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Abstract
Wind powerfluctuations at the turbine and farm scales are generally not expected to be correlated
over large distances.When power fromdistributed farms feeds the electrical grid,fluctuations from
various farms are expected to smooth out. Using data from the Irish grid as a representative example,
we analyze wind power fluctuations entering an electrical grid.We find that not only are grid-scale
fluctuations temporally correlated up to a day, but they possess a self-similar structure—a signature of
long-range correlations in atmospheric turbulence affecting wind power. Using the statistical
structure of temporal correlations influctuations for generated and forecast power time series, we
quantify two types of forecast error: a timescale error (et) that quantifies deviations between the high
frequency components of the forecast and generated time series, and a scaling error (ez) that quantifies
the degree towhich themodels fail to predict temporal correlations in thefluctuations for generated
power.With no a priori knowledge of the forecastmodels, we suggest a simplememory kernel that
reduces both the timescale error (et) and the scaling error (ez).

1. Introduction

Renewable power generation, unlike conventional power, exhibits variability owing to naturalfluctuations in
the energy source [1], withfluctuation time scales depending on the source type.Whereas biomass and
hydroelectric sources vary over long time periods, wind and solar photovoltaics exhibit short time scale
variability.Wind power, in particular, shares the spectral features of the turbulent wind fromwhich it derives
energy at the scales of an individual turbine [2] and awind farm [3, 4]. This spectral correspondence implies that
correlations of atmospheric turbulence are reflected in the temporal correlations offluctuations in the generated
wind power. One normally assumes that geographically distant wind farms are independent and that temporal
correlations in the fluctuatingwind power for each farmdo not translate into long-range spatial correlations.
The total power entering the grid froma large number of distant farms is expected to bemuch smoother and to
exhibitmuchweaker high frequency fluctuations [5] than the power entering from a single wind farmor a single
turbine. This assumption forms the basis for proposals to interconnect local wind farms [6] for the purpose of
mitigatingwind power fluctuations [5].Whereas fluctuations do smooth out as an increasing number of wind
farms contribute to the aggregate power, it has been shown that the fluctuations are still larger than expected [7].

Using data from the Irish grid operator EIRGRID [8] as a representative example, we studied the temporal
correlations in the aggregate wind power entering the Irish grid. The Irish grid is fed by 224wind farms [9]
spread across the Republic of Ireland, amuch larger number of farms than the number in the aggregate power
previously considered in Texas [7].We found that the aggregate wind power entering the Irish grid exhibits
temporally correlated fluctuationswith a self-similar structure. The persistence of correlations, despite an order
ofmagnitude increase in the number of wind farms (and their spatial distribution), strongly points to the
presence of long-range spatial correlations in the atmospheric turbulence, which couples geographically
distributedwind farms, thereby rendering themnon-independent. These results accordwith prior studies
establishing the presence of long-range correlationswithin themesoscale (∼1–1000 km) of atmospheric
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turbulence [10]. For long time scales, these fluctuations in atmospheric flowswere shown to exhibit amulti-
fractal structure [11].

Variability adds a cost to renewable power [12, 13] that is absent in conventional power generation. Since an
electrical grid has no storage capacity, the production and consumer demandmust be balanced in real time at
every instant. The grid operator purchases energy units from the producer4, in an energymarket, from a few days
to a fewmilliseconds in advance of delivery.With conventional energy, the grid operatormust estimate in
advance the consumer demand (scheduling), the estimation of whichmay not be trivial, and additional energy
units required on standby (operating reserves). In the case of renewable energy, the operatormust additionally
account for both variability (fluctuations) and forecast uncertainty (error) at the production end, calling for
uncertaintymanagement [14] in scheduling. Furthermore, large ramps in power fluctuations, in the case of
renewable energy, present the possibility of grid destabilization [15] and blackout, a constant source of concern
for grid operators [5, 16]. This risk further increases the cost of the operating reserves [17]needed on standby to
prevent grid failure [18]. Naturally, forecastmodels constitute essential tools in estimating themagnitude of
fluctuations beforehand and in planning for the optimal operating reserves required on call. Yet, no standards
for forecast accuracy currently exist [19].

