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Summary

Functional magnetic resonance imaging (fMRI) is used to investigate where the neural
implementation of specific cognitive processes occurs.  The standard approach uses linear
convolution models relating experimentally designed inputs, through a hemodynamic response
function (HRF), to observed blood oxygen level dependent (BOLD) signals.  However, these
models are blind to the causal mechanisms that underlie observed BOLD responses, both in
terms of neural dynamics and neurovascular coupling.  This article reviews current
developments towards causal models of how BOLD responses are generated.  We focus on (i)
biophysical input-state-output models with neural and hemodynamic state equations, and (ii)
models of functional integration that explain local dynamics through interactions with remote
areas.  Forward models with parameters at the neural level, e.g. Dynamic Causal Modeling,
combine both approaches, modeling the entire causal chain from external stimuli, via induced
neural dynamics, to observed BOLD responses.

Introduction

Functional magnetic resonance imaging (fMRI) has become the most commonly used
method to investigate human brain function.  Historically, neuroimaging has been concerned
predominantly with the localization of function, i.e. where in the brain neural computations
mediate a cognitive process of interest.  This approach rests on linear time-invariant (LTI)
models that relate the time course of experimentally controlled manipulations (e.g. changes
in sensory stimuli or cognitive set) to observed blood oxygen level-dependent (BOLD)
signals in a voxel-specific fashion.  While quite different statistical models have been
suggested (see [2, 16] for recent reviews of different approaches), all treat the brain as an
ensemble of isolated black boxes (i.e. voxels) whose input-output functions are characterized
by BOLD responses evoked by various experimental conditions.

In this article, we briefly review current developments in causal models of how BOLD
responses are generated.  We focus on the following two issues:  First, what are the
mechanisms that translate local neural dynamics into observed BOLD signals?  This question
speaks to biophysical models of the neurovascular coupling.  Second, how do local responses
result from interactions with other brain regions?  This question requires models of
functional integration that consider context-dependent causal interactions among remote
areas, i.e. in terms of effective connectivity.

This article is structured as follows.  First, we briefly summarize standard convolution
models for fMRI analysis that are blind to causal mechanisms underlying the BOLD signal.
We then present current biophysical models of regionally specific responses.  Finally, we
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discuss progress in the field of effective connectivity.  Particular emphasis will be given to
Dynamic Causal Modeling (DCM, [11••]) as the first example of an emerging class of
models that combine the biophysics of local responses and effective connectivity.

Convolution models and the hemodynamic response function

Most current approaches to fMRI analysis are implemented in the context of the General
Linear Model (GLM)

eXy += β (1)

which models voxel-specific BOLD responses y in terms of a linear combination of
explanatory variables in the design matrix X plus a Gaussian error term ε.  The design matrix
is based on stimulus functions that encode evoked neural responses.  The relation between
neural and BOLD responses is modeled by the hemodynamic impulse response function
(HRF). This describes the characteristic hemodynamic response to a brief neural event and
thus characterizes the input-output behavior of a given voxel.  The standard convolution
model for fMRI treats each voxel as an independent LTI system, convolving the stimulus
functions with an HRF to give predicted hemodynamic responses that enter the design matrix
as regressors [7].

The HRF may vary from voxel to voxel and subject to subject [14], and this has to be
accommodated in the GLM.  To allow for voxel-specific HRFs, temporal basis functions can
be used to express the predicted BOLD response as the linear combination of several
functions of peristimulus time [8, 16].  An alternative is to estimate the HRF directly from
the data, using parametric [14] or non-parametric [6, 22] models.

In summary, regardless of whether the HRF is modeled by temporal basis functions or
estimated from the data, the question addressed is where in the brain a given experimental
manipulation leads to changes in BOLD signal.  However, these approaches are blind to the
mechanisms that underlie these changes.

