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INTRODUCTION

The meaning of any signal that we receive from our environment is modulated by the context

within which it appears. Our interpretation of colour, a spoken phoneme, or a patch of lumi-

nance depends critically on its context. While ‘context’ may be a rather abstract notion, it is

reasonable in a range of situations to take it to mean the statistical ensemble in which the signal

is embedded. Interpreting a message requires both registering the signal itself and knowing

something about this statistical ensemble. The relevant temporal or spatial ensemble depends

on the task. The context may be highly local; we interpret appropriately gradations of light

and dark in a scene where local brightness typically varies over orders of magnitude (VISUAL

CODING, NATURAL SCENES AND FEATURE DETECTION). For tasks such as decision-

making, the relevant statistics may reflect complex descriptions of the world accumulated over

long periods.

Neural representations at every level of information processing should be similarly modulated by

context. Information theoretically, this has measurable advantages: representations which ap-

propriately take into account the statistical properties of the incoming signal are more efficient.

Since the ’50’s it has been suggested that efficiency is a design principle of the nervous system,

allowing neurons to transmit more useful information with their limited dynamic range (see OP-

TIMAL SENSORY ENCODING; INFORMATION THEORY AND VISUAL PLASTICITY).

Thus, one expects that learning the context and implementing this knowledge through coding

strategy is inherent in the formation of representations.

Such adjustments occur over a wide range of timescales. Through the genetic code, species

adapt to environmental changes over many generations. In a single individual, learning, im-
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plemented through neural plasticity, continues throughout life in response to experience of the

world; perceptual learning is stored even at low levels of neural information processing (see

SOMATOTOPY, PLASTICITY OF SENSORY MAPS). Here, we will discuss even more rapid

changes: neural adaptation, which we take to mean reversible change in the response properties

of neurons on short timescales.

Since Adrian’s first observations of adaptation in spiking neurons, it had been suggested that

adaptation serves a useful function for information processing, preventing a neuron from contin-

uing to transmit redundant information and increasing its responsiveness to new stimuli. Within

the simplified picture of a neuron as a combination of linear filtering followed by a threshold,

or a decision rule for spiking, either or both of the two components— the filter and the thresh-

old function— may be adaptive functions of the input, and both may implement the goal of

increasing information transmission. We will discuss both of these possibilities.

Neurons in every sensory modality have been shown to have adaptive properties, and the mech-

anisms governing various types of adaptation have been at least partially explored (Torre et

al., 1995). Here we will discuss adaptation as the simplest form of learning and memory. We

describe recent experiments which explicitly aim to link the phenomenology of adaptive spike

coding to its functional relevance, in particular to improved information transmission. A com-

mon feature of adaptation is the existence of multiple timescales. In examining mechanisms,

we concentrate on recent work suggesting that the long timescales retaining short-term memory

can be generated through single cell properties.

ADAPTIVE CODING
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Adaptation of neural firing rate to stationary stimuli has been seen in all modalities of the

primary sensory system. In the visual system, photoreceptors adapt to light level, and retinal

ganglion cells show rapid contrast gain control. The tradeoffs and information processing gains

due to adaptation in insect eyes, relevant also for vertebrate retina, are discussed in (Laughlin,

1989). In the somatosensory system, mechanoreceptors have been classified into four main types

of cells, three of which are distinguished by the timescales of their adaptation (rapidly and slowly

adapting), and these timescales in part determine the cells’ function: slowly adapting cells are

implicated in the perception of spatial form and texture, while the experience of flutter and of

motion is mediated by rapidly adapting cells (Johnson, 2001). Thus, the dynamics of adaptation

can determine a neuron’s functional role.

Adaptation is not limited to primary receptors. In visual cortex, V1 neurons show contrast

adaptation which is thought to occur entirely at the level of cortex. The motion aftereffect,

a familiar phenomenon whereby following exposure to motion in one direction, the visual field

appears to move in the opposite direction, is thought to be due to adaptation of direction-

sensitive neurons in visual cortex.

Adaptation to a distribution

Understanding the significance of adaptation for information processing requires going beyond

fixed stimuli. Recently, studies have focused on adaptation to the stimulus distribution. This

approach is necessary to characterise coding information theoretically: the evaluation of coding

strategy requires considering the entire ensemble of inputs and outputs. In Smirnakis et al.

(1997), retinal ganglion cells were stimulated with dynamic movies of flickering light intensity,

where the mean light level was fixed, but the variance switched periodically from one value to
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another. The spike rate of the neurons showed typical adaptive behaviour, Fig. 1: following an

increase in variance, the firing rate initially increased, but gradually returned to a considerably

lower level; a decrease in variance led to a sudden dip in firing rate, with eventual recovery.