The performance of amodel is often quantified by themean and variance of the error (deviation of the
prediction from themeasured value). Extant works onwind power forecast error, ranging from the turbine to
the grid scale, have focused onmodeling the forecast error distribution [20–25]. Since a probability distribution
is time-independent, it contains no information on temporal error variations. Several studies have considered
the dependence of themean and variance of the error on the duration forwhich the power is predicted (ranging
fromminutes to hours) [26, 27]. Other works have considered the different distributions of errors formean
power over different durations5 [22, 23]. However, none of these studies account for the fluctuation correlations
of the atmospheric turbulence [28] transferred to the generated power in the analysis of forecast error or for the
temporal correlations in the fluctuations and errors themselves. Here, we suggest that the performance of wind
power forecastmodels (as well as the performance of anymodel for non-stationary processes) should also
account for the quality of the prediction against temporal correlations.

To analyze temporal correlations in grid-scale fluctuations forwind power, we draw upon the Statistical
Theory ofHydrodynamic Turbulence to quantify two types of forecast error. Thefirst is a timescale error (et)
that quantifies the timescales over which the forecastmodels fail to predict high frequency powerfluctuations.
This timescale error sets a bound on the numerical resolution of forecastmodels andwould already be known to
producers who own the farms and run the forecastmodels. However,model details are usually not available to
grid operators (see footnote 1, [29])whomanage the supply side uncertainty [14]. The second type of errorwe
quantify is a scaling error (ez ) that establishes a difference in the self-similar scaling offluctuations as observed
for actual generated power vis à vis the power that was forecast to be generated. This error could be potentially
useful tomodel developers, and if such an error results from large-scale correlations in atmospheric turbulence,
incorporating these correlations intomodels is not subject to limitations arising fromnumerical resolution.
Having established the errors, we employ a simplememory kernel upon the forecast time series and show that
the errors are easily reducedwith aminimal computational cost.

Two raw time series are provided by EIRGRID: thewind power generated nationwide across all Ireland
entering the grid pg(t), and the power forecast by EIRGRID’smodels pf (t) for the same period. The forecast is
provided for 24 h at a time (implying different lead times for different times in the forecast series) and is based on
amulti-scheme ensemble of regional weather forecastmodels [30, 31]. The time series sampled at 15 min
intervals span afive-year period (2009–2014). Aswe discuss in the following, we observed no change in the
forecast accuracy during thisfive-year period. Given thatmost spotmarkets6 do not trade at time scales shorter
than 15 min [32], our analysis finds potential applicability in thesemarkets, as well as inmanaging uncertainty
over a future horizon of several hours up to a day to improve forecastmodels.

Raw time series for the generated power pg(t), forecast power pf (t), and their instantaneous difference
p t p t p td f g( ) ( ) ( )º - , whichwe define as the instantaneous forecast error, are shown infigure 1(a) for a 10 d
period, permitting a few immediate qualitative observations. Firstly, pg(t) exhibits correlated fluctuations.
Secondly, pf (t) while closely following pg(t), misses the high frequency (relative to the sampling rate of the time
series) components. The instantaneous forecast error Pd(t) exhibits correlated fluctuations and its kurtosis

5.84
4k m sº » ( p p4 d d

4( )m º - , p p2
d d

2( )s º - , and pd represents the time average of the instantaneous
error), implying a broader thanGaussian distribution ( 3k = for aGaussian distribution) of the instantaneous
error as is evident from figure 1(b).

4
For Ireland, EIRGRID is both the producer and distributor of wind power.

5
Note that [22] suggests the Cauchy distribution for the errors. However, this distribution is not suitable because all itsmoments are

undefined [47].
6
This does not apply for Ireland since its grid is isolated frommainland Europe.
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2.Data analysis

