
[QI;MP]!
MATLAB & Computing 

@ OIST	

Lee James O’Riordan	




Cluster	


2	




Computer architecture	


•  Looping over data with single instruction (SISD)	


•  Perform same single instruction over all data (SIMD)	


•  MIMD: multiple instruction, multiple data. Many 
different operations over many processors.	


•  SPMD: Single program, multiple data. Most common form of 
parallelism. 	




Parallel Computing Toolbox	


•  MATLAB can be parallelised (provided the PCT is 
available --- we have it!).	


•  ‘Local’ parallelism, work split over all cores.	


•  Can give reasonable speed increases.	


•  ‘Distributed’ parallelism, work split over many 
machines (e.g. compute cluster)	


•  Great for big jobs that would otherwise take days/weeks/
months/years!	




Facilities at OIST	


•  OIST has a cluster (Tombo) with ~4000 cores.	


•  Each node has 2x 6 core processors, and 48GB RAM.	


•  Can we run MATLAB over all these cores? (YES!)	


•  Best not to take all the cores though (other people need to 
use them too!). 	


•  Setup instructions @ https://groups.oist.jp/hpc/	


•  8x Nvidia Tesla M2090 GPU’s (mine!)	


5	




Parallel computing with MATLAB	


•  spmd: offers the highest amount of control over 
parallelisation. 	


•  Should give the highest attainable performance is used 
appropriately.	


•  Can also be needlessly complicated at times.	


•  parfor (parallel for): essentially a for loop that runs as 
parallel jobs instead of sequential looping. 	


•  Not as flexible or fast as spmd, but simpler is often better!	


6	




Example	

•  Begin by telling MATLAB to acquire N-processors	


>>	  matlabpool	  open	  N	  %Only	  if	  N	  processors	  are	  free	  

•  Traditional MATLAB for loop and ugly expression:	


>>	  tic;	  
	  for	  ii=1:100000	  
	  exp(-‐ii.^2)*gamma(log(ii))*cos(mod(ii,2*pi));	  
	  end;	  

	  	  	  toc;	  

•  Parallel for loop and ugly expression:	


>>	  tic;	  
	  parfor	  ii=1:100000	  
	  exp(-‐ii.^2)*gamma(log(ii))*cos(mod(ii,2*pi));	  
	  end;	  

	  	  	  toc;	  

7	




Example	

•  As before, tell MATLAB to acquire N-processors	


>>	  matlabpool	  open	  N	  %Only	  if	  N	  processors	  are	  free	  

•  Time the creation of a 32768x32768 random matrix, and 
calculate the square of each element.	


•  Now, to do this in parallel, need a matrix distributed 
over cluster nodes:	


>>	  tic;	  	  
	  spmd	  	  
	   	  a=codistributed.rand(32768,32768);	  
	   	  a.^2;	  
	  end	  

	  	  	  toc;	  

8	




Example	


•  Parallelisation can be tricky! 	


•  Easy to do for embarrassingly parallel problems	


•  Some problems require much more thought	


•  Consider previous example, but with matrix-matrix 
multiplication	


>>	  tic;	  	  
	  spmd	  	  
	   	  a=codistributed.rand(32768,32768);	  
	   	  a^2;	  
	  end	  

	  	  	  toc;	  

9	



