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Abstract

Experiments show a synaptic weight potentiating if its presynaptic spike
just preceded its postsynaptic one, and depressing if it came just after,
with a sharp transition at synchrony. To understand why, we would like
to derive this rule from first principles. To do this, we first calculate the
dependency of the postsynaptic spike timing on the presynaptic spike
timing in a linear spiking model called the Spike Response Model. We
then use this to calculate the gradient of the information transfer in a
spiking network. This produces a non-local learning rule for the weights
which has the correct signs of potentiation and depression, but without
the sharp transition. Since the rule is analogous to ICA, we follow Amari
in transforming the gradient by an approximate Hessian to get a Natural
Gradient rule. This yields an almost-local learning algorithm in which a
sharp transition between potentiation and depression now appears. The
main mismatch between our rule and the experiment is an offset of the
sharp transition from synchrony. We believe this is due to a mismatch
between the Spike Response Model and the real neuron. We propose that
information maximisation occurs across time through a causal network
of spike timings.

1 Introduction

Progress in machine learning has not produced agreement on what, if anything, real neu-
ral systems optimise. Meanwhile, artificial neural learning rules are usually derived for
‘real-valued neurons’ (i.e. rate models). However, real neurons use spikes, and in vitro ex-
periments strongly suggest that Hebbian plasticity at excitatory cortical and hippocampal
neurons depends critically on the relative timing of pre- and post-synaptic spikes [6,7,11].
This ‘spike-timing dependent plasticity’ (STDP) can be loosely interpreted as strengthening
synapses to the degree that the input spike helped the output spike to occur, and weakening
them to the degree that this contribution is small (see Figure 1a).

In this paper, we show that the qualitative form of these STDP curves can be explained by
the principle of maximisation of information transfer in a deterministic system. We use the
‘Natural Gradient Infomax’ procedure [1,4] to derive a learning rule for a linear spiking
network called the Spike Response Model [8]. This model is similar to the Integrate-



and-Fire model except it models, with linear kernels, the dynamics of EPSPs (excitatory
post-synaptic potentials) and post-spike repolarisation.

The infomax principle has previously been used in firing-rate models to explain the learning
of many properties of early visual receptive fields [5,9]. Applied to spiking syatems, the
effect of spike timings on each other is maximised, rather than the effect of firing rates
on each other. The ability of this basic theory to reproduce key aspects of experimental
data provides further support to the notion that the brain optimises information transfer. In
addition, the learning rule opens up the possibility of doing machine learning with spikes.

2 Information maximization

We start with a brief recapitulation of the basic argument of [4]. If a system has inputs x, the
same number of outputs y, and parameters W that deterministically and invertibly relate
y to x, then the dependence of the mutual information between y and x on the parameters
W, can be written as follows:

∇WI(y,x) = ∇WH(y) = 〈∇W log |J|〉 , (1)
where I means mutual information, H means entropy, 〈.〉 means expected value over the
distribution of x, the Jacobian matrix of the transformation is J = [∂y i/∂xj]ij , and |.|
means absolute value of the determinant of this matrix. We now apply this argument to
spike timings.

2.1 For two spikes.

Consider a spike occurring in neuron j at time t l that has an effect on the timing of another
spike occurring in neuron i at time tk. The neurons are connected by a weight w ij . Often,
we will write i(k) or j(l) to denote the neuron index of the corresponding spike. Similarly,
we will use the shorthand wkl ≡ wi(k)j(l) = wij to denote the constant part of the weight
between two spikes. The variable part, which models the time-course of the EPSP is written
as Rkl(tk−tl) ≡ Ri(k)j(l)(tk−tl). In general, this Rkl models both synaptic and dendritic
linear responses to an input spike, and thus models synapse type and location. An example
is shown in Figure 2.

