
HPC User Group
Meeting
2020-01-20

Jan Moren
Scientific Computing and

Data analysis section

2

Say hello to

High-core AMD
and Intel nodes

next-generation
networking

ultra-high
speed storage

3

456 AMD nodes
2 x EPYC 7702 2.0GHz
128 cores
512GB memory

192 Intel nodes
2 x Xeon 6230 2.1GHz
40 cores
512GB memory

58368 cores

7680 cores

Deigo:

688%688%

more!
more!

66048 cores

Sango: 9600 cores

4

Why both Intel and AMD?

● Per core:
● AMD is a bit faster for integer, I/O
● Intel is a bit faster FPU (esp. AVX512)
● Depends a lot on your code

● Per node:
● AMD trounces Intel

456 AMD nodes
2 x EPYC 7702 2.0GHz
128 cores
512GB memory

192 Intel nodes
2 x Xeon 6230 2.1GHz
40 cores
512GB memory

58368 cores - 88%

7680 cores - 12%

5

Why both Intel and AMD?

● A (very) few old, closed-source apps
may run only on Intel

● A few apps don’t need lots of cores and
take very good advantage of AVX512

● Intel MKL runs really slow on AMD

456 AMD nodes
2 x EPYC 7702 2.0GHz
128 cores
512GB memory

192 Intel nodes
2 x Xeon 6230 2.1GHz
40 cores
512GB memory

58368 cores - 88%

7680 cores - 12%

6

Why both Intel and AMD?

● Intel MKL runs really slow on AMD
● MKL checks CPU maker, selects operations

based on that.

● Can override this check with:
 export MKL_DEBUG_CPU_TYPE=5

● MKL now up to 600% faster on AMD.

456 AMD nodes
2 x EPYC 7702 2.0GHz
128 cores
512GB memory

192 Intel nodes
2 x Xeon 6230 2.1GHz
40 cores
512GB memory

58368 cores - 88%

7680 cores - 12%

used to run

7

compute

test partition

“CFD”
la

rg
e

m
em

Memory and core limits
● Taking all 128 cores, or all 512GB

memory waste a lot of resources

Possible policy:
● ‘compute’ job limit: 64 cores and

128GB memory
● ‘fullnode’ partition can use 128/512GB

other...

Work inProgress
AMD: 456 nodes, 88% cores
● General purpose compute partition

● lots of cores, lots of users
● user memory and core limits

● benefits from rebuilding your code

8

Intel: 192 nodes, 12% cores
● Task-specific partitions

● not per-user or per-unit
● physics, MD
● Intel-dependent code
● largemem

Overlap with low-priority test partition
● Any user can use the test partition nodes

for shorter computations.
● If a restricted task partition wants the

node, the test code is stopped

Work inProgress

compute

test partition

“CFD”
la

rg
e

m
em other...

9

New /work
500TB SSD
10TB per unit

Old /work

Login nodes

Compute nodes

Bucket
+6 PB

read and write

read-only

10

Old /work
Compute

nodes

BucketSango (current) workflow:

1. Copy data from Bucket to work

2. run calculation on Work only
3. Copy results back to Bucket

But:
● Inputs are large, take time to copy

→ lots of people leave data on Work

● Work slows down
● Lots of data ends up only on Work

- where it’s not backed up

1.

2.

3.

11

New /work
Compute

nodes

BucketDeigo workflow:

1. No preparation - use data directly
from Bucket on compute nodes!

2. use /work for temporary storage
3. Copy results back to Bucket

4. Clean up /work

Why:
● Reading from Bucket is fast
● Work is really fast (and will stay fast)
● Data will stay backed up on Bucket

1.

2.

3.

12

New /work
500TB SSD
10TB per unit

Login
nodes

Compute nodes

Bucket
+6 PB

read and write
read-only

New workflow
● New /work:

● /work is only scratch, not storage
● 10TB per unit is a hard limit

● New network, new Bucket expansion
● another 6PB storage
● new network, new storage hardware means

reading directly is fast and efficient
● Writing would slow it down

➔ use /work for any writes during computation
➔ copy results to bucket at the end
➔ clean up /work

13

Login
nodes

Compute nodes

read and write
read-only

Old /work
● Will disappear during 2020

● Soon out of warranty
● Full, not expandable

● Will be available read-only
● You must copy data you need to Bucket
● The rest will be archived and effectively

unavailable once shut down

Old /work

New /work
500TB SSD
10TB per unit

Bucket
+6 PB

14

Provided software
● CentOS 8
● GCC 8 (or 9), AOCC
● BLIS, LibFLAME
● User Software (modules)

● We will rebuild popular modules
● Other modules will run directly or

through “sango” container,
available as module (best effort)

Your software
● For best results, rebuild with modern

compilers, libraries
● Many will run OK unchanged
● Use “sango” container to run those

that won’t:

module load bowtie
myprog -o xyz

module load sango
sango -m bowtie myprog -o xyz

15

Timeline
Pr
el
im
in
ar
y

December January February March April May

install racks
install nodes, storage

acceptance tests

system setup
user environment
 software testing

Open

16

Timeline
Pr
el
im
in
ar
y

December January February March April May

install racks
install nodes, storage

acceptance tests

system setup
user environment
 software testing

Openpower outages

Network disruptions

2-3 outages
minimum

17

PSA: Attribution
Scientific attribution and co-authorship rules apply
to research support sections, including SCDA.

Why?

As Research Support sections we are evaluated on our
contributions to OIST research

more attributions → more funding → more computing power!

Research Support Division policy:
https://groups.oist.jp/rsd/rsd-attribution-policy

SCDA Policy:
https://groups.oist.jp/scs/attribution

https://groups.oist.jp/rsd/rsd-attribution-policy

18

PSA: Attribution
Scientific attribution and co-authorship rules apply
to research support sections, including SCDA.

● If you used our systems for your research, we require
acknowledgement:
– You used our systems to generate data in your paper
– You got our help for setting up computation, doing

visualizations, setting up instruments and so on

● If we took an active part in the research process, we
require co-authorship:
– We did substantial work for you on analysis or visualization
– Wrote substantial amount of code

You do not need to acknowledge us just for storing
data or asking straightforward questions.

19

Questions, comments

Your turn, and your feedback

