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31P NMR at low temperatures ( down to 40 mK) and
           at a high field (7 T)
                (Samples are P-doped normal Si with 4 % 29Si)
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Three-bath model at
high fields and low T

New T2 mechanism
below 1 K



1) T1 Measurements
Magnetization Recoveries after 180° pulse for S18 and S56

§1.  31P-NMR studies at 7 T (120 MHz) down to 40 mK
                            J. Phys. Soc. Jpn. 78, 075003 (2009)
                                       J. Low Temp. Phys. 158, 659‒665 (2010)

    S18 (1.8x1019/cc) and S56 (5.6x1019/cc):

     Metallic samples: Strongly-correlated electron system
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 Conduction Electron Bath

      3He-4He Mixture Bath

Nuclear Zeeman Bath

T1(Korringa)

RK: Magnetic Kapitza Resistance ?
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Analysis of two-step-decay processes
by three-bath model

We found two-step decay processes at low temperature
below about 1 K under high fields (7 T)

CZ ~ CE at T = 50 mK for B = 7 T

T1(fast)

T1(slow)
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In the case that  T1(fast) >> T1(slow),

for T1(fast)                                           and        for T1(slow)

! 

"M

"t
= #

M #M(T
e
)

T
1

=
M #M(T

e
)

$ /T
e

! 

(C
N

+ C
ele
)
"T

"t
=
1

R
K

(T #T
He#bath )

(1)

! 

(M "M(0)) #H =
1

2
$ (T

e

2 "T
e

2
(0)) (2)

(4)

! 

T = T
N

= T
e

(3)
Energy Conservation between Zeeman
and Electric bath:

Zeeman and electric baths
decay together :



Characteristic Behavior of Three-Bath Model
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For the case that T1_Korriga  << T1_E→bath

a = 2 for a 180°pulse



 T1(slow) may be determined by Kapitza resistance
     between conduction electron and 3He-4He bath

T1 = K/Te

T1 = K/Tbath



2) T2 measurement
First observation of T2 below 1 K.



NMR spectrum for S18 and S56

Knight shift of 31P-NMR from Lamor frequency

Inhomogeneous broadening of 1/T2* ~ 106 sec-1

S18

S56



1)  (1/T2)dip is determined by the rigid lattice for 4 % 29Si-31P dipole.
       (1/T2)dip is independent of  T and n.
2)  We found (1/T2)excess.

(1/T2)excess=
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1)                 depends on the concentration n.

    Thus fluctuating fields responsible for T2 is

    either the dipole interaction between P-P or the RKKY.

2) τc（T）strongly depends on T and dipole between 31P-31P is
too small.  Thus electrons have to be involved →ＲＫＫＹ.
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Motional Narrowing (from Slichter’s book)

1/T1 ~ M2τc/ (1+(ωτc)2)

1/T2 ~ M2τ c,

where M2 is the 2nd moment of the fluctuation field.

But if τc > 1/√M2, then 1/T2 →√M2 (Rigid Lattice)

(Rigid lattice)(motional narrowing)



Temperature-dependence of τ (T)

n=3

n=4

n=5

τ (T) ~ (a / vF) (T / TF)4~5



(1/T2)excess Mechanism-Motional Narrowing of RKKY

! 

HRKKY = A(Rkl

k" l

# )I
k $ I l , I x

1 + I x
2
, I

1• I 2[ ] = 0

! 

1/T2 = M 2 = A(Rkl )
2
~ (hyperfine)

2
/EF

~ (120MHz)2 /(104GHz) ~ 1ms"1

2) Low density of conduction electrons → (EF~100 K) →

     large RKKY

→1/T2

1) Non-identical spins due to inhomogeneous broadening→
　　“ Truncation of the RKKY “
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, where (I1+I2++ I1-I2-)-terms  are cancelled in phase factor by
inhomogeneous broadening and only (Iz1Iz2) - term is left.

for Rigid Lattice case
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Motional Narrowing formula for T2
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§3. First observation of Phonon Echoes in P-Doped Si

J. Phys.:Conf. Ser. 150, 042078 (2008)

We measured three samples;
   (L-P) : Low-doped Si (n = 6x1017) in powder form,

   (L-B ) : Low-doped Si (n = 6x1017) in plate(bar) with
                thickness of 0.1 mm,

   (H-P) : High-doped Si (n = 6x1019) in powder form
                        metallic sample

The set-up for “phonon echoes” is the same as NMR (120 MHz),
 where the sample is immersed in liquid 3He-4He mixtures.