Biophysical models of regional BOLD responses
By adopting a convolution model for brain responses in fMRI we are implicitly positing
some underlying dynamic system that converts neuronal responses into observed
hemodynamic responses.  In the pioneering work by Buxton et al. (“Balloon model”, [4, 5])
and Mandeville et al. (“Windkessel model”, [21]), detailed biophysical models of the
neurovascular coupling have been validated by physiological experiments.  These models
predict how increases in regional blood flow (f) dilate a venous balloon, increase its volume
(v) and dilute venous blood to decrease deoxyhemoglobin content (q).  The resulting BOLD
signal is a non-linear function of v and q and follows the flow dynamics with a delay of about
one second.  This model was extended by Friston et al. [9, 10•] to include the effects of
external inputs (u) on an auto-regulated vasodilatory signal (s) assuming that the relation
between evoked neural activity and blood flow is linear.  This linear relation had been
demonstrated directly by elegant animal studies combining optical imaging, laser Doppler
flowmetry and multi-electrode recordings [23•, 24] and indirectly by perfusion studies of the
human brain [27].
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Figure 1

Summary of the hemodynamic model of Friston [10•] and its adaptation for DCM [11••].  A series of
experimentally controlled inputs u evoke neural responses z that trigger a hemodynamic cascade, modeled by 4
state equations with 5 parameters.  These hemodynamic parameters comprise the rate constant of the
vasodilatory signal decay (κ), the rate constant for auto-regulatory feedback by blood flow (γ), transit time (τ),
Grubb’s vessel stiffness exponent (α), and capillary resting net oxygen extraction (ρ).  Integrating the
hemodynamic state equations for a given set of inputs and parameters produces a predicted BOLD response.
For parameter estimation, an observation model is used that treats the observed BOLD response as a function of
inputs and parameters plus some observation error.

As summarized in Fig. 1, the extended input-state-output model of Friston [10•] comprises
four hemodynamic state variables combine into a vector x = {s, f, q, v} whose interactions are
described by differential equations with five hemodynamic parameters },,,,{ ρατγκθ =h .
These parameters have an explicit biophysical meaning (see legend of Fig. 1).  The flow-
inducing signal s is triggered by neural responses to m experimental inputs, weighted by
different efficacies.  These input-specific efficacies represent the neural parameters of the
model: },...,{ 1 m

n εεθ = .  The model represents a deterministic forward model with hidden

states: for any given set of parameters },{ nh θθθ =  and inputs u, the state equation
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This can be extended to an observation model, representing the observed output y as a
function of the inputs and parameters, but without reference to the hidden states x:

euhy += ),( θ (3)

This formulation is the basis for parameter estimation from measured data.  For example, the
distributions of the biophysical parameters hθ  were estimated from fMRI data by a Volterra
series expansion [9].  The means and variances of these distributions were later used as
empirical priors in a fully Bayesian scheme with an iterative EM (expectation maximization)
algorithm [10•], using a bilinear approximation of the state equations.  The latter scheme is
also used in DCM, which is described below.

A limitation of the model by Friston [10•] is that it can only deal with measurement noise
(see Eq. 2 and 3).  An extended model which also considers physiological noise was
suggested by Riera et al. [31••].  They augmented the state equation (Eq. 2) with an
innovation, resulting in the stochastic differential equation

ωθ guxfx += ),,(& (4)

where ω is a scalar Wiener process, representing physiological noise, and g is a vector
defining the degree of randomness for each state variable.  Eq. 4 was transformed into a non-
linear state space model, from which parameters were estimated using a recursive local
linearization filter [18].  This method has two advantages: (i) the parameter estimates
converge to the true values, not to the values of a bilinear approximation, and (ii) the fit of
the model can be evaluated easily by testing whether the distribution of the innovation terms
deviates from a Gaussian distribution.  Figure 2 shows an example where a BOLD signal that
was generated from simulated state trajectories was reconstructed precisely from the
estimated states despite the presence of both physiological and measurement noise.
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Figure 2
Demonstration how a BOLD signal (blue line in A) that was generated from simulated hemodynamic state
trajectories (solid lines in B) can be reconstructed (red line in A) from the estimated states (dashed lines in B)
despite the presence of both physiological noise (black line in B) and observation noise (black line in A).  This
example used the model by Riera et al. [31••] with an additional Kalman smoothing step.  The vertical dashed
lines represent the onset and offset of a constant stimulus.

