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e Introduction - Electrons on helium

e Microchannel samples for mesoscopic experiments

e Point-contact transport properties of classical electron liquids
e Point-contact transport properties of Wigner crystals

e Conclusions
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Z,=45nm

" V(2) = -QeldTre,z

Electrons are attracted to
a liquid He surface by an
image charge...

...but prevented from entering
the liquid by a ~ 1eV potential
barrier (Pauli).

P e

~ 120 GHz
(~6 K) Result: a “1D Hydrogen atom’
with Rydberg series of states.

Y. P. Monarkha and K. Kono (Springer-Verlag, Berlin, 2004)



€N Low Temperature _
Physics Laboratory Electrons on Helium

The Coulomb interaction between electrons is essentially unscreened:

© | Fie~1/12 -

We can (almost) consider electrons floating in free space...
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‘Low’ surface density: ng ~ 10°—10° cm
Liquid helium is a perfectly clean substrate: u ~ 108 cm?/V.s at 10 mK

—> A nondegenerate, high mobility, ‘classical’ 2D electron liquid (or solid)
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GaAs-2DEG electrons on helium
N, 1019 — 1012 cm*? 106 —10° cm™
Mass m.* ~ 0.067/m, m,
Er ~10K ~1mK
Velocity hk- /[ m* ~ 10" cm/s (2kgT / m_)”2 ~ 10° cm/s
Mobility ~10% cm?/Vs ~ 108 cm?/Vs
Mean free path ~ 10 um ~ 1 pum (at 1 K)
System Fermi degenerate Nondegenerate Coulomb
characteristics electron gas liquid / crystal
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Classical many-body physics in strongly-correlated systems:

- Wigner crystallisation
- 2D melting in confined geometry
- Transport of interacting particles: Jamming, pinning etc...

What can we do with electrons on helium?

Quantum electron dynamics in a low-decoherence environment:

- Quantum transport (D. Konstantinov et al., Phys. Rev. Lett., 105 (2010))

- Qubits* with long coherence times? ELT »
*Rydberg states:  P.M. Platzman and M.l. Dykman., Science 284 (1999) hI Helium
*Spin states: S.A. Lyon, Phys. Rev. A 74 (2006)

*Orbital states: D. Schuster et al., Phys. Rev. Lett. 105 (2010) m§*m
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Mesoscopics? Use microchannels filled by capillary action of superfluid “He:

oHPW ~ 20 pm
& LD pm
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D. G. Rees et al., J. Low Temp. Phys. (2011)

Fabrication techniques:

- UV / e-beam lithography (2 or 3 layers)

- Thermal / e-beam evaporation of metals

- Etching of hard-baked photoresist to create insulating layer
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We can measure the transport properties of the
electron system using a lumped-circuit model:
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Finite-element modelling shows that a saddle-point potential is created at the constriction:

At negative gate voltage we may form a potential barrier between reservoirs:

< 01A """" Vi From the model we find:
m -

Vb = OLVr + ngt + ngu

_-0s: X (um) — Vj-ve |0=075p=0.10,y=015
S I —
L gt Twer ~ 20 GHz ~1 K ~ 0.1 meV
= 05—
-5 0 5 10
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Experimental parameters: Sweep V:
T=12K 7
Vi=+1V,V,, =0V 5'_

ng =2 x10% cm2

0D Vi, ~5mV,,

I (nA)

0.0 0.5 1.0 1.5 2.0 25
v, (V)
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Vo = aVe+ 8Vge +7Vgu From V,, threshold measurements:
Coupling Model Measured
Constant
o 0.75 0.77
B 0.10 0.16
v 0.15 0.07

Good agreement...

Electrons are indeed above the reservoir
electrode, between the split-gate:
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Total conductance; Point-contact conductance:
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20 -
250 mV
15- —,
|
< |
@ |
= 1o I Here kT >> E;
o |
T
0 . | | also: Vi, ~5mV,,

0.0 | 0.5 | 1.0 | 1.5 Ih%
whilst: ha)y ~0.1meV U/

30 -
> .
=
g .. The steps are unlikely to be
(_g& related to lateral subbands:
0 This is not a ‘quantum’ point contact

V., (V)
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20 -

- 250 mv Consider the number of electrons
- : across the constriction:
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D.G. Rees et al., Phys. Rev. Lett. 106, 026803 (2011)
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Molecular Dynamics Simulations

20~
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Molecular dynamics simulations by
M. Araki and H. Hayakawa, Kyoto University:

2 @ T
% 5 0_ G(2)—;HH{HH}
o { :
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M. Araki and H. Hayakawa, arXiv:1104.4854 (2011)
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Role of fluctuations

Why are the steps smoothed?

15+

10

G (M)

0.4 06 0.8 1.0 1.2 14
V. (V)

In the strongly-correlated system, electrons
‘see’ a strongly fluctuating electric field:
E,~T"n* (bulk 2D system)

From the simulation, for electrons
entering the constriction:

O, ~ 1 meV ~V,,

Molecular dynamics simulations by
M. Araki and H. Hayakawa, Kyoto University:

2 @ T
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. Araki and H. Hayakawa, arXiv:1104.4854 (2011)
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V, dependence

Measure the conductance for different V, :
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e \We have observed a steplike increase in
current in the PC device.

e This is due to the increase of the number 1-
of electrons able to pass side-by-side
through the constriction.

/
| -1I.0 | -OI.5
V, (V)

e This can be considered as an effect of | o
Coulomb blockade, at a single constriction. 160 —

e Result: A classical analogue of the QPC. 120 §

e The same dynamics should be observed
in a variety of other systems...