→ Echoes

1) Why were Phonon echoes observed for powder sample?

    D / Sound velocity ~10 µm/ 10 km/s~1/100 MHZ → Phonon

→ No Echo

→ NMR



2) Echo intensity at 2τ = 150 µs msec does not depend on
     fields but strongly depends on temperatures

NMR(120 MHz)



3) Temperature-dependence of echo intensity
           No echo is observed above Tλ

Echo Intensity vs. T at 2τ = 150 µsec



 Low-doped Si (n = 6x1017) in powder form, immersed in
3He-4He mixtures  (n ~ nc = 4 x1018/cc)
Dynamical Polarization Phonon Echoes in Piezoelectric materials

1) Echoes is formed by non-linear terms of elastic constant
F = 1/2 C2S2 +(1/6 c3S3)+1/24C4S4

Coupling with rf-field (E-field)
determine E1 and E2.→ Piezoelectric

βE1E2
2 is a fitting parameter for an

experiment
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T2 (T) and the dissipation mechanism of phonon echoes
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Drag force of sphere with radius a, moving with velocity     ,
due to elastic collision of quasi particles in 3He-4He mixture
in Knudsen regime →

ρn = ρn(4) +ρn(3)
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M. Chiba and A. Hirai, J. Phys. Soc. Jpn., 33, 730 (1972)

nc = 4 x 1018/cc

Note that cluster (2P, 3P and 4P) signals can be observed even for n << nc.

Why P-doped Si near nc has piezoelectricity .

P-clusters exist for n < nc (see ESR (c and d)).



Thank you for your attention





Outline

§１. NMR in metallic samples

             (n = 1. 8x1019 and 5.6 x 1019 /cc)

     down to dilution temperatures at 7 T.

     Three-bath model:T1(fast) and T1(slow) for T < 1K

     T2   : new mechanism for T < 1 K

§２．Photon echoes ( n = 6x1017/cc ) in insulator

       Dynamical Polarization Phonon Echoes by

      piezoelectric character of P-doped Si near nc
         ( Critical concentration nc = 4x1018/cc)



 Metal-Insulator Transition
          Critical concentration nc = 3.7 x 1018/cc)

nc = 3.7 x 10
18cm-3

nc
-1/3 = 60 Å = 2 aB

aB = 30 Å for meff = 0.3 me

Metal-Insulator Transition in a doped
semiconductor, T. F. Rosenbum et al.

P.R. B27, 7509 (1983)

P-doped Si: n > nc: Metal: n-type semiconductor

                                     strongly- correlated electron system

                    n < nc:  Insulator: isolated donor P



 

b

! 

M
0
"M(t)

M
0

= (a " b) # e
"

t

T1 ( fast ) + b # e
"

t

T1 ( slowt )

T1 measurement for sample for S56
     Recovery of magnetization after 180 pulse below 1K

New features in T1 

at 7 T and low temperatures

Above T = 1 K, the recovery is 
a single-exponential decay.

Below 1 K, the magnetization is 
decayed in two steps.S56 at T=140 mK
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(Hubbard Model)

T2 in metallic sample reflects nuclear spin dynamics
in the entangled states (ensemble average)

Hamiltonian to describe the entangled state of
nuclear spin Q-bits



Phonon Echo signal  by dynamical polarization echoes



§3. ESR in insulator sample (n = 6.5 x 1016/cm3)
J. Phys.:Conf. Ser. 150, 022078 (2008),
J. Physics: Condensed Matters, 22, 206001 (2010).

fo = 80 GHz (~3 T), ωm= 330 Hz,



Temperature-dependence of ESR signals



Numerical Solution for Bloch Equation
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Numerical Simulation of Bloch Equation (T1 unknown)
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σ/γ=2.5x10-4T

ωm/2π=330 Hz
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T1- Dependence of Intensity for various
passage conditions



T1(T) at B = 3T

First observation of T1 at high fields

T1(T=0.1 K) is expected to be 10 sec at B = 3 T.



Dynamic Nuclear Polarization of 31P (DNP) ?
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( black lines: in-phase signals, red lines: out-of-phase.)