One limitation of the models discussed so far is that they assumed a tissue oxygen
concentration of zero.  Consequently, capillary oxygen extraction rate depended entirely on
oxygen delivery and thus on blood flow (see Eq. 6 in [5]).  While this coupling between
oxygen extraction and flow was supported by earlier studies [17], recent experiments indicate
that this may be an oversimplification [32].  Therefore, more sophisticated models of oxygen
extraction might be useful.  For example, Zheng et al. [34•] extended the Friston model [10•]
by three new state variables that enable precise dynamic modeling of intra-capillary oxygen
transport to tissue.  Similarly, Obata et al. [28•] provided a generalized version of the original
Balloon model of Buxton et al. [5] which considers both intra- and extra-vascular signal
changes.

It should be noted that none of the biophysical models discussed in this section specify
precisely what is meant by neural activity.  Therefore, these models cannot tell us what
aspect of neural information processing is reflected by the BOLD signal.  Neural information
processing within a given cortical unit can be described along many different dimensions,
and the relation between a neurophysiological process and the resulting BOLD response can
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be characterized at different scales, for example (i) local field potentials vs. spiking activity,
(ii) excitatory vs. inhibitory post-synaptic potentials, or (iii) different receptor types at
synapses.  Sophisticated animal studies that combine multi-electrode recordings with fMRI
[19, 20••] or with optical imaging techniques [23•, 24] have started to address these issues.
The next step is to transform the current biophysical models of the BOLD response into
comprehensive forward models with parameters at the neural level, modeling the entire
causal chain from external stimuli, via induced neural dynamics, to observed BOLD
responses.  Such models must be parameterized in a neurophysiologically meaningful, yet
parsimonious and estimable fashion.  DCM [11••], which is discussed below, is a first step in
that direction.

Models of functional integration

Effective connectivity
Integration within distributed neural systems is usually best understood in terms of effective
connectivity: this is the influence that one neural system exerts over another, either at a
synaptic or population level.  It has been proposed that "effective connectivity should be
understood as the experiment- and time-dependent, simplest possible circuit diagram that
would replicate the observed timing relationships between the recorded neurons" [1].  This
speaks to two important points:  (i) effective connectivity is dynamic, i.e. activity- and time-
dependent, and (ii) it depends upon a causal model of the interactions.  Classical estimation
procedures, employed in functional neuroimaging, were based initially on linear regression
models, e.g. Structural Equation Modeling [3, 25].  Here, we briefly review current
developments with a focus on multivariate autoregressive models and nonlinear dynamic
causal models.

Multivariate Autoregressive Models (MAR)
Autoregressive models of fMRI data are usually not concerned with causality in a
biophysical sense, i.e. how observed BOLD series result from underlying neural processes.
Instead, they address the temporal aspect of causality in BOLD time series, focusing on the
causal dependence of the present on the past:  each data point of a time series is explained as
a linear combination of past data points.  This is in contrast to regression-based models of
effective connectivity where the time series can be permuted without changing the results.
MAR models extend the autoregressive approach to n brain regions, modeling the n-vector of
regional BOLD signals at time t ( ty ) as a linear combination of p past data vectors whose

contributions are weighted by the parameter matrices iA :

∑
=

− +=
p
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MAR models directed influences among a set of regions whose causal interactions, expressed
at the BOLD level, are inferred via their mutual predictability from past time points.
Although MAR is an established statistical technique, specific implementations for fMRI
were suggested only very recently.  Harrison et al. [15•] presented a MAR version that (i)
allowed for bilinear variables representing modulatory effects on connections and (ii) used a
Bayesian parameter estimation scheme suggested by Penny & Roberts [29].  This Bayesian
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scheme also determined the optimal model order, i.e. the number of past time points (p) to be
considered by the model.  A complementary MAR approach, based on the idea of “Granger
causality” [13], was proposed by Goebel et al. [12•].  They computed whole-brain
connectivity maps by evaluating voxel-specific two-dimensional MAR models of the
interactions between the current voxel and a reference voxel and introduced a statistical
framework for distinguishing different types of interactions.

