

Outline

- 2D graphics

Multiple plots in one window
The hold command
scatter plots polar plot

- 3D graphics
meshgrid
contour, contour3
mesh and surf and pcolor
Printing and saving
Titles and labels
subplot and viewpoint
- Other features of Matlab
lighting
ginput
colormapeditor

2-D Graphics

For 2-D graphics the basic command is:

```
plot(x1, y1, `line style', x2, y2, ‘line style'....)
```

This command plots vector x 1 against vector y 1 , vector x 2 against vector y^{2} etc. on the same graph.

Also; polar, bar, stairs, scatter
Example 1. Plot $y_{l}=\sin (x)$ and $y_{2}=\cos (x)$ with x in $[0,2 \pi]$ on the same graph. Use a solid line for $\sin (x)$ and the symbol + for $\cos (x)$.

The first step is to define a set of values for x at which the functions will be defined.

2-D Graphics

For 2-D graphics the basic command is:

```
plot(x1, y1, `line style', x2, y2, ‘line style'....)
```

This command plots vector x 1 against vector y 1 , vector x 2 against vector y2 etc. on the same graph.

Also; polar, bar, stairs, scatter
Example 1. Plot $y_{l}=\sin (x)$ and $y_{2}=\cos (x)$ with x in $[0,2 \pi]$ on the same graph. Use a solid line for $\sin (x)$ and the symbol + for $\cos (x)$.

The first step is to define a set of values for x at which the functions will be defined.

$$
\begin{aligned}
& \mathrm{x}=0: 0.1: 2 * \mathrm{pi} ; \\
& \mathrm{y} 1=\sin (\mathrm{x}) ; \\
& \mathrm{y} 2=\cos (\mathrm{x}) ; \\
& \mathrm{plot}\left(\mathrm{x}, \mathrm{y} 1,^{\prime}-\mathrm{I}^{\prime}, \mathrm{x}, \mathrm{y} 2,^{\prime}+^{\prime}\right)
\end{aligned}
$$

The hold Command

Another way to get multiple plots on the same graph is to use the hold command to keep the current graph, while adding new plots.

Another hold command releases the previous one. For example, the following statements generate the same graph as in Example 1.

```
Example 2.
clf
x=0:0.1:2*pi;
plot(x, sin(x),'-')
hold on
plot(x, \(\cos (x), '+')\)
hold off
```


scatter plots

scatter (\mathbf{X}, \mathbf{Y}) displays circles at the locations specified by the vectors X and Y . This type of graph is also known as a bubble plot.

Example 3. Set up a vector x. Set up a vector y to contain cosine values with random noise. Create a scatter plot using the two vector inputs.

scatter plots

scatter (\mathbf{X}, \mathbf{Y}) displays circles at the locations specified by the vectors X and Y . This type of graph is also known as a bubble plot.

Example 3. Set up a vector x. Set up a vector y to contain cosine values with random noise. Create a scatter plot using the two vector inputs.

$$
\begin{aligned}
& \mathrm{x}=0: 0.01: 3 . * \mathrm{pi} ; \\
& \mathrm{y}=\cos (\mathrm{x})+\operatorname{rand}(1, \text { length }(\mathrm{x})) ; \\
& \text { scatter }\left(\mathrm{x}, \mathrm{y}, \mathrm{'}^{\prime}+\mathrm{'}^{\prime} \mathrm{r}\right. \text { ') }
\end{aligned}
$$

3-D Graphics

For 3-D graphics the most commonly used commands are:
 style'....
$\operatorname{contour}(x, y, z), \operatorname{mesh}(x, y, z), \operatorname{surf}(x, y, z)$ pcolor, image, contour3

3-D Graphics

For 3-D graphics the most commonly used commands are:

plot3(x1, y1, z1,‘line style', x2, y2, z2, ‘line

 style'....contour($x, y, Z)$, mesh($x, y, z)$, $\operatorname{surf}(x, y, Z)$
pcolor, image, contour3

Example 4.

x=-2*pi:4.*pi./200:2.*pi;
y=0:4.*pi./200:4.*pi;
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(x,y);
$Z=\sin (X)+\cos (Y) ;$
contour ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)
\%contour $3(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 30)$ \%pcolor(Z)
\%colorbar

Printing and Saving

You can save matrices into .mat files directly from your workspace. You can then load these matrices back in whenever you want.

```
save workspace.mat
save SpecificStuff.mat X Y Z
load filename.extension
print -djpeg100 imagename.jpg
```


