
An Introduction to CUDA
and GPU Programming

Scientific Computing and Data Analysis

2

GPU
● GPU is a ”Graphics Processing Unit”

– Developed for games
– High computational

capability

● CUDA is NVIDIAs C/C++
language extension for HPC computing on GPUs
– But other options exist: OpenCL, OpenACC...

3

Trend: multiple cores, parallel execution
As transistor count grows, CPUs
have gained more cores and
more features.

A CPU is a collection of 2-20
independent, fully general cores
connected in a local network,
with local and shared memory,
and I/O to the outside world.

Xeon E5 2699v3

5.5B transistors
18 cores
45 MB L3 cache

4

Meanwhile...
● PC graphics gained hardware support, 2D then 3D
● Early 2000s: GPUs with on-card programmable 3D transformation

and lighting calculations (“shaders”)

A shader is a small program that:
– Runs on many pixels or many

vertices at once - (“SIMD”)
– Is compute bound – only math

with no I/O or conditionals
– Is stream oriented – can

process a stream of data points
with little or no additional state

5

● Researchers realized that you can run any function as a shader
First only a curiosity, but it became obvious that GPUs were potentially
powerful general code accelerators.

Meanwhile...

● 2007: NVIDIA releases CUDA, Apple
releases OpenCL (later standardized
under Chronos).

Both are direct means of harnessing the
GPU compute power without hacks and
workarounds.

8

GPU programs are simple:
● Small size, simple control flow

Cores are very parallel:
● Many execution threads share

one control unit

Very specialized for math:
● floating point function evaluators.

CPU programs are complex:
● OS, simulators, games...

Cores are independent:
● Each core is a full computer

General computing tasks:
● Math, I/O, interactive applications.

9

● The CPU (“host”) and the GPU (“device”) are separate
→ you need to copy data to and from the GPU

● The GPU has “streaming multiprocessors” = processors
that each can run hundreds of threads.
● Each SM has 8-64 CUDA cores; with more threads they take

turns on the SM

CPU

Cache

Main memory

SM SM SM

Main memory

Shared
memory

Shared
memory

Shared
memory

System
Bus

Computer — host GPU — device

SM

Shared
memory

10

GPU concepts

A thread runs a single computation.
– Like CPU threads, they share

memory and code with other
threads.

– Much simpler, slower than CPU
cores.

– Limited thread-local memory,
registers.

Thread
step 1

step 2

step 3

step 4

step 5

...

11

– All threads in a warp run the
same code at the same time
→ one thread takes less space
and energy than a CPU core

T1 T2 T3 T32…

Instruction
Decoder

– Threads have their own registers
and variables.

– Same instructions, but act on
different data (“SIMD”)

A warp is a collection of 32 threads

data
1

data
2

data
3

data
n

12

Blocks

A block is a collection of up to
1024 threads
– All threads run the same code

– Has shared fast memory (48KB)

– You can organize threads in 1-D,
2-D or 3-D, but that’s only
programmer convenience

T33 T34…

T1 T2 T3 T32…

... T1024…

Shared memory

13

A grid is a set of blocks
– Blocks are independent

● Can not access data in shared
memory of other blocks

– Blocks run in any order.

– Threads in all blocks have main
memory in common

– You can organize blocks in different
dimensions, the same as threads in
a block.

Main (device) memory

Grid

14

Workflow
1) Write a C function (a “kernel”) that will

run on all threads

2) Copy your data from host to device

3) Run the kernel on the device with your
data, using some number of blocks and
threads

4) Copy results from device back to host

5) Repeat from 3); or finish up

6) Done!

Main memory

Host
(computer)

K
er

ne
l

D
at

a

R
es

ul
ts

Device (GPU)

15

Log In on Tombo!

$ ssh <your-ID>@tombo.oist.jp

$ cp -r /work/training/GPU .