In this simplest version of the Spike Response Model [8], a neuron adds up its spiking
inputs until its ‘potential’ ui(t) reaches threshold at time tk. This threshold we will often
write uk ≡ ui(k)(tk, {tl}), and it is given by a sum over spikes l:

uk =
∑

l

wklRkl(tk − tl) . (2)

To maximise information transfer, we need to determine the effect of a small change in
the input firing time tl on the output firing time tk. (A related problem is tackled in [3].)
When tl is changed by a small amount dtl the membrane potential will change as a result.
This change in the membrane potential leads to a change in the time of threshold crossing
dtk. The contribution to the membrane potential, du, due to dt l is (∂uk/∂tl)dtl, and the
change in du corresponding to a change dtk is (∂uk/∂tk)dtk . We can relate these two
effects by noting that the total change of the membrane potential du has to vanish because
uk is defined as the potential at threshold. ie:

du =
∂uk

∂tk
dtk +

∂uk

∂tl
dtl = 0 . (3)

This is the total differential of the function uk = u(tk, {tl}), and is a special case of the
implicit function theorem. Rearranging this:

dtk
dtl

= −∂uk

∂tl

/
∂uk

∂tk
(4)



= −wklṘkl/u̇k . (5)

Now, utilising the time derivative of (2), the weight dependence of the spike-to-spike infor-
mation transfer is easily calculated.

∂

∂wkl
I(tk, tl) =

∂

∂wkl
log

∣∣∣∣dtk
dtl

∣∣∣∣ (6)

=
1

wkl
− Ṙkl

u̇k
. (7)

This has the same form as the one-input/one-output infomax derivation in [4], except that
now the input variable and output variable are the values at threshold-crossing of, respec-
tively, the rate of change of the synaptic response and the inverse of the rate of change of the
potential. A learning rule utilising this gradient (for random simulated input) produces a
typical scatterplot of weight changes shown in Figure 1b. A weight potentiates or depresses
if, in doing so, it increases the influence of t l on tk, just as in infomax.

Two important differences with the typical experimental result (which is reproduced in
Figure 1a) are that (1) the transition between potentiation and depression is graded rather
than discontinuous, and (2) this transition occurs at a time offset by the rise time of the
EPSP (ie: the time to reach a zero-crossing of Ṙ). The non-zero offset we will come to in
the discussion. But first, in order to understand the discontinuous STDP transition, it will
be necessary to develop the argument for mappings from N spikes to N spikes, as in [4],
and to apply the Natural Gradient arguments of Amari [1] to achieve an almost-local and
much more physiological learning rule than that given by straightforward gradient ascent
in mutual information. We need to do this at any rate because, as the astute reader will have
noticed, when there are only two spikes, the gradient in (7) vanishes.

2.2 For N → N spike mappings

To maximise the information transfer in a ‘square’ mapping between spikes, we must,
according to (1) maximise the log determinant of a Jacobian matrix, T, the entries of
which are the timing dependencies Tkl ≡ ∂tk/∂tl. The calculation of this gradient for
the full Spike Response Model is in the Appendix. It yields a learning rule in which every
interaction between a presynaptic spike at t l and a postsynaptic spike at tk causes a weight
change:

∆wkl ∝ ∂ log |T|
∂wkl

=
Tkl

wkl

[
T−1

lk − 1
]

, (8)

where T−1
lk is the lk-th index of the matrix inverse of T. Equation (8) is the N -dimensional

equivalent of Equation (7). Like the original information gradient in Infomax/ICA [4], this
learning rule is non-local, and requires a matrix inverse at each step. In addition, although
the signs of the weight changes for different relative spike timings (Figure 1b) do match
the general pattern of the weight changes observed in experiment (Figure 1a), the shape of
the curves do not match.