The time series were analyzed in two stages, with trends in the series being identified in thefirst stage, followed by
an analysis of thefluctuations around the trends in the second stage. Trend removal permits a focus on
systematic differences between pg(t) and pf (t) ignoring differences due to newwind farms and the seasonal
variability of thewind power. The trend identification employed here is based on a fast Fourier transform (FFT)
analysis of the time series. FFTs of the generated and forecast power time series were obtained, and the
frequencies were ranked by their amplitudes (large to small, for each series separately). New time series were
obtained by inverting the FFTs, keeping only the firstm frequencies (thosewith the largest amplitudes) and
setting the amplitudes of all other frequencies to zero (the amplitudes of the zero frequency components were
unchanged in order to preserve the signalmean in the trends). The trendswere defined as the time series
(obtained by the procedure described above) such that the cross-correlation between the series obtained from
the generated and forecast power ismaximal. Keeping the original amplitudes of the zero frequency (to preserve
the signalmean) andfivemore frequencies resulted in a peak cross-correlation of 0.9904 between the generated
and forecast power trends (figure 2(a)). These respective trends were subtracted from the raw time series.We
denote the detrended generated power by PG(t), forecast power by PF(t) and their instantaneous difference by
P t P t P tD F G( ) ( ) ( )º - . The frequencies with themaximal amplitudes thatwere used in the trends correspond
to periods of 231–1389 d, implying that the high frequency fluctuationswere not affected by our detrending
procedure.We emphasize that within the aforementioned protocol, the diurnal oscillation frequencywas not
explicitly removed from the time series (we elaborate on this point in section 5.).

The characteristic fluctuation timescales for the detrended time series werefirst computed from their
respective autocorrelation functions defined as:

C
P t P P t P

P t P
, 1X

X X X X

X X
2

( ) ( ( ) )( ( ) )
( ( ) )

( )t
t

=
- + -

-

where PX is a time-average subtracted from the signal (our detrending renders a zero signalmean since the zero
frequency componentwas preserved in the trend and removed from the detrended series). The subscriptX
should be replacedwithG for generated power, F for forecast power, andD for instantaneous forecast error,
respectively. The three autocorrelation functions (figure 2(b)) exhibit exponential decay for short timeswith a
datafit following the functional form C A eX X

X( ) ( )t ~ t t- , where A 1.0X  , owing to CX ( )t being
normalized, and Xt represents the characteristic decorrelation time for each time series, yielding 80.94Gt =
data points (∼20.24 h) for generated power, 81Ft = points (also∼20.24 h) for forecast power, and 25.86Dt =
points (∼6.5 h) for instantaneous forecast error. Different detrending schemes, i.e., using different numbers of
frequencies in the trend (the parameterm defined above), resulted in decorrelation times in the range of
19.5–28 h.However, we found that for all the values ofm that we tested, F Gt t and the same trend of a shorter
decorrelation time for largermwas found in both the detrended generated and the forecast power. This trend is

Figure 1. (a)Raw time series (for 10 d) of the generated power pg(t) (black empty circles), forecast power pf (t) (red empty squares),
and the instantaneous forecast error pd(t) (blue empty triangles) inmegawatts (MW). Every third data point is plotted for easy
visibility. (b)The probability density function of the raw instantaneous forecast error pd( )P (black full circles) has exponentially
decaying tails that are broad relative to aGaussian distribution (solid black line) of the samemean and standard deviation as pd( )P .
TheGaussian distribution is vertically shifted for easy comparison.
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expected because the larger them, the larger the deterministic fraction of the signal that is removed in the
detrending procedure. The shortest decorrelation time reflects the inherent nature of thefluctuations. The
detrended series were also split into independent time series of shorter duration (1/8th of the original temporal
duration). Autocorrelation functions computed for thesewindowed data did not reveal ameasurable difference
in the characteristic decay time ;Xt deviationswere apparent only for long-termbehavior, spanning aweek (or
longer timescales), when the decorrelation had already occurred. The correlation time of high frequency
fluctuations (20 h) ismuch shorter than the slow varying trend (overmonths to years). Hence the detrending
protocol (in particular, the number ofmaximal amplitudes) does not influence the analysis to follow-a fact
verified and reported upon later. Analysis of the instantaneous forecast error PD(t) for the eight independent
time series of shorter duration did not reveal ameasurable change in thefluctuations (mean and standard
deviation), suggesting that the forecast accuracy remained the same over the considered five-year period.

Autocorrelation functions for the generated ( CG ( )t ) and forecast ( CF ( )t ) power exhibit nearly identical
scaling and the same characteristic decay timescales ( 20.24G Ft t= = h), suggesting the accurate capture of
correlations in generated power by the forecastmodels. Yet, the autocorrelation function CD ( )t for
instantaneous forecast error PD(t) informs us that some correlations are not captured. In particular, we
qualitatively know that PF(t) misses the high frequency components of PG(t), and they end up in PD(t), thereby
contributing to its two-point correlator. This correlation deficit suggests that the higher ordermoments of the
two-point correlator are necessary to capture the statistical structure of themissingfluctuations.

