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1. Mathematical Neuroscience 
  The brain is an organ of storing, organizing and processing information. There are 
many approaches to understand the mechanisms of the brain,―microscopic and 
macroscopic as well as bottom-up and top-down approaches. Mathematical neuroscience 
is a top-down approach, where capabilities of information processing in brain-like 
systems are elucidated by mathematical formulations. This approach mostly treats 
abstract models of neural networks in order to capture the essential features of their 
behaviors. 
 
  The present lecture is a brief introduction to mathematical neuroscience. In the 
former part, we study classic theories of mathematical neuroscience, including topics of 
statistical characteristics of signal transformations in a layer of neurons, stochastic 
equations for learning and self-organization, dynamics of neural fields and their 
self-organization.  
 
  The latter part is devoted to more advanced topics, where information geometry is 
used. Population coding, Fisher information, and singular structures in population 
coding are discussed, and synchronization of firing is shown to give rise to higher-order 
interactions, without entering technical details. 
 
2. Two types of signal transformation by layered networks 
 
 We begin with a very simple one-layer neural network consisting of McCulloch-Pitts 

neurons. Input signals are represented by a vector 1( , , )nx x= Lx , where n is the 

number of input fibers; and output signals are represented by another vector 

1( , , )mz z= Lz , where iz is the output of the i-th neuron. The input-output relations is 

simply represented by  
( )i ij jz f w x h= −∑  

or in the matrix-vector notation 

( )f W= −z x h  



Here the matrix ( )ijW w= is the connection matrix, ijw being the synaptic efficacy of 

the i-th neuron from the j-th input line.  Here, f is a nonlinear sigmoid function, and is 
the unit step function in the case of McCulloch-Pitts neurons. 
 
  Statistical neurodynamics studies the macroscopic behaviors of such networks. We 

consider two different types of connections: One is a random network where ijw is 

randomly and independently assigned. The other is the associative network, where W is 
given by the outer product of a number of input-output pairs to be memorized. The pairs 
are randomly generated, so that this is also a random network. Their macroscopic 
behaviors have been studied well. Here we remark their stabilities. 
 
  The former random network has such characteristics that, when an input signal is 
perturbed slightly, the output signal expands the difference. Such a network can be used 
to study the difference among local similar patterns. The transmission of information in 
mossy fibers to granule cells systems are believed to have such characteristics. On the 
other hand, the associative network reduces the perturbation of inputs, so that it 
stabilizes the memory traces. This is believed to be used in the hippocampus. 
 
3. Dynamics of neural fields 
 
 We study the dynamics of neural fields, which is used for decoding stimuli in 
population coding. Let us show a simple equation of the following form 

( , ) ( , ) ( , ) [ ( , )] ( , )u t u t w f u t d s t
t
ξτ ξ ξ ξ ξ ξ ξ∂ ′ ′ ′= − + +
∂ ∫  

where ( , )u tξ denotes the average membrane potential at location ξ at time t. The 

activity of neurons at around ξ at t is given by 

( , ) [ ( , )]z t f u tξ ξ=  

and ( , )w ξ ξ ′ is the intensity of recurrent or feedback connection from neurons at 

location ξ ′ to those of location ξ . 

 

  The dynamics has the so-called line attractor without any outside stimuli ( , )s tξ , and 

the local excitation occurs depending on the stimuli distribution. This can be used to 
decode information. We give a very simple but rigorous mathematical study of such 
systems. 



 
4. Stochastic equations of neural learning 
 
  When an ensemble of neurons receive input signals from an information source, each 
neuron changes its synaptic efficacies. This is a prototype of learning and 
self-organization. We consider the following general learning equation of generalized 
Hebb type, 

( ) ( ) ( )i
i i

ds t s t crx t
dt

τ = − +  

where r is called the learning signal and is are synaptic weights. This is a stochastic 

difference equation, where input signals ( )tx are given randomly from the information 

source. 
 
 When inhibitory effects exist, the learning dynamics of a neuron is stabilized such that 
it becomes a representative of a specific signal in the source. This is a prototype of 
self-organization. When neurons in the ensemble are mutually connected, the system 
regulates the entire behaviors. A typical case is seen in the dynamics of self-organizing 
neural fields. 
  It should be remarked that the inhibitory effects are given, not only by the inhibitory 
neurons but also depression effects in STDP (spike timing dependent plasticity). 
 
5. Neural firing and higher-order correlations 
 
  When a pool of neurons are stimulated, we have firing patterns of neurons. Let us 

denote such a pattern by a vector 1( , , )nx x= Lx . When excitation is stochastic, we 

specify its probability by ( )p x . The probability tells us the nature of the neuron pool. A 

simple statistical quantity is the firing rate of each neuron, which represents the firing 
probability. The next one is the correlation of firing between two neurons. How about 
the third-order and higher-order interactions of firing? 
 
  We use information geometry to elucidate the structure of various orders of 
interactions. The interactions are decomposed orthogonally, and the generalized 
Pythagorian theorem holds. 
 
6. Synchronization in population of neurons and higher-order interactions 
   
  Neurons sometimes fire synchronously, to make the effect stronger. When neurons are 
excited independently, we cannot see any synchronization, so that mutual interactions 



must exist in the case of synchrony. We show that higher-order interactions, not merely 
the second order, are necessary to generate synchrony, by using a very simple model of a 
pool of neurons. 
 
7. Fisher information in population coding and singularity 
 
  We study the Fisher information in a one-dimensional neural field by using the 
Fourier domain. Various characteristics of population coding become clear by this 
approach. We then study the case where multiple stimuli are represented at the same 
time. 
  The Fisher information degenerates in such a case, and topological singularity 
emerges. There are difficulties in decoding information in such a case. We discuss this 
problem from the point of view of the standard statistical theory of estimation, as well 
as the Bayesian point of view.  The singularity plays a major pathological role in 
information processing. 
  
 


