

<u>Maika Takita</u>, Forrest Bradbury¹, Stephen A Lyon Department of Electrical Engineering, Princeton University

Kevin Eng², Tom M Gurrieri, Kathy J Wilkel, Malcom S Carroll Sandia National Laboratories

- 1. Present address: Amsterdam University College, Amsterdam, The Netherlands
- 2. Present address: HRL Laboratories, LLC, Malibu, CA, USA

Extremely efficient clocked electron transport on superfluid helium

<u>Outline</u>

1. Intro

What can we do with mobile electrons?

2. Sandia Device

Clocking experiment

- 3. IBM Device
 - What's next?

Electrons on superfluid helium

Clean system: Electrons in vacuum

Long spin coherence negligible spin-orbit interaction

 \Rightarrow Able to move electrons without spin decoherence!

Channel Device with Sandia CMOS7

Channel Device with Sandia CMOS7

Experiment

Sandia Device

3-phase CCD Potential

Underlying gates

3-phase CCD

Clocking Electron has moved one pixel (3 gates) to the right

Potential Energy

Measurement

Modulate twiddle to push electron on and off the sense gate

Horizontal CCD

Loading:

Photoemit electrons on plates Load them to pixels by opening the door

Horizontal Clocking Efficiency

Clock (pixel) rate = 240kHz

Channel Occupancy

Vertical ("C-cycle") Efficiency

<u>Conclusions for electrons on superfluid helium channels with</u> <u>silicon integrated circuits (Sandia device)</u>

- •Unprecedented reliability of a Charge Coupled Device -Essentially a perfect Electron Transfer Efficiency
- 5 clock lines for full control

 -2D Scalability: Move anywhere in our ~5000 position gate & channel array
- Si-Processing
 - -First, non-optimized design with standard silicon processing
 - -Possibilities for on-chip amplification
 - -On-chip multiplexer
 - -More...

Bradbury, Takita et al. PRL 107, 266803 (2011)

8 metal layers (Aluminum and Copper)

Channels using thin metals

Filling and cheesing!!!!

Electroplating? Electro chemistry?

Turnstile Single Electron loading

- Turnstile
- Quantum dots

Need better sensing

On-chip amplification? What else?

- Turnstile
- Quantum dots

Need better sensing

On-chip amplification? What else?

Twiddle Sensor: Potential Simulations

3 um channels 2.5 um wide gates

Electrical potential in volts at the helium surface above the channels

Wider gates!!!

- 6 X 6 um Sense gate
- Gate in between Sense and Twiddle

Twiddle

Sense

What do we do for our next chip???

- 1. Narrower channels (avoid filling)
- 2. Narrower gates (avoid cheesing)
- 3. Some wider gates (better sensing)
- 4. Turnstile

