Long Spin Relaxation and Coherence Times of Electrons in Gated Si/SiGe Quantum Dots

Jianhua He, A.M. Tyryshkin and S.A. Lyon, Princeton University
C.-H. Lee, S.-H. Huang and C. W. Liu, National Taiwan University

- Introduction
- Setup and Device Fabrication
- Electron Spin Resonance in QD
- Summary
Spin qubit in Quantum Dot

GaAs quantum dot
T_2 limited by nuclear spins

Si quantum dot
- (Expected) long T_1 and T_2
 - a. weak hyperfine
 - b. small spin-orbit coupling
- Integration with current microelectronics

Petta, et al., Science 2005
Ensemble ESR in 3He system

- Ensemble measurement: 10^8 unpaired spins
- Zeeman Splitting: $0.35 \text{ T} \sim 10 \text{ GHz} \sim 0.46 \text{ K}$
- ESR: g-factor ~ 2
 linewidth $\sim 100 \text{ mG}$
Device Fabrication

- Undoped natural Si/SiGe:
 \(\mu > 800,000 \text{ cm}^2/\text{Vsec} \)
 \(n_e \approx 10^{10} /\text{cm}^2 \)
- \(2 \times 10^8 \text{ dots/cm}^2 \approx 1 \text{ cm}^2 \text{ total area} \)
- Al - Al\(_2\)O\(_3\) (100 nm) - Si/SiGe: low gate leakage

Quantum well 200 nm below the surface
\[\Delta V_g = V_{\text{top}} - V_{\text{bottom}} = 1.5 \text{ V} \]

~15 meV
\[\Delta E \approx 1 \text{ meV} \]
Confining Electrons

- Both gates can control n_e
- 2DEG (2 valleys) ~ 2.4×10^9 spins
- QD (1 spin/dot) ~ 1.2×10^8 spins

$$\frac{\text{Sig}_{2\text{DEG}}}{\text{Sig}_{\text{QD}}} \sim 20 \pm 7.7$$

- Resolve single electron transitions?
T_1 and T_2 of Electrons in QD

- Echo intensity ratio:
 \[\frac{I_{2DEG}}{I_{QD}} \sim 17 \]
- Curie dependence

Hahn-echo decays at 0.35 K, 0.5 K, 0.8 K

- $T_1 \sim T_2 \sim 250$ us
- $T_2 \downarrow$ as temperature \uparrow
 T_1 does not
T_1 and T_2 vs Gate Voltages

$T = 0.35 \text{ K}$
Spin Relaxation and Decoherence in QD

- Single Phonon: \(T_1 \sim \Delta E^4 / B^7 \)
- \(^{29}\text{Si}\) hyperfine: \(T_1 \gg T_2 \)
- Exchange or dipolar interaction

- Valley splitting?
- Many electron dots?
- Stark effect?
Summary

- Fabricated a large area double gated device on Si/SiGe for ensemble ESR
 - i) low gate leakage
 - ii) 2DEG and QD

- T_1 and T_2 of high mobility 2D electrons
 - $T_1 \sim 10 \, \mu s$, $T_2 \sim 6.5 \, \mu s$ at $T = 0.35 \, K$

- Single spin qubits in QD
 - $T_1 \sim 250\mu s$, $T_2 \sim 250 \, \mu s$
 - weak dependence on temperature
 - strong dependence on confinement energy

- Relaxation and decoherence not yet understood