3. Temporal structure functions

Statistical analysis of higher order correlations is awell-developed,mature tool within the statistical theory of
hydrodynamic turbulence inwhich higher order two-point correlators are studied through structure functions.
Kolmogorov’s theory of 1941 (K41) [33] lays the foundation for structure functions through the celebrated ‘4/5
law’: S r v r v R r v R r3

3 3 4

5
( ) ( ( )) ( ( ) ( )) eº á D ñ º á + - ñ = - , where the thirdmoment of longitudinal

velocity differences ( v r 3( ( ))á D ñ) between two points spatially separated by a longitudinal distance r is
proportional to the product of the average turbulent dissipation rate (e) and the longitudinal spacing r [34].

The nth order structure function encodes all cross-terms up to order n of the two-point correlator for a given
stationary signal. The physical relevance of structure functionsmay be appreciated by considering a stationary,
fluctuating signal x(t)with a zeromean. The difference between two values of this signal taken time τ apart
( x x t x t( ) ( ) ( )t tD º + - ) is collected at variouswindows (of duration τ) along the time series. x ( )tD is
therefore a randomvariable with statistics of its own, and the nth order structure function, defined as
S xn

n( ) ( ( ))t t= á D ñ, is the nthmoment for its probability density function (PDF) x( ( ))tP D . Themoment

Figure 2. (a)Thefive-year trends for pg(t) (solid black line) and Pf (t) (dashed red line) are subtracted from the raw time series in
subsequent analysis. (b)Log-linear scale: autocorrelation functions CG ( )t (empty black circles), CF ( )t (empty red squares) and
CD (t ) (empty blue triangles) for Pg(t),PF(t) andPD(t), respectively, exhibit exponential decorrelationwith respective characteristic
timescales obtained from the fit to data of 80.94Gt = points (20.24 h), 81Ft = points (20.24 h) and 25.86Dt = points (∼6.5 h).
Every third data point is plotted for easy visibility.
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Sn ( )t varies with the time difference τ between signals, and its scaling, if any, reveals temporal variations in the
statistical structure of the fluctuations of the signal to the nth order.

Tails of the PDF x( ( ))tP D exert themselves with increasing order n of the structure function, thus
necessitatingmore data to resolve higher order structure functions. Aweak test for resolving the nth order
structure function involves splitting the time series into smaller windows and testing for identical scaling on the
truncated series. However, this test only ensures the stationarity of the statistics. A strong test for the ability to
resolve the nth order structure function requires that first, themoment’s integrand x x 0n( ) ( )D P D  as

x∣ ∣D  ¥ [35] (required due to thefiniteness of the data), and second, the PDF x( )P D should decay faster
than x1 n 1∣ ∣D + for x∣ ∣D  ¥ or else the integral x x xdn( ) ( )ò D P D would diverge for large x∣ ∣D [36] (test for
the existence of a PDF’s nthmoment).Whereas the two conditions are not independent, the second condition is
theoretical and does not depend upon the available statistics.When conducting data analysis, evenwhen the
second condition is satisfied, insufficient data can lead to noise and prevent the integrand x xn( ) ( )D P D from
satisfactorily converging to zero [37]. Thefirst condition is, therefore, dependent on the finiteness of the data.
Based on bothweak and strong tests, we conclude that the EIRGRIDdata can resolve structure functions up to
order n=12; however, we only present results up to n=10. For n 10 , tails of the integrand x xn( ) ( )D P D
become noisy. Despite the convergence of the integral, the noise amplitude begins to compromise the quality of
the structure functions (e.g. please see figure 4 in [38] and related discussion therein) as can be observed in
figure 3(a) for n=10.

Since even-order structure functions take only positive values, they converge faster than oneswith odd
order. To overcome this distinction between odd and even orders, we compute the nth order structure function
of the absolute value of differences: S P t P tn

nX
X X( ) ∣ ( ) ( )∣t tº á + - ñ, where subtraction ofmean P tX ( )t+

and P tX ( ) is assumed.While ensuring the same convergence rate for even- and odd-order statistics, it also
collates all data in the positive quadrant, permitting easy visualization.