The experiments of Smirnakis et al. (1997) consider only firing rate. However, the timing of

single spikes can convey a great deal of information about the stimulus. In the visual system of

the fly, in particular the motion-sensitive identified neuron H1 in the fly’s lobula plate, much is

understood about single spike coding, providing an excellent opportunity to study the effects of

adaptation in detail.

H1 responds to a simple stimulus, wide-field horizontal motion. The neuron is characterised

by its input/output relation P (spike|s), the probability of a spike given the projection s of the

dynamic stimulus onto a relevant feature, determined by reverse correlation.

When the system has reached steady state through exposure to a zero mean, white noise velocity

stimulus with a given variance σ2, its input/output relation is measured. The resulting curves,

measured for a range of values of the variance, are shown in Fig. 2. Clearly the input/output

relation is not a fixed property of the system, but adapts to the distribution of inputs. Indeed,

it does so in such a way that the stimulus appears to be measured in units of its standard

deviation; when the curves are replotted with the stimulus normalised by its RMS value, they

superimpose. Thus a scale factor λ multiplying the stimulus, and thus matching the dynamic

range of the response to the distribution of the inputs, is a degree of freedom for the system.

The value of λ chosen by the system achieves a maximum of information transmission (Brenner

et al., 2000).
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This is a simple form of learning: the system gauges the standard deviation of the signal,

and modifies its response properties to adjust its dynamic range to the range of inputs. The

adjustment must take some time, as the new distribution must be sampled from examples. This

sets fundamental physical and statistical limits for the system’s estimate of the current variance.

We can examine the timescale for learning (Fairhall et al, 2001) by, as in the retina experiments

described above, switching periodically between two distributions. The firing rate shows the

same pattern of adaptation seen in the experiments of Smirnakis et al. (1997), but this need

not correspond to the timescale for adjustment of the input/output relation. Indeed, it was

found that the scale factor adjusts much more rapidly than the relaxation time of the rate– on

the order of 100 ms, compared with several seconds. This short timescale is consistent with the

limits imposed by estimates of noise from the photoreceptors. One can verify that the dynamic

adaptation of the input/output relation maintains information transmission through the system

by computing how much information one can extract from the spikes about the stimulus (see

SENSORY CODING AND INFORMATION TRANSMISSION and Fairhall et al. (2001)). The

information rate recovers on comparably short timescales.

For the decoder, a potential drawback of adaptive coding is ambiguity: it is necessary to know

the context in order to interpret the signal correctly. Thus, information about the context must

be conveyed independently. While this information might be carried by other neurons in the

network, here the information about the ensemble is carried simultaneously by the same spike

train: it can be read off, either through the rate (taking into account the delays due to the slow

relaxation) or, more accurately, through the statistics of spike time differences (Fairhall et al,

2001). Thus for the code of H1, spikes carry multiple meanings: in absolute timing, as precise

markers of single stimulus events, and in relative timing, as indicators of the stimulus ensemble.
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Multiple timescales

The slow relaxation of the rate appears to be related to a commonly observed property of adapt-

ing primary sensory neurons: a power law decay of the firing rate r, r ∼ t−α. More generally,

in the case above, the rate is close to the fractional derivative of the logarithm of the stimulus

variance. For each frequency ω, fractional differentiation shifts the frequency component by a

constant phase, and scales each component by ωα, where α is a power less than 1. Some of the

properties of a fractional differentiator are illustrated in Fig. 3. Several examples of a power law

decay of the rate following a step change in stimulus amplitude were collected by Thorson and

Biederman-Thorson (1974) (see Fig. 4) and more have since been observed; examples include var-

ious invertebrate mechanoreceptors and photoreceptors, mammalian carotid-sinus baroreceptors

and cat retinal ganglion cells.

While we have already noted a separation of timescales in the adaptation of the input/output

relation compared with the rate, this type of adaptation on its own signals the existence of many

timescales. Power-law scaling implies the lack of a typical timescale, or the presence of multiple

timescales. Fractional differentiation is non-local; the response at time t0 is increasingly affected

by times t¿ t0. This is a linear “memory” mechanism.

Such adaptation is particularly interesting both because it is so prevalent, and because it may

have an important role in optimising information transmission. Fractional-differentiationlike be-

haviour is observed in fly photoreceptors, and there, the exponent of the fractional differentiator

appears to be matched to the spectrum of natural stimuli (van Hateren and Snippe, 2001). Thus

the effect of the transformation is to whiten the spectrum of natural signals. As many natural

stimuli have power-law characteristics, it is intriguing to speculate that fractional differentiation
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at the sensory periphery may be a general neural mechanism for whitening input statistics.