Axis commands

```
axis([xmin xmax ymin ymax zmin zmax])
axis auto
axis square
axis on
axis off
caxis([zmin zmax])
```


surf and mesh and pcolor

surf and mesh are quite similiar. mesh plots a coloured mesh, while surf plots a black mesh and fills in the spaces between in colour.

```
Example 5.
[x,y] = meshgrid([-2:.2:2]);
    \(Z=x . * \exp \left(-x \cdot \wedge 2-y \cdot{ }^{\wedge} 2\right) ;\)
\(\operatorname{surf}(x, y, Z)\)
colorbar
colormap jet
\%shading interp
\%mesh(x,y,z)
\%pcolor(Z)
\%gradient(Z)
```


Polar Coordinates

Example 6. Plot $\varrho=\theta^{2}$ with $0 \leq \theta \leq 5 \pi$ in polar coordinates.

```
theta=0:0.2:5*pi;
rho=theta.^2;
polar(theta,rho,'*')
```

Exercise. Plot $\varrho=\sin (2 \theta) \cos (2 \theta)$ with $0 \leq \theta \leq 2 \pi$ in polar coordinates.

Another Example

Example 7. Plot $z=\sin (r) / r$ with $r=\sqrt{ } x^{2}+y^{2},-8 \leq x \leq 8,-8 \leq y \leq 8$.
The first step in displaying a function of two variables, $z=f(x, y)$, is to use the meshgrid function to generate X and Y matrices consisting of repeated rows and columns, respectively, over the domain of the function.

The function can then be evaluated and graphed.

Another Example

Example 7. Plot $z=\sin (r) / r$ with $r=\sqrt{ } x^{2}+y^{2},-8 \leq x \leq 8,-8 \leq y \leq 8$.
The first step in displaying a function of two variables, $z=f(x, y)$, is to use the meshgrid function to generate X and Y matrices consisting of repeated rows and columns, respectively, over the domain of the function.

The function can then be evaluated and graphed.

```
x=-8:0.5:8;
y=x;
[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps; %add eps to prevent R=0;
Z=sin(R)./R;
mesh(x,Y,Z)
```


Titles and Labels

Example 8. Plot $\mathrm{y}=\sin (\mathrm{x})$ with $0 \leq x \leq 2 \pi$ with appropriate labels.

```
x=0:0.1:2*pi;
plot(x,sin(x))
```

```
title('Y=sin(X)')
xlabel('X');
ylabel('Y');
```

hold
plot(pi,0,'*')
text(pi+0.1, 0,'Critical Point')
\%gtext('critical point')

subplot and view

The command subplot($\mathbf{m}, \mathbf{n}, \mathbf{p}$) breaks the graph window into an m-by-n matrix of small rectangular panes. The value of \mathbf{p} is the pane for the next plot. To return to the default single figure per window use subplot($\mathbf{1 , 1 , 1)}$ or clf.

You can have more than one graphics window on a X display. The Matlab command figure opens a new window, numbering each new window.

Example 9. Display the internal Matlab peaks matrix from 4 different viewpoints.
subplot(2,2,1); mesh(peaks(20)); view(-37.5,30)
subplot(2,2,2); mesh(peaks(20)); view(-7,80)
subplot(2,2,3); mesh(peaks(20)); view(-90,0)
subplot(2,2,4); mesh(peaks(20)); view(-7,-10)

Default Viewpoint

Lighting

Phong lighting is good for curved, interpolated surfaces. gouraud is also good for curved surfaces

Example 10.

```
points=0:0.001:2;
[X, Y] = meshgrid(-points, points);
Z = 2./exp((X-.5).^2+Y.^2)-2./exp((X+.5).^2+Y.^2);
surf(X, Y, Z);
shading interp;
lightangle(75, 10);
lighting phong;
view(30, 30);
```


Lighting

Example 11.

$\mathrm{x}=-4 . * \mathrm{pi}: 0.01: 4 . * \mathrm{pi} ;$
$\mathrm{y}=0: 0.01: 8 * \mathrm{pi} ;$
$[\mathrm{X}, \mathrm{y}]=$ meshgrid $(\mathrm{x}, \mathrm{y}) ;$

$$
Z=2 . * \sin (X) \cdot{ }^{\wedge} 2+\cos (Y) \cdot \wedge 2+2 . * \exp ((X+Y) \cdot / 30) ;
$$

mesh(X,Y,Z)
shading interp
axis off
lightangle(35,50)
view(-10,55)
\%lighting gouraud

ginput

Graphical input from mouse or cursor.

Example 12.

Pick 8 two-dimensional points from the figure window. Draw a zig zag!
[$\mathrm{x}, \mathrm{y}]=$ ginput(8)
Position the cursor with the mouse. Enter data points by pressing a mouse button or a key on the keyboard. To terminate input before entering 4 points, press the Return key.

Make this one pretty!

Exercise.

load ScatteredCylindricalWave.mat P=ScatteredFieldWithoutFibre; mesh(P);