4. Results

Figure 3 plots the structure functions of order n=1–10 for the absolute value of the signal differences of the
generated power PG∣ ( ( ))∣tD (figure 3(a)) and the forecast power PF∣ ( ( ))∣tD (figure 3(b)). Self-similar or
power-law scaling is observed for the generated power structure functions over 1.4 decades spanning 40t .
Scaling over the same temporal range is also observed for the forecast power structure functions of order n=1
and 2. For n 2> , no scaling is observed for timescales 10t . The scaling is restored over a limited range of
timescales 10 40t< < (0.4 decades in time).

Figure 3. Structure functions of order n=1–10 (solid red circles) and their power-law fits (solid black lines) for (a) generated power
Sn

G ( )t and (b) forecast power Sn
F ( )t plotted versus τ in log–log scale exhibiting self-similar scaling Sn

X
n
X( )t tµ z (X isG for

generated and F for forecast power). The scaling is robust for (a) the generated power over 1.4 decades (40 time steps). (b) In contrast,
for forecast power, thefirst- and second-order structure functions exhibit scaling up to 40t = time steps, but for n 2> , no scaling is
observed for 10t time steps. Self-similar scaling is restored over a limited range of timescales 10 40t< < .
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Self-similar scaling of the temporal structure functions implies a relationship of the form:

S A , 2n n
X X

n
X( ) ( )t tµ z

where n
Xz is the scaling exponent. For simplemono-fractal scaling, nn

Xz µ . However, fluctuationswith amulti-

fractal character exhibit a nonlinear dependence of the scaling exponent n
Xz with respect to n. Super- (sub-)

linear variation of n
Xz versus n implies the temporal expansion (compression) offluctuations [39]. Scaling

exponents for all the structure functionswere computed from the log derivative, n
d S

d
X log

log
n
X( ( ))
( )

z = t
t

, which

provides amore reliable estimate of the exponent than a power-law fit [40, 41]. The pre-factor An
X in equation 2 is

subsequently obtained from afit to the data. Infigure 3, all the data (solid red circles)were divided byAn
X such

that allfits (solid black lines) commence frombothmantissa (τ) and ordinate (Sn
X ( )t ) at unity, for an easy

comparison of n
Xz with order n. All the data infigures 3, 4(a) and 5(b), therefore, follow the scaling relation:

Sn
X

n
X( )t tµ z (A 1n

X º ).
The scaling infigure 3 reveals higher order temporal correlations at work in the EIRGRIDdata. The absence

of scaling for Sn
F ( )t for n 2> at timescales 10t confirms the qualitative observationmade infigure 1(a) that

forecastmodels do not capture high frequency fluctuations.More importantly, figure 3(b) ascribes a precise
bound on the time ( 10,t = 2.5 h) up towhich the high frequency fluctuations aremissed. Finally, the scaling
presence for S n, 1, 2n

F ( )t = explains the close agreement between the autocorrelation functions CG ( )t
and CF ( )t and their identical characteristic decay times, Gt and Ft , observed infigure 2(b). This is to be
expected on the grounds that the second-order structure function S2 ( )t º

x x t x t x t x t22 2 2( ( )) ( ) ( ) ( ) ( )t t tá D ñ = á + ñ + á ñ - á + ñ shares a direct correspondence with the
autocorrelation functionwhere the cross-term is identical to the numerator of equation 1. The failure of Sn

F ( )t
for n 2> to capture high frequency fluctuations out to 10t = reveals one type of forecast error in themodels;
we call this the timescale error et .

Before proceeding to the second type of error arising from the scalingmismatch, we define the cross-
structure function X P t P tn

nFG
F G( ) ∣ ( ) ( )∣t tº á + - ñ. Xn

FG ( )t represents nth ordermoments for the PDF of
the relativemagnitude offluctuations between PG(t) and P tF ( )t+ , and their cross-terms correspond to
higher order two-point cross-correlators between the generated and forecast power. This function is plotted in
figure 4(a). Again, we notice that scaling is absent at early times ( 10t ), and restored at later times
(10 40t< < ).We note that Xn

FG ( )t exhibits no scaling for n=1 and 2, unlike the forecast structure functions
(figure 3(b)). Although Sn

F ( )t exhibits scaling for order n=1 and 2, its exponent ;n n
F Gz z¹ this scaling deficit is

reflected in Xn
FG ( )t for n=1 and 2.