$ cd GPU/code

● First, let’s all log in on Tombo:

● Copy the code from the common area:

● Go to the new directory:

16

GPU Resources at OIST

Tombo:
“gpu” - 1 node 2* K40 Training

Sango:
“gpu” - 2 node 4* K80 image analysis pipelines
“powernv” - 4 node 4* P100 general, deep learning

Saion:
“gpu” - 9 node 4* P100 general, deep learning

- 8 node 4* V100
“powernv” - 4 node 4* V100 general, deep learning

$ ssh <your-ID>@tombo.oist.jp

$ cp -r /work/share/training/GPU .

$ cd GPU/code

17

$ ssh <your-ID>@tombo.oist.jp

$ cp -r /work/share/training/GPU .

$ cd GPU/code

● You need to ask for the GPU partition, and reserve the GPU
resource:

● Use multiple cards with

● For compilation, load the cuda module:

$ srun --partition=gpu --gres=gpu <program>

--gres=gpu:N

$ module load cuda/8.0.27

18

Program #1: GPU vector addition

We will adapt a simple program to run on the GPU:

void vec_add(float *a, float *b, float *c, int n) {

 int index;
for (index=0; index<n; index++) {

 c[index] = a[index] + b[index];
 }
}

Vector addition is the “hello world” of parallel programming
The source is GPU/code/vec_add.c

19

void vec_add(float *a, float *b, float *c, int n) {

 int index;
for (index=0; index<n; index++) {

 c[index] = a[index] + b[index];
 }
}

int main(int argc, char **argv) {
int i;
float *c, *b, *a;

 c = (float *)malloc(size);
 b = (float *)malloc(size);
 a = (float *)malloc(size);

 for (i = 0; i<N; i++) {
 a[i] = b[i] = 5.0;
 c[i] = 0.0;
 }

 vec_add(a,b,c,N);
}

The CPU-based version

● Allocate three arrays:
a, b inputs
c output

● Initialize all elems
a,b = 5.0
c = 0.0

● Call vec_add()

20

We have two extra things in our code. Timing:

and sanity check:

double time_diff_nano(struct timespec *toc, struct timespec *tic) {
 return (1e9*(toc->tv_sec-tic->tv_sec)+
 (toc->tv_nsec-tic->tv_nsec));
}
...
clock_gettime(CLOCK_REALTIME, &tic);
...
clock_gettime(CLOCK_REALTIME, &toc);
time_diff_nano(&toc, &tic)/1000.0;

float sum = 0.0;
for (index = 0; index<N; index++) {
 sum += c[index];
}

if (fabs((sum-CORRECT)/sum)>EPSILON) {
 printf(" correct sum: %.2f - fail\n", CORRECT);
}

21

Run the serial code

● Compile our example program:

● Run it on Tombo:

● Time: ~1425-1550µs

$ gcc -O3 vec_add.c -o addcpu

$ srun -t 1:00 --mem=50m ./addcpu
calculated sum: 10485760.00
Time: 1441.77 µs

On some systems you may
need ‘-lrt’ for the timer.

22

Allocate memory on the GPU
● Make a copy (or just use code/vec_add.cu) and open it:

● Allocate memory on the GPU (and free it at the end):

– All cuda functions start with “cuda”
– You usually don’t need to add #include statements — the cuda

compiler adds then for you.

float *dc, *db, *da;

cudaMalloc(&da, size);
cudaMalloc(&db, size);
cudaMalloc(&dc, size);

cudaFree(da);
cudaFree(db);
cudaFree(dc);

$ cp vec_add.c vec_add.cu

23

Move our data to the GPU

● Copy our data over:

cudaMemcpyHostToDevice = copy to GPU from computer
cudaMemcpyDeviceToHost = copy to computer from GPU

also cudaMemcpyHostToHost,cudaMemcpyDeviceToDevice

Many function variations available: cudaMemcpyAsync(),
cudaMemcpy2DTo[From]Array(), cudaMemcpyToSymbol() …

cudaMemcpy(da, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(db, b, size, cudaMemcpyHostToDevice);
cudaMemcpy(c, dc, size, cudaMemcpyDeviceToHost);

to from number of bytes direction

24

Create the kernel

void vec_add(double *a, double *b, double *c, int n) {
 int index;

for (index = 0; index<n; index++) {
 c[index] = a[index] + b[index];
 }
}

Our original vector addition function:

Add “_ _global_ _” specifier:

__global__ void vec_add(double *a, double *b, double *c, int n) {

__global__ = can be called from host and runs on device.

Also available: __device__ and __host__.

