

optimal estimate, Â  is a matrix that characterizes how the hand moves without perturbation, B̂  a 
matrix that characterizes how forces change the state of the hand ( )K t is the Kalman gain which is a 
function of the other matrices. The Kalman controller is a generalization of the Kalman filter (Kalman 
1960) that does not allow a motor signal 
 
In an experiment human volunteers subjects (Wolpert et al 1995) moved their hands in the dark. After 
each movement they had to estimate where their hand was. Movements of varying temporal duration 
were done between 500 ms and 2500 ms. Subjects systematically estimated that their hand had moved 
further than it actually had moved (Fig. 2C gray). An optimal Kalman controller (Fig 2C, red) produced 
very similar results if it was assumed that people systematically overestimate their forces. For small 
times the overestimation of distance increased with time. This was due to the overestimated forces. As 
times however increased, the likelihood becomes more important compared to the prior. That is why 
the controller becomes better if the movement lasts a long period of time. The optimal controller thus 
shows very similar errors to those made by human subjects. It thus seems that people are able to 
continuously update their estimates based on information coming in from the sensors. 
 

Dealing with rewards:  

 
Figure 3: A) Example: People rapidly move their hand to a computer screen to touch circles and gain rewards. The 
circles are quite small and they have to move so fast that they can not be certain about their final finger position. B) 
Structure. Depending on the motor commands there is a probability distribution about which circles are hit. Depending on 
which circles are hit there are monetary rewards. C) The positions towards which people moved are shown against the 
positions they should have pointed to assuming the use of Bayesian decision theory. 
 
In many situations there are not only probabilities involved but also costs or rewards. Consider for 
example throwing darts. While the 20 gives us a large number of points the neighbours only give a low 
number of points (1 and 5). The 19 however has neighbours that give more points (3 and 7). An expert 
thrower will therefore usually try to hit the triple 20 as she is unlikely to miss it. An intermediate player 
will try and go for the triple 19 while a novice is best off targeting the middle of the board. Such 
problems thus ask for a combination between statistical theory and information about rewards, called 
Bayesian Decision Theory. 
Figure 3A shows a simple abstraction of such a task that has been used by Trömmershauser and 
Maloney(Trommershäuser et al 2003). People have to move their hand very fast towards a target,  just 
like in darts, so that uncertainty can not be avoided. There are 2 circles that people can touch. Touching 
one leads to a monetary gain, touching the other leads to a monetary loss. Depending on the motor 
command U there will be a probability distribution of hitting each target p(A=a|U=u). Figure 3B shows 
the structure of the problem. Optimal behaviour for such tasks can be derived calculating the expected 
value of the reward: 



Expected Reward p(A=a|knowledge)Reward(a)da= ∫   where Reward(a) is the number of points scored 
that way. The optimal behaviour is then defined as the one that leads to a maximal expected gain. 
Bayesian decision theory thus emerges naturally as probabilities are combined with rewards. 
 
A recent experiment tested if human subjects are able to use Bayesian decision theory to move 
optimally(Trommershauser et al 2003). Subjects had to touch a touchscreen monitor very fast that 
displayed two spheres, one defining a monetary loss, the other one a monetary gain. They then 
measured where on average subjects touched the screen. Figure 3C shows the position where the screen 
was touched against the optimal position according to the theory. Subjects are very close to the optimal 
solution. This demonstrates that people can use Bayesian decision theory to move optimally. 

Neuroeconomics: internal rewards 

 
Figure 3: A) The experiment holds a robotic handle that produces forces that the subject has to hold. B) Structure of the 
problem. Depending on the force and how long it needs to be held there will be some internal loss. C) The loss can be 
inferred from the subjects decisions. The hotter the color the less desirable the force.  
 
If we move our hands there will not only be a target that we want to reach but at the same time we will 
try and minimize our effort. Each movement, for example while shaking hands with a robot  (Figure 
3A) will require energy as we have to produce forces. It can be assumed that people will generally 
prefer less demanding movements. People are thus faced with the problem of selecting among the huge 
set of possible movements the one that minimizes their effort or loss. It is assumed that there is a 
function – Loss – that defines how much loss is associated with a movement. This loss function will 
depend on various parameters of the movement for example the on the magnitude and the duration that 
subjects have to hold a force (Figure 3B). If only the magnitude (F) and the duration (t) of a force are 
considered important then the loss will be a function of these two parameters (Loss=f(F, t)). This 
function however is defined in our own head and it is not straightforward to measure it. The economists, 
however, are often faced with similar problems. Assume people have a fixed amount of money and can 
only buy apples and bananas, how many of each should they buy? An important concept that is used in 
economics is the concept of a utility function. This function defines how good the outcome of an action, 
for example a trade is. It is thus just the inverse of the loss. A tool that is often used to study such 
functions is called indifference curve. A set of combinations of apples and bananas can be equally 
desirable and people have no specific preference for any specific such combination. They could for 
example be equally content with having 2 bananas and 3 apples or 3 apples and 2 bananas. Measuring 
such indifference lines can often elucidate properties of the underlying utility function. Such curves can 
be inferred by asking people for judgments of preference, for example: Would you rather have 2 
bananas and 3  apples or 1 banana and 4 apples). A large number of such preference statements allow 
inferring the indifference curves and the utility function. The same concept can also be used for the 
study of loss functions in the sensorimotor system. In an experimental setting people had to produce 
forces of varying magnitude and duration. They then had to decide which force they had to experience 
again(Körding et al 2004). From their responses, just like in economics, it is possible to infer the utility 
function and the indifference lines (Figure 3C). The loss function that people show is relatively 
complicated for this task. This is in contrast with previous theoretical explorations that have proposed 
relatively simple utility functions (Harris & Wolpert 1998). The method explained here thus allows 
directly addressing the properties of the utility function. 
 