The absence of scaling at short timescales ( 10t time steps) in Sn
F ( )t for order n 2> (figure 3(b)) and

Xn
FG ( )t for all orders n (figure 4(a)) could potentially arise fromone of two very differentmechanisms. If a day-

Figure 4. (a) Log–log scale: cross-structure functions Xn
FG ( )t versus τ (solid red circles) exhibit no scaling at early times 10t ,

with scaling restored for 10 40t< < . Solid black lines are power-law fits to datawithin the scaling regime. (b) Scaling exponent n
Xz

versus the order of structure function n for generatedG (solid red circles), forecast F (solid blue squares) andmodified forecastM
(solid black triangles) structure functions, and cross-structure functions FG (solid green inverted triangles), and their respective
second-order polynomial fits: solid red line for n

Gz , small dashed blue line for n
Fz , long dashed black line for n

Mz andmediumdashed
green line for n

FGz .
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ahead forecast is regularly corrected at short timescales, one expects it will cause short timescale discontinuities
in the forecast signal. Owing to these discontinuities, one cannot expect S 0n

F ( )t  as 0t  , especially for
higher order structure functions (large n). EIRGRID generates a day-ahead forecast every calendar day at 00:00
Irish Standard Time (IST) for the next 24 h [30, 31]. A time derivative of the raw (non-detrended) forecast time

series
p t

t
F ( )¶

¶
shows discontinuities only at 24 h intervals (00:00 IST of every calendar day). No short time

discontinuities (up towithin the sampling interval)were observed. One therefore infers either that EIRGRID
does not employ short time corrections or that any such corrections do not exhibit discontinuities in the signal.
Consequently, we conclude that short timescale discontinuitiesmake no contribution to higher order structure
functions.We, therefore, trace the absence of scaling for 10t time steps to the second possibility. Itmust
arise from the temporal resolution limitations of the EIRGRIDmodels, including the fact that the boundary
conditions for the regionalmodel are only updated every six hours, hence our qualification of this error as a
timescale error et .

5.Discussion

Having established the various structure functions, we now consider the behavior of their scaling exponents n
Xz

(X Gº for generated, F for forecast and FG for the cross-structure function). Figure 4(b) plots n
Xz versus the

order n together with their polynomialfits to the quadratic order. n n10 0.67 0.013n
G 2 2z = + -- scales almost

linearly (mono-fractal)with a small, butmeasurable, quadratic deviation towardsmulti-fractal behavior. The
exponent n n0.007 0.8 0.025n

F 2z = + - exhibits a slightlymore pronounced quadratic deviation (multi-fractal

behavior) relative to n
Gz . On the other hand, n n10 0.54 0.006n

FG 2 2z = + -- scales almost linearly with n,
implyingmono-fractal scaling.

We now consider themeasurement error for the aforementioned scalings. First, given that all detrending
protocols suffer from the ad hoc choice of a detrending timescale, we tested the scalings for dependence on the
detrending procedure by varying the number ofmaximal amplitudes. Ignoring the condition formaximal cross-
correlation between pg(t) and pf (t), the number ofmaximal amplitudes contributing to the trendswas varied.
The scalingswere invariant up to the inclusion of 15maximal amplitudes into the trend, beyondwhich
coefficients for the polynomialfits started varying in the second decimal place.

Contrary to normal practice [19], we did not explicitly detrend the diurnal oscillation frequency as it was
found not to be relevant for our analysis. First, we focused onfluctuations for timescales less than 24 h. In
particular, we observed self-similar scaling in structure functions up to 10 h ( 40t = time steps). Since our
analysis cannot apply beyond this timescale, diurnal oscillations do not enter into our analysis. Second, whereas
diurnal peaks are present in the autocorrelation function (figure 2(b)) for the instantaneous forecast error
(CD ( )t ), we did not calculate structure functions for instantaneous forecast error (PD(t)). Diurnalmodes are
barely discernible for the autocorrelation functions of generated (CG ( )t ) and forecast power (CF ( )t )whose

Figure 5. (a) Log-linear scale: optg versus order of structure function shows no improvement for n 4< but shows better agreement

for n 4 with an abrupt change observed in optg at n=4. (b) Log–log scale: structure functions Sn
M ( )t versus τ (solid red circles)

for themodified forecast time series show considerable improvement over their counterparts Sn
F ( )t in figure 3(b).
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structure functionswe do study. Finally, as stated earlier, our detrending protocol revealed that diurnal
oscillations in the forecast and generated power are less significant than other (much slower) processes.