25

Create the kernel — parallelize

for (index = 0; index<n; index++) {
 c[index] = a[index] + b[index];
}

Time

c[0] = a[0]+b[0]

for loop

c[1] = a[1]+b[1]

c[2] = a[2]+b[2]

c[3] = a[3]+b[3]

Our vector addition function steps through
the loop over time, and sums a different
set of elements at each time step.

...

26

Time

...

c[2] = a[2]+b[2]

Thread #2

c[0] = a[0]+b[0]

Thread #0

c[0] = a[0]+b[0]

for loop

c[1] = a[1]+b[1]

c[2] = a[2]+b[2]

c[3] = a[3]+b[3]

c[1] = a[1]+b[1]

Thread #1 ...

Instead we let each thread sum a single
different element, all at the same time:

Thread 0 sums a[0] and b[0] into c[0],
Thread 1 sums a[1] and b[1] into c[1],
…

Create the kernel — parallelize

for (index = 0; index<n; index++) {
 c[index] = a[index] + b[index];
}

27

Time

...

c[2] = a[2]+b[2]

Thread #2

c[0] = a[0]+b[0]

Thread #0

c[0] = a[0]+b[0]

for loop

c[1] = a[1]+b[1]

c[2] = a[2]+b[2]

c[3] = a[3]+b[3]

c[1] = a[1]+b[1]

Thread #1 ...

Instead we let each thread sum a single
different element, all at the same time:

Thread 0 sums a[0] and b[0] into c[0],
Thread 1 sums a[1] and b[1] into c[1],
…

Create the kernel — parallelize

index = ???
c[index] = a[index] + b[index];

28

Create the kernel — parallelize

index = ???
c[index] = a[index] + b[index];

In kernel functions, CUDA
automagically defines variables
with the block and thread IDs.

0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31

block 0 block 1 block 2

Threads per block = 32

= number of threads/block

= current block (0, ...)

= thread in current block

blockDim.x

blockIdx.x

threadIdx.x

29

Create the kernel — parallelize

int index = blockIdx.x*blockDim.x + threadIdx.x;
c[index] = a[index] + b[index];

In kernel functions, CUDA
automagically defines variables
with the block and thread IDs.

0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31

block 0 block 1 block 2

Threads per block = 32

blockDim.x

blockIdx.x

threadIdx.x

= number of threads/block

= current block (0, ...)

= thread in current block

30

Create the kernel — parallelize
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index<n) {

c[index] = a[index] + b[index];
}

In kernel functions, CUDA
automagically defines variables
with the block and thread IDs.

0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31

block 0 block 1 block 2

Threads per block = 32

blockDim.x

blockIdx.x

threadIdx.x

= number of threads/block

= current block (0, ...)

= thread in current block

31

Call the kernel

#define THREADS 512

vec_add<<< (N+THREADS-1)/THREADS, THREADS >>>(da, db, dc,N);

The notation is:

“<<< , >>>” is a CUDA extension for calls to a CUDA kernel.
● allocates the blocks and threads per block that we specify;
● copy the code to the GPU card;
● set blockDim, blockIdx and threadIdx for the kernel function

func<<< blocks, threads per block >>>();

32

Build and run!

● To build our CUDA program we need the compiler.
Load the cuda module:

● Compile using nvcc:

● Run:

● Runtime (this time): 184 µs
● Our CPU version took ~1450 µs — a 7× speedup!

