
[QI;MP]!
MATLAB & Computing 

@ OIST	


Lee James O’Riordan	





Cluster	



2	





Computer architecture	



•  Looping over data with single instruction (SISD)	



•  Perform same single instruction over all data (SIMD)	



•  MIMD: multiple instruction, multiple data. Many 
different operations over many processors.	



•  SPMD: Single program, multiple data. Most common form of 
parallelism. 	





Parallel Computing Toolbox	



•  MATLAB can be parallelised (provided the PCT is 
available --- we have it!).	



•  ‘Local’ parallelism, work split over all cores.	



•  Can give reasonable speed increases.	



•  ‘Distributed’ parallelism, work split over many 
machines (e.g. compute cluster)	



•  Great for big jobs that would otherwise take days/weeks/
months/years!	





Facilities at OIST	



•  OIST has a cluster (Tombo) with ~4000 cores.	



•  Each node has 2x 6 core processors, and 48GB RAM.	



•  Can we run MATLAB over all these cores? (YES!)	



•  Best not to take all the cores though (other people need to 
use them too!). 	



•  Setup instructions @ https://groups.oist.jp/hpc/	



•  8x Nvidia Tesla M2090 GPU’s (mine!)	



5	





Parallel computing with MATLAB	



•  spmd: offers the highest amount of control over 
parallelisation. 	



•  Should give the highest attainable performance is used 
appropriately.	



•  Can also be needlessly complicated at times.	



•  parfor (parallel for): essentially a for loop that runs as 
parallel jobs instead of sequential looping. 	



•  Not as flexible or fast as spmd, but simpler is often better!	



6	





Example	


•  Begin by telling MATLAB to acquire N-processors	



>>	
  matlabpool	
  open	
  N	
  %Only	
  if	
  N	
  processors	
  are	
  free	
  

•  Traditional MATLAB for loop and ugly expression:	



>>	
  tic;	
  
	
  for	
  ii=1:100000	
  
	
  exp(-­‐ii.^2)*gamma(log(ii))*cos(mod(ii,2*pi));	
  
	
  end;	
  

	
  	
  	
  toc;	
  

•  Parallel for loop and ugly expression:	



>>	
  tic;	
  
	
  parfor	
  ii=1:100000	
  
	
  exp(-­‐ii.^2)*gamma(log(ii))*cos(mod(ii,2*pi));	
  
	
  end;	
  

	
  	
  	
  toc;	
  

7	





Example	


•  As before, tell MATLAB to acquire N-processors	



>>	
  matlabpool	
  open	
  N	
  %Only	
  if	
  N	
  processors	
  are	
  free	
  

•  Time the creation of a 32768x32768 random matrix, and 
calculate the square of each element.	



•  Now, to do this in parallel, need a matrix distributed 
over cluster nodes:	



>>	
  tic;	
  	
  
	
  spmd	
  	
  
	
   	
  a=codistributed.rand(32768,32768);	
  
	
   	
  a.^2;	
  
	
  end	
  

	
  	
  	
  toc;	
  

8	





Example	



•  Parallelisation can be tricky! 	



•  Easy to do for embarrassingly parallel problems	



•  Some problems require much more thought	



•  Consider previous example, but with matrix-matrix 
multiplication	



>>	
  tic;	
  	
  
	
  spmd	
  	
  
	
   	
  a=codistributed.rand(32768,32768);	
  
	
   	
  a^2;	
  
	
  end	
  

	
  	
  	
  toc;	
  

9	