Having ascertained the robustness of our choice for the fivemaximal amplitudes at which the cross-
correlation peaks, we focused on a second source of scalingmeasurement error, namely statistical variability.
Since the scalings are analyzed up to 100t = data points, the detrended time series were split into eight
independent windows (eachwith 21 912 data points), and the structure functionswere recomputed for each

window. The variation in the log derivative n
d S

d
X log

log
n
X( )( ( ))
( )

z = t
t

for the eight independentmeasurements was

taken as the possible scatter in the scaling estimation, thereby providing a confidence interval for the polynomial
fits. The scatter was found to be 0.01n

Xz  in both themeasured value of n
Xz and the corresponding polynomial

fits (for each of the polynomial coefficients) for each of the eight independent datasets, revealing that the
polynomialfits weremeaningful only to the linear order for n

Gz and n
FGz . The quadratic-order polynomial

coefficient for n
Fz , despite being larger than the scatter of±0.01, is not useful owing to the fact that the

corresponding quadratic terms for n
Gz and n

FGz are smaller than the scattermagnitude.

Despite qualitatively observing a quadratic deviation for n
Xz infigure 4(b), our inability to ascribe significance

to it arises from the fact that themulti-fractal component (deviation from linear scaling) of the scalings is
minuscule. This is significant in light of several studies that have demonstratedmulti-fractal scaling forwind
powerfluctuations at the turbine [2, 4] and farm scales [42]. Turbulence theory traces the source ofmulti-fractal
behavior to intermittent fluctuations that can arise from two sources in the atmospheric context. Thefirst,
known as internal intermittency, occurs at the small scales of turbulent flow. These intermittent fluctuations
would be naturally reflected in the power generated at the turbine and farm scales. However, when adding
together power generated by geographically distant wind farms, internal intermittency should smooth out [7]
since it is a small-scale effect and cannot extend across geographically distributedwind farms. Furthermore, the
sampling interval (15 min) for EIRGRIDdata is not expected to resolve any effects thatmay arise from internal
intermittency, which occur atmuch shorter timescales (high frequencies).

The second source of intermittency, known as external intermittency, occurs at the edge of any free-stream
[43] and arises in the atmospheric context due to coupling between the atmospheric boundary layer turbulence
and a co-movingweather system [28]. External intermittency, which can be experienced in the formof wind
gusts, is of greater relevance in the present analysis as it can both correlate distributed farms through theweather
system and occur at timescales longer than the 15 min sampling interval for the EIRGRIDdata. The nearly
fractal scaling of n

Gz informs us that both internal and external intermittency are being smoothed to the point of
rendering grid-level power fluctuations almostmono-fractal.

The self-similar scaling of Sn
G ( )t over several hours does strongly point to the influence of large-scale

turbulent structures on powerfluctuations at the grid level. The 20 h characteristic decorrelation time ( Gt ) for
generated power infigure 2(c), if taken as the large eddy turnover time of atmospheric turbulence, also lends
credence to such an argument. Finally, independent proof in support of this argument also comes from
Katzenstein et al [7]who show that an individual wind farm exhibits f 5 3- (f being the frequency) scaling for the
wind power spectrum (equivalent to 2 3t scaling of the second-order structure function in the time domain).
However, as wind power from various farms is summed, the spectrum steepens (please see figure 3 in [7]). Such
spectral steepening can be clearly attributed to the smoothing of high frequency (short timescale)fluctuations
corresponding to small eddies. But the low frequency (long timescale)fluctuations corresponding to large-scale
eddies lose no power spectral density, clearly indicating the influence of large-scale turbulent structures onwind
power. These large eddies extend across great geographic distances to couple distributedwind farms. No longer
independent of each other, their fluctuations become correlated, and thus cannot smooth outwhen summed at
the electrical grid. This spatial coupling of wind farms via atmospheric turbulencemanifests itself through
correlated fluctuations in the aggregate wind power feeding the electrical grid.