MECHANISMS

Adaptation requires retaining memory of activity over extended timescales. These long timescales

can arise from a number of sources. Intracellular calcium concentration has been identified as

playing an important role in information processing, acting as a slowly-changing “integrator”

of activity. Other forms of adaptation— particularly the power-law like behaviour discussed

above— are also likely to be a property of single cells rather than of the network. Recent bio-

physical studies show that membrane dynamics can have long timescales that retain memory

of the history of stimulation/activity over hundreds of seconds (Marom, 1998). This could be

brought about either by the modification of intrinsic properties, or by intrinsic properties that

have built-in long timescales through state-dependent inactivation (Marom, 1998; Turrigiano et

al., 1996).

Calcium as an integrator of activity

Each spike introduces a roughly constant amount of calcium into the cell through voltage-

dependent Ca2+ channels. The Ca2+ concentration then decays slowly. Thus [Ca2+] can be

modelled as a leaky integrator of activity, with a decay timescale of ∼100 ms. This calcium

signal can allow activity-dependent regulation of subsequent neural activity through the mod-

ification of conductances (ACTIVITY-DEPENDENT REGULATION OF NEURONAL CON-

DUCTANCES).

Recent evidence indicates that single-cell properties may contribute to contrast adaptation in

cortex (Sanchez-Vives et al., 2000). Previous work has shown that contrast adaptation is asso-
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ciated with hyperpolarization of the membrane potential in cat area 17 neurons. By stimulating

the neurons directly with injected current, effects similar to contrast adaptation are seen (though

less dramatically than to real visual input). This suggests that these effects can be induced

through the modulation of intrinsic cell properties; the activation of Ca2+ and Na+-dependent

potassium conductances is indicated.

State-dependent channel dynamics

In some cases, the relevant dynamics may be due to the complex behaviour of the channels them-

selves. Recently it has become clear that the dynamics of inactivation provide the membrane

with the possibility for extended history dependence (Marom, 1998).

A simplified picture of the gating of voltage-gated ion channels is a three-state scheme:

C ⇔ O ⇔ I (1)

where channels can be either closed (C), open (O) or inactivated (I). Generally, the transition

between closed and open is voltage-dependent and rapid, on the order of the duration of an

action potential. The transition between open and inactivated, on the other hand, is voltage-

independent and can have very long timescale dynamics. Intriguingly, studies in vitro show that

some sodium channel types have inactivation rates that scale with the duration of the input

(Marom, 1998), providing timescales up to several minutes. The precise mechanism underlying

this large variety of timescales is not yet well-understood; it is hypothesised that the system

cascades through a multiplicity of inactivation states. Earlier theoretical work has shown that

the coupling of many states leads to a scaling relation between the duration of activity and the

rate of recovery from inactivation.



Fairhall & Bialek, Adaptive spike coding 10

In a step closer to a realistic preparation, the dynamic clamp was applied to cultured stomato-

gastric ganglion neurons to add an effective slowly inactivating potassium current (Turrigiano

et al., 1996). As had been observed previously, this produced long delays to firing during depo-

larisation, and an increase in excitability with a timescale much longer than the duration of the

input. Further, the slow channel dynamics produced a long-lasting effect on the firing properties

of the neuron.

In vivo, the contribution of slowly inactivating sodium channels to power-lawlike adaptation

has been suggested. Mechanosensory neurons in the cockroach femoral tactile spine have been

shown to display power-law adaptation. From intracellular measurements, Basarsky and French

(1991) found that the spike rate adaptation is due to successive slowing of the recovery of the

membrane potential between spikes. Previous work had demonstrated that calcium channel

blockers or blockers of Ca2+-activated K+ channels did not reduce adaptation, while modifying

sodium channel inactivation did.

These mechanisms might be seen as primitives for short-term “learning and memory”.

MODELLING

Historically, attempts to model adaptation have considered the process to involve a dynamic

threshold. More recently, modelling approaches take a functional perspective on the out-

come of adaptation, and propose algorithms whereby the conductances may adjust to provide

the cell with desirable properties such as approximately constant activity (see ACTIVITY-

DEPENDENT REGULATION OF NEURONAL CONDUCTANCES). Closer to our earlier

discussion, Stemmler and Koch (1999) derive a learning rule for conductances which maximises
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the mutual information between input and output, where the output is taken to be the neuron’s

firing rate. The learning rule adjusts conductances at every new presentation of the stimulus,

subject to biologically plausible constraints. Under this learning rule, a realistic conductance-

based model neuron was indeed able to learn a changing distribution and adjust its firing statis-

tics accordingly. The timescales treated were order of magnitudes longer than those observed

experimentally in (Fairhall et al., 2001) and predicted theoretically from statistical considera-

tions. Experimental evidence is still required to determine whether such a model is realistic.