 $ module load cuda/8.0.27

 $ nvcc -o addcuda vec_add.cu

 $ srun -p gpu --mem=1G --gres=gpu -t 1:00 ./addcuda
 Time: 184.37 µs

33

But...

 cudaMemcpy (da, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy (db, b, size, cudaMemcpyHostToDevice);

 clock_gettime(CLOCK_REALTIME, &tic);

 vec_add<<< (N+THREADS-1)/THREADS, THREADS >>>(da,db,dc,N);
 cudaDeviceSynchronize();
 clock_gettime(CLOCK_REALTIME, &toc);

 cudaMemcpy (c, dc, size, cudaMemcpyDeviceToHost);

● We measure the vec_add() time, but not the memory copying:

Only vec_add(): ~1450 µs (CPU) ~180 µs (GPU)

We’re being a little unfair to the CPU. Let’s see:

34

But...

 clock_gettime(CLOCK_REALTIME, &tic);
 cudaMemcpy (da, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy (db, b, size, cudaMemcpyHostToDevice);

 vec_add<<< (N+THREADS-1)/THREADS, THREADS >>>(da,db,dc,N);

 cudaMemcpy (c, dc, size, cudaMemcpyDeviceToHost);
 clock_gettime(CLOCK_REALTIME, &toc);

● Measure the vec_add() time and memory transfers:

Only vec_add(): ~1450 µs (CPU) ~180 µs (GPU)

vec_add()+copy: ~1450 µs (CPU) ~15000 µs (GPU)

Include the cudaMemcpy() calls in our time measurement:

35

Only vec_add(): ~1450 µs (CPU) ~180 µs (GPU)

vec_add()+copy: ~1450 µs (CPU) ~15000 µs (GPU)

Lesson:

● GPU jobs should be compute-bound.
– Lots of math, few memory transfers

● Memory transfers are expensive
– Do as much as possible on the GPU without transferring data
– You can run multiple kernels after one another without moving data.

36

Example #2: dot product

 Dot product: p = a1*b1 + a2*b2 + a3*b3 + ...

Two operations:
● Elementwise product

– We already (almost) did in the last example

● Reduction
– combine all elements into a single value with some function
– Very common operation, not always trivial.

37

Serial version

The serial version (dotprod.c):

● pairwise multiplication:
tmp = a*b

● Pairwise summation of tmp:
dotp = sum(tmp)

void vec_dot(float *a, float *b, float *dotp) {
int index, s, i;

 float tmp[N];

 for (index = 0; index<N; index++) {
 tmp[index] = a[index] * b[index];
 }

 for(s = (N/2); s>0; s/=2) {
 for(i = 0; i<s; i++) {
 tmp[i] += tmp[i+s];
 }
 }
 *dotp = tmp[0];
}

 float dotp = 0.0;
 vec_dot(a, b, &dotp);

And in main():

● We just call vec_dot().

38

Pairwise Summation

Summing large data sets naively will cause a form of
catastrophic cancellation — one term will become orders of
magnitude larger than the other, and you lose significant digits.

 for(s = (N/2); s>0; s/=2) {
 for(i = 0; i<s; i++) {
 tmp[i] += tmp[i+s];
 }
 }

We sum elements in pairs:
 tmp[0] += tmp[N/2]; tmp[1] += tmp[N/2+1]…

Then sum the pairs in pairs until we have a single element.
All terms now have the same order of magnitude.

39

Pairwise Summation
0 N/2 N-1

0 N/4

0 N/8

0

Step 1

Step 2

Step 3

Summing large data sets naively will cause
catastrophic cancellation

We avoid it by pairwise summation:

We sum elements in pairs:

tmp[0] = tmp[0] + tmp[N/2];
tmp[1] = tmp[1] + tmp[N/2+1]…

We recursively sum each pair in the same way,
until we have a single element.

All summation terms will have about the same
order of magnitude.