Wefinally consider the forecast error due to the scalingmismatch.We define the scaling error as
e n n

F Gz zº -z . Under this definition, if the time series for forecast and generated powerwere identical, then

S Sn n
G F( ) ( )t tº , implying n n

G Fz zº , and therefore e 0=z . Another typical case arises if forecastmodels fail

completely, resulting in aflat time series with nofluctuations, 0n
Fz = , resulting in an error e n

Gz= -z . Using

the polynomialfits for n
Xz (seefigure 4(b)) to the linear order, we obtain e =z

n n n7 10 0.8 10 0.67 0.003 0.133 2( ) ( )´ + - + = - +- - . This can be cross-validated against the
difference n n n10 0.67 10 0.54 0.13n

G
n
FG 2 2( ) ( )z z- = + - + =- - . Since 0n

Xz  as n 0 , the 0th order
term fallingwithin the scattermay be taken to be zero. Both estimates of error are identical to the linear
order (e n0.13=z ).

The analysis thus far demonstrates the importance of temporal correlations inwind power and their role in
estimating forecast errors. It is reasonable to askwhether this knowledge could help in improving the forecast
time series, despite having no knowledge of themodels employed.Motivated by the observation that the short-
term temporal correlations of the generated power are notwell captured by the forecast, we introduce amodified
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forecast that is based on the original forecast, convolutedwith an exponentially decayingmemory kernel derived

from the generated power time series. Themodified forecast power is given by P t P e d
t

t
M

0
F( ) ( ) ( )ò t t= g t- - .

Thismodified forecast imposes a short-term correlation on the original forecast; therefore, it is expected to
better capture the temporally correlated fluctuations of the generated power.

Thememory duration (1 g )was chosen so as tominimize the relative difference between the structure
functions of the generated and forecast power. As expected (as shown earlier, the low order structure functions
of the generated and forecast power are very similar), we found that the optimal γ varies with the order of the
structure function. For n 4< , thememory-modified forecast shows no improvement in the agreement between
Sn
G and Sn

F. For n 4 , themodified forecast exhibits better agreementwith the structure functions of the
generated power as shown infigure 5(b). The optimal γ ( optg ) was found to be 1.064g » and 0.3710g » , as
shown infigure 5(a), plotted in log-linear scale to show the variation in optg for n 4 . The simple scheme,
suggested here, not only tries to rectify the timescale error et , but also attempts to statistically align the temporal
correlations by improving the scaling error ez .

As is apparent from figure 5(b), the structure functions (S Pn
nM

M( ) ∣ ( )∣t tº á D ñ) formodified forecast time
series are substantially improved over their unmodified counterpart (figure 3(b)). First, scalings are restored at
high frequencies ( 10t ), thus rendering the timescale error irrelevant.More importantly, the scaling itself is
improved as is evident from figure 4(b), revealing n n0.01 0.7 0.007n

M 2z = + - . To the linear order, the

scaling error e n n n0.7 0.67 0.03n n
M Gz z= - = - =z , a considerable improvement over the original forecast

time series. Being computationally inexpensive, and given that spinning and non-spinning reservesmust act
within 10 min of failure [44], with replacement reserves actingwithin 20–60 min, there are tangible benefits to
incorporating such amemory kernel intomodels tomonitor instabilities in real-time. Furthermore, itmight be
possible to improve the forecastmodels using different parameterizations of the regional climatemodels or
weathermodels, or other stochastic approaches such asMarkov-chain-based predictionmethods [45]. It is
important to note that the improvement in the prediction does not come at the expense of an increase in the
error.We verified that for the values of γ (in thememory kernel) that we used, the rootmean squared error

(rmse= P t P t
N t

N1
1 F G

2( ( ) ( ))S -= ) and the cross-correlation between themodified forecast and the generated

powerwerewithin 1%of those of the original forecast.

6. Summary

In summary, wind power exhibits significant temporal correlations even at the grid level, where fluctuations are
expected to average out [5] as power is fed fromgeographically distributedwind farms. Previous studies have
shown that the temporal correlations of thewind are essential to studyingwind-generated large-scale ocean
currents [46]; a similar appreciation of large-scale correlations in atmospheric turbulencewithin the context of
wind power is called for. Fluctuations, albeit posing a problem to systemoperators, possess a statistical structure
through temporal correlations, which could be exploited to quantitatively analyze the error in forecastmodels.
The technique proposed here is only limited by the sampling rate of the time series. Beyond potentially serving as
a standard for quantifyingwind-power forecast accuracy, it could have applications for any renewable energy
sourcewith temporally correlated fluctuations possessing a statistical structure.
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