A logical extension of MAR models is to augment them with a biophysical forward model to
enable inferences about neural parameters.  So far, this type of model has only been
introduced for EEG data [33].  For fMRI data, DCM is the only approach to date which
marries biophysical and functional integration models.

Dynamic Causal Modeling (DCM)

The general idea behind DCM is to construct a reasonably realistic neuronal model of
interacting cortical regions with neurophysiologically meaningful parameters.  These
parameters are estimated such that the predicted BOLD series, which results from converting
the neural dynamics into hemodynamics, correspond as closely as possible to the observed
BOLD series [11••].  In DCM, neural dynamics in several regions (represented by a neural
state vector z with one state per region) are driven by experimentally designed inputs that
enter the model in two distinct ways:  they can elicit responses through direct influences on
specific anatomical nodes (e.g. evoked responses in early sensory cortices) or they can
modulate the coupling among nodes (e.g. during learning or attention).  DCM models the
change in neural states as a non-linear function of the states, the inputs u and neural
parameters nθ :

),,( nuzFz θ=& (6)

The parameters are the connectivity matrices ( },,{ CBAn =θ ) that define the functional
architecture and interactions among brain regions at a neuronal level.  The bilinear
approximation of Eq. 6 is given by
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The matrix A represents the effective connectivity among the regions in the absence of

modulatory input, the matrices 
jB  encode the change in effective connectivity induced by

the jth input ju , and C embodies the strength of direct influences of inputs on neuronal

activity.
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DCM combines this neural model with the biophysical forward model of Friston [10•] which
describes how neuronal activity translates into a BOLD response (Fig. 1).  This enables the
parameters and time constants of the neuronal model to be estimated from measured data,
using a fully Bayesian approach with empirical priors for the biophysical parameters and
conservative shrinkage priors for the coupling parameters.  The posterior distributions of the
parameter estimates can then be used to test hypotheses about the size and nature of modeled
effects.  Usually, these hypotheses concern context-dependent changes in coupling which are
represented by the bilinear terms of the model.  For example, applications of DCM have
addressed the modulatory effects of object category [26] and attention to motion [11••] (see
also Fig. 3) on connections in the visual system.  If there is uncertainty about which
connections should be included in a model, or if one would like to compare competing
hypotheses (represented by different DCMs), a Bayesian model selection procedure can be
used to find the DCM that shows an optimal balance between model fit and the number of
parameters [30].

Figure 3
Results from a DCM analysis of attention to visual motion with fMRI [11••].  The fMRI data were from a study
in which subjects viewed identical stimuli (radially moving dots) under different attentional manipulations of
the task (detection of velocity changes) [3].  Right panel: Model structure with the conditional estimates shown
alongside their connections, with the percent confidence that they exceeded threshold in brackets.  Motion and
attention exert bilinear effects: motion modulates the connection from V1 to the motion-sensitive area V5,
whereas attention modulates the backward connections from the inferior frontal gyrus (IFG) to the superior
parietal cortex (SPC) and from SPC to V5.  Dotted arrows connecting regions represent significant bilinear



Okinawa Computational Neuroscience Course– Stephan, Harrison, Penny & Friston

9

affects in the absence of a significant intrinsic coupling.  Left panel: Fitted responses based upon the conditional
estimates and the adjusted data are shown for each region in the DCM.  The insert (upper left) shows the
location of the regions.

Conclusion
As a complement to models for identifying where evoked brain responses are expressed,
current effort is invested in models of how neuronal responses are caused.  In this article, we
have reviewed several models that address this causality in different ways.  One promising
strategy is to use comprehensive forward models with meaningful neurophysiological
parameters that link experimental manipulations, via induced neural dynamics, to observed
BOLD responses.  We expect that such models will greatly enhance our ability to investigate
and understand the neural systems that mediate specific cognitive processes.
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