40

Run the serial code

Compile our example program:

Run it on Tombo:

We get times in the 4800-5200µs range

$ gcc -O3 dotprod.c -o dotpcpu

$ srun -t 1:00 --mem=50m ./dotpcpu
calculated dot product: 26214400.00
time: 4899.19 µs

41

Speed improvement: use shared memory

Blocks have private “shared” memory
● 48KB (can be changed)
● faster access than global memory
● memory accesses in different blocks are

independent

→ no memory contention

Block 0 Block 1

Global memory

shared memory shared memory

Process:
● Read input from global memory
● Calculate, using shared memory for intermediate values
● each block does a partial reduction - one partial value per block
● finally add its partial value to the final result in global memory

inputs

42

Global memory

shared memory shared memory

Process:
● Read input from global memory
● Calculate, using shared memory for intermediate values
● each block does a partial reduction - one partial value per block
● finally add its partial value to the final result in global memory

inputs

block 0 block 1

Speed improvement: use shared memory

Blocks have private “shared” memory
● 48KB (can be changed)
● faster access than global memory
● memory accesses in different blocks are

independent

→ no memory contention

43

Global memory

shared memory shared memory

Process:
● Read input from global memory
● Calculate, using shared memory for intermediate values
● each block does a partial reduction - one partial value per block
● finally add its partial value to the final result in global memory

inputs

interm interm

block 0 block 1

Speed improvement: use shared memory

Blocks have private “shared” memory
● 48KB (can be changed)
● faster access than global memory
● memory accesses in different blocks are

independent

→ no memory contention

44

Global memory

shared memory shared memory

Process:
● Read input from global memory
● Calculate, using shared memory for intermediate values
● each block does a partial reduction - one partial value per block
● finally add its partial value to the final result in global memory

sum 0 sum 1

block 0 block 1

Σ→ Σ→

Speed improvement: use shared memory

Blocks have private “shared” memory
● 48KB (can be changed)
● faster access than global memory
● memory accesses in different blocks are

independent

→ no memory contention

45

Global memory

shared memory shared memory

Process:
● Read input from global memory
● Calculate, using shared memory for intermediate values
● each block does a partial reduction - one partial value per block
● finally add its partial value to the final result in global memory

sum 0 sum 1

block 0 block 1

Σ
sum

Speed improvement: use shared memory

Blocks have private “shared” memory
● 48KB (can be changed)
● faster access than global memory
● memory accesses in different blocks are

independent

→ no memory contention

46

The GPU version (dotprod.cu), elementwise multiplication:

__global__ void vec_dotp(float *a, float *b, float *dotp) {
 int s;
 int tid = threadIdx.x;
 int index = blockIdx.x*blockDim.x + threadIdx.x;

 // allocate block-local memory
 __shared__ float tmp[THREADS];

 tmp[tid] = a[index] * b[index];
 __syncthreads();

● Get local memory with “__shared__”.
– Much faster than global memory, but limited size

● __syncthreads() synchronizes all threads.
– Threads in a warp are synchronized, but threads in different warps are not.

47

The GPU version (dotprod.cu), reduction:

 tmp[tid] = a[index] * b[index];
 __syncthreads();

 for(s = (THREADS/2); s>0; s/=2) {
 if (tid < s) {
 tmp[tid] += tmp[tid+s];
 }
 __syncthreads();
 }

● Same pairwise summation as in the serial program
– But inner loop is parallel
– We must synchronize after each iteration so all threads really are finished.

48

The GPU version (dotprod.cu), reduction:

 tmp[tid] = a[index] * b[index];
 __syncthreads();

 for(s = (THREADS/2); s>0; s/=2) {
 if (tid < s) {
 tmp[tid] += tmp[tid+s];
 }
 __syncthreads();
 }

● Same pairwise summation as in the serial program
– But inner loop is parallel
– We must synchronize after each iteration so all threads really are finished.

 for(s = (N/2); s>0; s/=2) {
 for(i = 0; i<s; i++) {
 tmp[i] += tmp[i+s];
 }
 }

serial
version

49

The GPU version (dotprod.cu), reduction:

 tmp[tid] = a[index] * b[index];
 __syncthreads();

 for(s = (THREADS/2); s>0; s/=2) {
 if (tid < s) {
 tmp[tid] += tmp[tid+s];
 }
 __syncthreads();
 }

● Same pairwise summation as in the serial program
– But inner loop is parallel
– We must synchronize after each iteration so all threads really are finished.