Internal rewards and uncertainty:  

 
Figure 4: A) Example: White spheres appear on a computer screen the position of which is steered by a hand. The errors 
and their distribution, however, is controlled by a computer program. B) An important question is how bad an error is 
compared to another error. Several possible virtual dartboards are sketched. C) Structure of the problem. Depending on 
the motor commands there is a probability distribution about target distances. D) The loss function inferred in this 
experiment 
 
If we are playing darts then the dart board will assign a score to each of our throws. When we have to 
point to a position in space (Figure 4A) we also want to point as precisely as possible. Because our 
sensorimotor system is not perfect we will nevertheless not always be perfectly precise in pointing. We 
are nevertheless sometimes content or annoyed about a movement. Computationally, there must be 
some way how the brain assigns a loss to each movement. In other words there must be a dartboard that 
assigns a number to each error we are making. An important question is how this internal dartboard 
looks like and how bad, for example, it is to make an error of 2 cm compared to an error of 1 cm 
(Figure 4B,C). Measuring the properties of this internal dartboard ask for a combination between 
statistical theory and information about rewards, called Bayesian Decision Theory. To measure the loss 
function that people have the following experiment was used. Many dots like in Figure 4A appeared on 
the screen. The average position of the dots was determined by the position of the hand of the subject. 
The dots varied around this average position in a way that was not symmetric but skewed. In this case 
different loss functions predict different optimal behaviour. Analyzing the way that people do move it 
was possible to infer the loss function they are using (Figure 4D). The loss function is approximately 
quadratic for small errors and significantly less than quadratic for large errors. The human estimation is 
thus outlier insensitive. Such loss functions are very useful because a couple of outliers does not 
significantly influence the estimate. Consequently they are often used in artificial techniques and a field 
called robust fitting (Huber 1981) analyzes how such functions could best be built.  

Outlook 
Bayesian statistics is a large field (c.f. MacKay 2003). Some researchers develop novel algorithms for 
Bayesian inference. They developed fast algorithms that lead to exact solutions, a classical one is belief 
propagation(Pearl 1988). There are a large number of novel uses of this algorithm for complicated 
problems where the graph does have loops called loopy belief propagation which often results in good 
approximations. As an example, the technologically important issue of efficient data transmission 
through noisy information channels is best solved using this method (Berrou et al 1993). Bayesian 
methods are a systematic way of thinking about function approximations and thus supersede the neural 
networks literature(Neal 1996). Bayesian methods are also the best known methods for speech 
recognition using hidden Markov models (Rabiner 1989) that are a discrete version of the Kalman filter.  
Bayesian statistics is also moving towards being a major driving factor at understanding the brain. 
There is ample evidence that the human visual system uses Bayesian methods (Fleming et al 2003, 
Weiss et al 2002). Reflections of such statistical processing can already be seen in the way that neurons 
in the primary visual cortex process stimuli (Sharma et al 2003). Reflections of such processing can 
also be seen in neurons involved into the decision about the direction of movement of a visual 
stimulus(Gold & Shadlen 2002).  There is furthermore evidence that Bayesian statistics is not only used 
by people to move or perceive. It is indeed used to solve higher level cognitive tasks such as 
generalization (Tenenbaum & Griffiths 2001), concept learning(Tenenbaum 2000) and the judgement 
of randomness(Griffiths & Tenenbaum (in press)). Bayesian statistics allows novel questions to be 
asked in psychophysical and electrophysiological experiments while providing a coherent framework 
in which information processing can be understood. 
 
Experiments that address the way the brain deals with statistical problems with and without rewards 
help us understand the algorithm the brain uses to solve its everyday problems. The approach suggests 
novel experiments as well as novel interpretations of previous experiments and places a broad range of 
experimental results in a coherent theoretical framework.   
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