Inspired by Amari’s Natural Gradient version of the algorithm, we now seek to multiply
the gradient by a positive definite matrix which does not change the location or sign of
the solutions to the learning, but which should make the learning rule simpler and much
more local, as well as greatly speeding its convergence. The correct matrix to use is the
inverse of the Fisher Information matrix, which is the Riemannian metric tensor of the
manifold of weight-matrix-parameterised probability models [1]. In practice, in ICA, we
actually multiply the gradient by a simpler data-independent matrix which approximates
this effect. To find this matrix in our new situation, we derive, much in the manner of [12],
an approximation of the inverse of the Hessian. This yields a ‘covariant’ gradient update
rule.



In the appendix we show that an approximate inverse of the Hessian of log |T| is given by:

M(kl)(ab) = −wkl

Tkl
TalTkb

wab

Tab
. (9)

An approximate Newton step is then [12]:

∆wkl ∝ −
∑
ab

M(kl)(ab)
∂ log |T|

∂wab
= wkl

[
1−

∑
a Tal

Tkl

]
. (10)

In the simple Spike Response Model, this gives a compellingly simple learning rule:

∆wkl ∝ wkl − u̇k

Ṙkl

∑
a

Tal , (11)

where the remaining non-local term is a sum of the sensitivities, Tal = −walṘal/u̇a,
to spike tl, of the other post-synaptic neurons when they spike, at times t a. Many non-
local effects perhaps similar to this have been observed when STDP is induced at a single
synapse [6,10].

The resulting learning rule is shown for different delays ∆t = tk − tl in Figure 1c. It
resembles the biological learning rule with one important difference. The sharp transi-
tion (singularity) of this rule is at the maximum of the EPSP, i.e. some ∆t > 0. In the
physiological rule the singularity is at ∆t = 0.
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Figure 1: Spike time dependent plasticity (STDP) for an excitatory synapse. (A) Change in
synaptic strength observed in the visual cortical slice in response to pre- and postsynaptic
spike pairs separated by ∆t (adapted with permission from [7]). (B) Maximum informa-
tion gradient according to (8). (C) Approximate Newton update according to (10). The
gradients are shown in an arbitrary scale. For graphs (B) and (C) we used random spikes
with ∆t = tk − tl. We ignored the effect of previous spikes tk−1 and dynamic threshold,
i.e. we used Tkl according to equation (5) and the spike response Rkl = R(tk − tl,) as
shown in Figure 2. We generated random tk and tl with tl < tk and set wkl = 1 for
tl < tk < tl + 30ms, and wkl = 0 otherwise. We chose random positive u̇(tk) with
0.5 ≤ u̇(tk) < 1 to simulate the fact that threshold crossing happens preferentially at
increased positive slopes. (Appropriate network simulations are in progress).

3 Discussion

In summary, we have written the rule for maximizing information transfer in a determin-
istic model network of spiking neurons. To get the qualitative similarities to experimental



observations, the rule must follow the natural gradient, which implies that parameter opti-
mization in the brain may implicitly take place in a metric space that is optimal for speed
and computational simplicity of learning.

The main dissimilarity with experiments, the temporal offset of the sharp transition from
depression to potentiation, we believe to be a consequence of the difference between the
spiking model and the real neuron, rather than a flaw in the objective function. The spike
response model has a ‘causal’ direction from synapse to soma. The input spikes propagate
to the cell body where the learning rule evaluates the coincidence involving the spike re-
sponse and the somatic membrane potential. The capacitive membrane filtering of the spike
along this path, we believe, is the source that offset. In contrast, in real neurons, the infor-
mation flow is bidirectional (through linear diffusion, back-propagating action potentials,
and other active membrane properties). In addition, the particular coincidence detection
machinery known to be involved in LTP (the NMDA receptor complex) actually resides
at the synapse. These considerations suggest that a more realistic biophysical model may
optimize the information flow without producing such an offset. We are investigating this.