NOTE: this example works only when THREADS is a power of 2
and N is a multiple of THREADS

 for(s = (N/2); s>0; s/=2) {
 for(i = 0; i<s; i++) {
 tmp[i] += tmp[i+s];
 }
 }

serial
version

50

We have the partial results in each block:

● Add the partial sums together into the final result.
● But blocks are independent, and could access dotp at the same

time (“race condition”)

→ need to use an “atomic” operation: atomicAdd()

Block 0

tmp[0] = sum

Block 1

tmp[0] = sum

Block 2

tmp[0] = sum

Global memory

dotp

51

The complete reduction:

 for(s = (THREADS/2); s>0; s/=2) {
 if (tid < s) {
 tmp[tid] += tmp[tid+s];
 }
 __syncthreads();
 }

 if (tid == 0) {
 atomicAdd(dotp, tmp[0]);
 }

● Pairwise sum all elements in the block
● Finally thread #0 atomically adds the result into the return

parameter

52

● Compile:

● Run it on Tombo:

$ nvcc -o dotpcuda dotprod.cu

$ srun -p gpu --mem=50m --gres=gpu -t 1:00 ./dotpcuda
calculated dot product: 26214400.000000
time: 5258.94 µs

Result: ~4800-5200 µs (CPU) ~5100-5500 µs (GPU)

53

Let’s try adding more work: run the kernel twice

 // calculate dot product of a and b, return in dotp
 vec_dot<<< (N+THREADS-1)/THREADS, THREADS>>>(da, db, ddotp);

vec_dot<<< (N+THREADS-1)/THREADS, THREADS>>>(da, db, ddotp);

CUDA call:

CPU call:

CUDA call:

 // calculate dot product of a and b, return in dotp
 vec_dot(a, b, &dotp);
 vec_dot(a, b, &dotp);

Result: ~7500 µs (CPU) ~5300 µs (GPU)

54

CPU and CUDA
Let’s test for different number of
iterations of our dot product:

● CUDA has large, fixed transfer cost

→ For small amounts of work, a single
CPU core is faster
● Even for 8 dot products, the time is

dominated by the data transfer

● Tombo nodes have 16 cores. If we
use them, the CPU will be faster.

● Practical GPU speed improvement
is usually less than 3-4 times CPU.

55

Summary

● Use __shared__ to allocate shared memory
– Fast, but limited size (~48Kb)
– Does not persist between different kernels

● __syncthreads() synchronizes all threads in a block
– threads in a warp are synchronous, but different warps are not.

● Use atomic operations when multiple threads have to change the
same data
– Blocks are independent, so atomics are necessary
– Atomic operations in global memory faster than in shared.

56

Final Points
● GPU computation is fast. GPU data transfer is slow.

– To reduce transfer amount, filter data on the CPU.
– Do as much calculation as possible on the data in the GPU.
– Avoid storing intermediate values on the host.
– Running kernels is cheap

● Memory organisation matters a lot
– keep data in block shared memory or thread local memory
– Access data sequentially
– Global memory is persistent across kernels

57

Odds and Ends

You can write functions that run on both host and device:

__HOST__ __DEVICE__ float myfunc() {

#ifdef __CUDA_ARCH__
// CUDA code, probably called from a kernel

#else
// Host code, running without CUDA

#endif
}

__CUDA_ARCH__ defines the compute capability level, but is only
defined in code that runs on the GPU.

58

Odds and Ends
● NVIDIA separates it’s cards by “compute capability”. Each newer

capability version is a superset of previous ones.

Set the desired capability level with “--arch” parameter:

$ nvcc --arch=sm_35 -o dotpcuda dotprod.cu

● For example: atomicAdd() for integers appeared in 1.1 (sm_11);
floating point version in 2.0 (sm_20) and double precision only in
version 6.0 (sm_60).

● Wikipedia has a great page: https://en.wikipedia.org/wiki/CUDA

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 56
	Sida 57
	Sida 58