AV (mV)
S
]

0.0 01 02 03 04 05
V-V (V)
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Pedestrians at bottlenecks

Humans also exhibit
long-range interactions:
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Coulomb systems:

Flnt~1/r2

Kretz et al, J. Stat. Mech. (2006): 2.5-
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Focus: Electrons Take Turns Like Pedestrians 04 05 0& (3/7) 08 09
gt

Published January 21, 2011 | Phys. Rev. Focus 27. 3 (2011) | DOI: 10.1103/PhysRevFocus. 27.3

Electrons confined to a layer floating above liquid helium move in an orderly way through a constriction because their
repulsion forces them to keep their distance from one another.

W : sk <& air-hockey " i .
When electrons are put onto liquid helium, they skate like air-hockey pucks above Paint-Contact Transport Properties of Strangly

the surface. In the 14 January Physical Review Letters. experimentalists report Carrelated Electrans on Liquid Helium

that, when they force a sheet of such electrons through a narrow constriction. the D. G. Rees. |. Kuroda. C. A Marrache-
particles” mutual repulsion causes them to take turns passing through, like a Kikuchi, M. Hafer, P. Leiderer, and K. Kono
crowd of commuters going through a turnstile. The results show how a two- Phys. Rev. Lett. 106, 026803 (2011)

dimensional layer of electrons acts when their quantum nature is not important Published January 14, 2011
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The electron system ‘freezes’ for ' > 130:

ECoulomb n.1/2
r= _Couome T

Ekinetic kBT

Forn,~10°cm?, T, ~ 1K

R +R_(MQ)

‘Dimples’ formed beneath each
electron increase resistivity:

0.0

e o P | | | T (K
;’ *
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Simulations of Wigner crystal transport through constrictions:

- Piacente and Peeters, PRB 72 (2005):

e al V=5 Electron motion (b)
':“'”V |  N=80
- of b ¢ __Q._____
= n
= ———— 2k
4 2 0 2 4 N 1
X -0 -40 -30 -20 10 0 10 20 30 40 S0
X
At low temperatures we expect the system o peososons
to become pinned at the constriction. K=t ng
>* ozt -4
. . . ] N=80 'g_,‘i»ﬁ
Motion can be induced by increasing the °-1'(b) AL T
g" --------- power fit far T'=0

force applied to the system (depinning): ogboctasf ]

f
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Change temperature (here T, = 1.19 K):

- 2e _
(Normalised current) | l T=1.2 K
e

1
15 | __—Peak appears for I' > 159
1.0 —
i f//om

11,

0.5 -

0.0 —

-2.0 -1.5 -1.0 -0.5
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Compare high and low T sweeps directly:

1.0 5
0.8 4
. 064
& —1.2K
: -
04 —0.7K
0.2 4
‘Peaks’ appear due to suppresion of current between steps
0.0 "-J | ' | ' | ' | ' |

-1.4 -1.2 -1.0 -0.8 -0.6
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Change density (T = 0.7 K):

V=115V
High density (~ 3x10° cm-?)

Peak appears for [ > 200
/

171,

Low density (~ 1.5x10° cm2)

0.0

-1.5 -1.0 -0.5 0.0 0.5
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Change driving voltage (T = 0.5 K):

[ (nA)

For 5 mV Is similar to that at 1.2 K, 2 mV,,... but the peak is still visible:

opr 1o

The peaks do not appear simply by changing the current.
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Molecular dynamics simulations (H. Totsuji): : Experiment
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Current is suppressed for symmetric, stable configurations:

Overlap electron positions over time:

3.5
Current
RES suppression
c25 l
°
=
= 3 Current grows
S
=
815 i
=
T 1 Current peak
=)
- I
0.5
0 : | . Current
Al i { i .
1140 120 -100 80 60 . suppression
V *[mV] 1
g

22 5 1 05 0 05 1 15 22 15 -1 05 0 05 1 15 2

Note: These pictures are also valid without the applied driving voltage...
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Fluctuation current 1O :

There is a link between the thermal fluctuations in electron positions
and the conductance through the constriction...
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So: When patrticles are arranged in a commensurate
way at the constriction we observe a suppression
of electron thermal motion:

For this case, the fluctuation current is suppressed.

Fluctuation dissipation theorem:

“The response of a system in thermodynamic equilibrium to a small applied force
is the same as its response to a spontaneous fluctuation.’

eg R. Kubo, Rep. Prog. Phys. 29 (1966)

So our current is suppressed due to Coulomb interactions...

The suppression of current can be regarded as the onset of pinning,
which depends on the commensurability of the electron lattice.

D.G. Rees, H. Totsuji and K. Kono, Phys. Rev. Lett. (accepted for PRL)
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Preliminary simulation data: Preliminary experimental data:
T =440 mK:
90 ~
| 9meD
80 - —7mVpp M

oy

70 4

60
50 +

40 +

| (NA)
11V (nA/mV)

30 4

20 4

10 J

A
0 T T T T 1

V, V)

Signs of strong suppression at low T, but further measurements required...
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Conclusions

e \We have measured the transport properties of classical
electron liquids and solids in a point-contact device.

e In the liquid phase:
- We observe conductance steps due to lane formation.
e In the solid phase:

- We observe conductance peaks due to the onset of pinning
for commensurate electron lattice arrangements.

e In the next talk we will see related conductance oscillations
in a long microchannel, but due to ripplon scattering.

e The dynamics revealed here could be observable in many

other classical many-body systems (colloids, grains, pedestrians etc...)

171

0.8+

0.6

0.4+

0.2+

0.0

—1.2K
—0.7K

T
-1.2

-1I.0 -0‘.8 -0I46
v, (V)

e Good agreement with simulations shows that e on He are a useful model system

for the study of many-body systems in confined geometry.

Thankyou