A second concern is that the learning rule has been derived assuming that the spiking net-
work is a ‘square’ network with N input spikes and N output spikes. At fist glance this
seems quite irrelevant to the brain, which has multiple cortical areas with irregular patterns
of spiking and connectivity. However, an idea we are exploring is that the information flow
is actually maximised across time, which permits us to consider a square Jacobian. To see
this, imagine running the network for a very long time to produce a long vector of spike
times, t. Now create the vectors ←−t and −→t by removing enough (say n) spikes from the
end and beginning of t, such that the Jacobian Tfut

past = ∂
−→t /∂

←−t is square, non-singular,
and has a log-determinant that depends on the weights. Basically, here, we are remov-
ing from consideration the sets of spikes which are not caused or do not cause, and a few
more if these sets are not equal-sized. (The problem with just using the whole Jacobian,
∂t/∂t, is that its determinant, being 1, does not depend on the weights.) We might be able
to optimise ‘predictive information’ flow in this causal Tfut

past-network, somewhat along
the lines proposed by Crutchfield and Bialek, amongst others. This optimisation involves
polysynaptic ∂tk/∂tl terms with multi-path dependencies, because a spike can be caused
by another spike through several different synaptic chains. Maximising information flow
across time in this slightly more complex matrix is an objective that is consistent with the
memory and prediction abilities of natural nervous systems, and we believe it can be done
using an appropriately augmented version of the learning rule we propose.

4 Appendix: Gradient and Natural Gradient of log |T| for the full
Spike Response Model.

As a model for a spiking neuron we will consider the full Spike Response Model introduced
by Gerstner [8]. This is a fairly general model for which the integrate-and-fire model is a
special case. In this model the effect of a presynaptic spike at time t l on the membrane
potential at time t is described by a post synaptic potential or spike response, which may
also depend on the time that has passed since the last output spike tk−1, hence the spike
response is written as R(t−tk−1, t−tl). This response is weighted by the synaptic strength
wl. Excitatory or inhibitory synapses are determined by the sign of w l. Refractoriness is
incorporated by adding a hyper-polarizing contribution (spike-afterpotential) to the mem-
brane potential in response to the last preceding spike η(t−tk−1). The membrane potential
as a function of time is therefore given by

u(t) = η(t− tk−1) +
∑

l

wlR(t− tk−1, t− tl) . (12)
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Figure 2: Spike response and refractory hyper-polarization. The spike response shown to
the left is given by, R(t) = (1 − τs/τm)−1(e−t/τm − e−t/τs)Θ(t), where Θ(t) is the
unit step function. This spike response corresponds to a EPSP of a capacitively integrating
neuron with time constant τm and an α-function for the post-synaptic current with time
constant τs. We used τm = 30ms and τs = 10ms. The spike-afterpotential shown on the
right, η(t) = −et/τmΘ(t), mimics the effect of a reset in an leaky integrate-and-fire model.

We have ignored here potential contributions from external currents which can easily be in-
cluded without modifying the following derivations. The output firing times t k are defined
as the times for which u(t) reaches firing threshold from below. We consider a dynamic
threshold, ϑ(t − tk−1), which may depend on the time since that last spike tk−1, together
then output spike times are defined implicitly by:

t = tk : u(t) = ϑ(t− tk−1) and
du(t)

dt
> 0 . (13)

For this more general model Tkl is given by

Tkl =
dtk
dtl

= −
(

∂u

∂tk
− ∂ϑ

∂tk

)−1
∂u

∂tl
=

wklṘ(tk − tk−1, tk − tl, )
u̇(tk)− ϑ̇(tk − tk−1)

, (14)

where Ṙ(s, t), u̇(t), and ϑ̇(t) are derivatives with respect to t. The dependence of Tkl on
tk−1 should be implicitly assumed. It has been omitted to simplify the notation.