As noted, many adaptation processes in sensory receptors follow a power-law relaxation. As-

suming that most elementary processes involve a single time scale, with exponential dynamics,

Thorson and Biederman-Thorson (1974) proposed that power laws may arise from a superposi-

tion of many elementary processes with a wide range of timescales. From the definition of the

gamma function,

t−α =
1

Γ(α)

∫
∞

0
dr rα−1e−rt, (2)

a power law may be generated by a weighted sum of exponentials with a range of timescales.

This distribution was considered to be generated through geometric factors, such as the inho-

mogeneous distribution of elements within the receptor.

This model has merited some scepticism due to the requirements both for a continuous distribu-

tion of timescales and for these to be present in the appropriate proportions. It has been noted

that power-law-like behaviour results from much less stringent conditions: the superposition of

only a few exponentials can produce a power law over the decade or two normally available to ex-

periment. However, recent experimental advances outlined in the previous section may provide

a better underpinning for the derivation of power-law adaptation from membrane mechanisms.
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ADAPTATION OF RECEPTIVE FIELDS

As noted in the Introduction, a neuron can be modelled as a combination of feature extraction

(linear filtering) and a nonlinear decision function (or threshold). While we have discussed the

effects of adaptation on the nonlinear decision function, adaptation can also affect the feature

that causes the neuron to spike: the receptive field can depend upon the ensemble of inputs.

While this had been frequently observed in work on invertebrate vision, recent experiments

demonstrate analogous results for cortical receptive fields. Sceniak et al. (1999) show that the

extent of spatial summation implemented by neurons in V1 depends adaptively on contrast; this

has parallels in the adaptation of filters in retina (Laughlin, 1989). Theunissen et al. (2000)

found that the spatiotemporal receptive fields of neurons in auditory cortex showed a strong

dependence on the stimulus ensemble. This is a natural consequence of neural nonlinearity, but

such a dependence is also necessary for optimal information processing.

DISCUSSION

The ubiquity of adaptation throughout the nervous system should be proof of its fundamental

importance. While the phenomenology of adaptation, particularly to constant stimuli, has been

extensively explored, recent experimental and theoretical approaches have made contact with the

principles of information theory in order to evaluate adaptive coding. For fly motion-sensitive

neurons, it was found that the coding strategy of the system adapts rapidly and continuously

to track dynamic changes in the statistics of the stimulus.

We have discussed here a variety of mechanisms that may implement adaptive coding at the

level of single cells. While it is likely that systems will implement such important behaviour at
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many levels, it is appealing that the simplest elements of neural computation have the power to

carry out dynamic aspects of information processing.
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Figure captions

Fig. 1. a. Firing rate of rabbit retinal ganglion cells in response to a flicker stimulus where the

variance of the light intensity I switches periodically in time, as illustrated. Reproduced from

Nature 386, Smirnakis et al., 69-73. Copyright (1997) Macmillan Publishers Ltd.

Fig. 2. A set of input/output relations relating the probability of spiking to the velocity stimulus,

measured for stationary white noise stimuli with different variances. The curves differ only by a

scale factor λ multiplying the stimulus. Reprinted from Neuron 26, Brenner et al., pp 695-702,

copyright (2000), with permission from Elsevier Science.

Fig. 3. Illustration of some properties of a fractional differentiator with exponent α = 0.3. a.

A step function stimulus leads to a power law decaying rate. In a log-log plot the curve would

appear as a straight line with slope −α. b. A square wave leads to a similar adaptation curve

as shown in Fig. 1.

Fig. 4. Examples of data taken from Science, 183, Thorson and Biederman-Thorson, pp 161-

172. Copyright (1974), American Association for the Advancement of Science. The four curves

show power law adaptation in response to a step increase in stimulus in four different receptors.

A. Cockroach leg mechanoreceptor, in response to distortion of the tactile spine on the femur;

B. Slit sensillum on the leg of the hunting spider, in response to 1200 Hz sound; C. Slowly

adapting stretch receptor of the crayfish; D. Increase of response over light-adapted level of

Limulus lateral-eye eccentric cell to an increase in light intensity.
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Figure 1: Adaptive Spike Coding
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Figure 2: Adaptive Spike Coding
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Figure 3: Adaptive Spike Coding
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Figure 4: Adaptive Spike Coding