Now we compute the derivative of log |T| with respect to wkl. For any matrix T we have
∂ log |T|/∂Tab = T−1

ba . Therefore:

∂ log |T|
∂wkl

=
∑
ab

∂ log |T|
∂Tab

∂Tab

∂wkl

∑
ab

T−1
ba

∂Tab

∂wkl
. (15)

Utilising the Kronecker delta δab = (1 if a = b, else 0), the derivative of (14) with respect
to wkl gives:

∂Tab

∂wkl
=

∂

∂wkl

[
wabṘ(ta − ta−1, ta − tb)

η(ta − ta−1) +
∑

c wacṘ(ta − ta−1, ta − tc)− ϑ̇(ta − ta−1)

]

= δakδbl
Ṙ(ta − ta−1, ta − tb)
u̇(ta)− ϑ̇(ta − ta−1)

−wabṘ(ta − ta−1, ta − tb)δakṘ(ta − ta−1, ta − tl)(
u̇(ta)− ϑ̇(ta − ta−1)

)2



= δakTab

[
δbl

wab
− Tal

wal

]
. (16)

Therefore:
∂ log |T|

∂wkl
=

∑
ab

T−1
ba δakTab

[
δbl

wab
− Tal

wal

]
(17)

=
Tkl

wkl

[
T−1

lk −
∑

b

T−1
bk Tkl

]
=

Tkl

wkl

[
T−1

lk − 1
]

. (18)

The Hessian of log |T| can be computed by taking derivatives of (18):

H(ab)(kl) =
∂ log |T|
∂wab∂wkl

=
∂

∂wab

(
Tkl

wkl

[
T−1

lk − 1
])

. (19)

We use now:
∂

∂wab

Tkl

wkl
= −δak

Tkl

wkl

Tab

wab
. (20)

which can be derived similarly to the second term in (16) and obtain:

H(ab)(kl) = −δak
Tkl

wkl

Tab

wab

[
T−1

lk − 1
]
+

Tkl

wkl

∑
nm

∂T−1
lk

∂Tnm

∂Tnm

∂wab
. (21)

Insert now (16) and use for the inverse:

∂T−1
lk

∂Tnm
= −T−1

ln T−1
mk , (22)

which is true for any invertible matrix Tkl. This gives:

H(ab)(kl) = −δak
Tkl

wkl

Tab

wab

[
T−1

lk − 1
]− Tkl

wkl

∑
nm

T−1
ln T−1

mkδnaTnm

[
δmb

wnm
− Tnb

wnb

]
.

(23)
The first term of the first parenthesis cancels with the second term in the second parenthesis
after executing the sums, and we obtain finally:

H(ab)(kl) =
Tkl

wkl

Tab

wab

[
δak −T−1

la T−1
bk

]
. (24)

We show now that M defined in (9) is an approximate inverse of H. The product MH
gives:

(MH)(xy)(kl) =
∑
ab

M(xy)(ab)H(ab)(kl) = δxkδyl −Tky

∑
b

Txb . (25)

The first term is the required identity. We will now argue that in the average and for a large
number of input spikes this is:〈

(MH)(xy)(kl)

〉 ≈ δxkδxy − 1/N . (26)

where N is the number of input spikes, and 〈.〉 is the expectation. For large N the second
term vanishes and 〈MH〉 becomes the identity. We argue this as follows: Assume for
simplicity wky = constk, then Tky = Ṙ(tk − tk+1, tk − ty)/(θ̇(tk − tk−1) +

∑
l Ṙ(tk −

tk−1, tk− tl)), with θ(s) = η(s)−ϑ(s). For simplicity we also assume that the last output
spike tk−1 occurred quite some time ago, i.e. s → ∞. For most reasonable choices of
η and ϑ wE have θ̇(∞) = 0. In this case,

∑
b Txb = 1. Assume further that we have N

input spikes with spikes times tl arriving independently and randomly. Then Ṙ(∞, tk− ty)
are independent random numbers with a possible mean rk. For large N , the denominator,∑

l Ṙ(∞, tk − tl), is approximately Nrk (law of large numbers). In the average over all

input spikes
〈
Ṙ(∞, tk − ty)

〉
= rk . We have then 〈Tky

∑
b Txb〉 = rk/(Nrk) = 1/N .
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