

Toolboxes

MATLAB[®] プロダクトファミリ

MATLAB

並列処理

Parallel Computing Toolbox MATLAB Distributed Computing Server

数学、統計および最適化

Symbolic Math Toolbox Partial Differential Equation Toolbox(英語) Statistics Toolbox Curve Fitting Toolbox Optimization Toolbox Global Optimization Toolbox Neural Network Toolbox(英語) Model-Based Calibration Toolbox(英語)

制御システム設計および解析

Control System Toolbox System Identification Toolbox Fuzzy Logic Toolbox (英語) Robust Control Toolbox (英語) Model Predictive Control Toolbox (英語) Aerospace Toolbox (英語)

信号処理および通信

Signal Processing Toolbox DSP System Toolbox Communications System Toolbox Wavelet Toolbox(英語) RF Toolbox(英語) Phased Array System Toolbox(英語)

画像処理とコンピューター ビジョン

Image Processing Toolbox Computer Vision System Toolbox Image Acquisition Toolbox (英語) Mapping Toolbox (英語)

実験、計測

Data Acquisition Toolbox (英語) Instrument Control Toolbox (英語) Image Acquisition Toolbox (英語) OPC Toolbox (英語) Vehicle Network Toolbox (英語)

Simulink[®] プロダクトファミリ

Simulink

イベントベース モデリング

Stateflow SimEvents (英語)

物理モデリング

Simscape SimMechanics(英語) SimDriveline(英語) SimHydraulics(英語) SimRF(英語) SimElectronics(英語) SimPowerSystems

制御システム設計および解析

Simulink Control Design Simulink Design Optimization (英語) Aerospace Blockset (英語)

信号処理および通信

DSP System Toolbox Communications System Toolbox SimRF (英語) Computer Vision System Toolbox

コード生成

Simulink Coder Embedded Coder HDL Coder(英語) Simulink PLC Coder(英語) Fixed-Point Designer DO Qualification Kit (for DO-178)(英語) IEC Certification Kit (for ISO 26262 and IEC 61508)(英語)

and many in-official toolboxes.

レーション

xPC Target (英語) xPC Target Embedded Option (英語) Real-Time Windows Target (英語)

確認、検証およびテスト

Simuliak Verification and Validation (茶雨)

Polyspace[®] プロダクトファミリ

Polyspace Bug Finder Polyspace Code Prover (英語) DO Qualification Kit (for DO-178) (英語) IEC Certification Kit (for ISO 26262 and IEC 61508) (英語)

追加製品およびサービス

Connections パートナー ディレクトリ ハードウェア サポート カタログ

MathWorks サービス

MathWorks ソフトウェア保守サービス トレーニング 技術コンサルティング

適用分野 = 技術計算

組込みシステム制御システム

- デジタル信号処理

Today and Tomorrow

	Sunday, Oct 13			
9.00 - 11.00	Introduction to Matlab (Thomas)			
11.00 - 11.30	Coffee Break			
11.30 - 12.30	Basic Numerical Structures (Lee)			
12.30 - 14.00	Lunch Break			
14.00 - 16.00	Basic Numerical Structures - Applications (Jeremie)			
16.00 - 16.30	Coffee Break			
16.30 - 18.00	Differential Equations (Yongping)			
20.00 ~	The Matrix (Auditorium)			
	Monday, Oct 14			
9.00 - 10.30	Matlab Graphics (Tara)			
10.30 - 11.00	Coffee Break			
11.00 - 12.30	Image Processing (Chandru)			
12.30 - 14.00	Lunch Break (Kaito+ is open!)			
14.00 - 17.00	Conway's Game of Life (Jeremie)			
17.00 - 17.30	Matlab and Computing @ OIST (Lee)			

Matlab

Matlab: Matrix Laboratory

- \rightarrow can be used as advanced calculator
- → can be used as advanced graphics tool
- \rightarrow can be used as programming language

Why use Matlab?

- 1. allows for quick and easy introduction to programming
- 2. provides a quick and intuitive development environment
- 3. useful in many areas
- 4. basic program can be extended using specialised toolboxes
- 5. used in academia and industry
- 6. is platform independent (write once, run under all operating systems)
- 7. can be linked to other software (C/C++, Fortran, Java,...)
- All skills learned programming with Matlab can be easily transferred to other programming languages.

Using Matlab

Matlab Help

→ Matlab has a very helpful *help* system

faster: type help or help <command> at the command line

Calculating in Matlab

we will start using Matlab as an advanced calculator

- express mathematics in form suitable for Matlab
- use build in mathematical functions in calculations
- use variables in calculations
- simply enter an expression at the commend line and evaluate it right away (i.e. press enter)

whenever >> appears, you can enter input

Mathematical Operators

	Operator	Matlab	Example			
	+	+	7+4 = 11			
	-	-	7-4 = 3			
	×	*	7*4 = 28			
	:	/	7/4 = 1.75			
	a ^b	a^b	7^4 =2401			
\longrightarrow	Matlab uses scientific no but has a special way to	o <i>tation</i> for very la do so	rge and very small num	bers,		
	$34^{16} = 3.1891 \times 10^{24}$	→ 34 ans= 3.18	^16 891e+24			
Brz	~					
OIST OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY						

BEDMAS

Matlab evaluates expressions in the following (standard) order

- 1. brackets
- 2. exponentials
- 3. division/multiplication
- 4. addition/subtraction

Scrolling & Output Suppression

Scrolling

- → earlier commands can be repeated by using the up and down arrow keys
 - \rightarrow can save a lot of time and work
- \rightarrow if you give the first letter, scrolling only scrolls commands that start with that letter

Suppression of output

- \rightarrow the output to the screen can be suppressed using a semi-colon
 - → useful when you don't need to see it, but can also be source of confusion

Variables

→ variables help representing mathematical problems:

Change from Fahrenheit to Celsius

$$C = \frac{5}{9}(F - 32)$$

$$F = 100 \implies C = 37.8$$

$$F = 32 \implies C = 0$$

one can think of variables as named locations in the computer memory in which a number can be stored

variables can have (almost) any name and are case sensitive

Special Variables

several variables names are special in Matlab and pre-assigned

- ans is the result of the last calculations
- pi represents 3.1415
- Inf represents infinity
- **i,j** represent the square root of -1 (complex numbers)
- **NaN** stands for *not-a-number* and occurs when an expression is undefined, e.g. division by zero

Data Representation in Matlab

→ structure for storage of all data in Matab is the MATRIX

scalars are 1x1 matrices

Rules for variable names:

 must start with a letter, followed by letters, digits or underscores e.g. x12, temp, temp_max are good, temp-A is bad
 are case sensitive: TEMP, Temp, temp, tEMp are all different variable
 must not be longer than 63 characters
 must not contain punctuation characters

Creating variables:

Enter name at command line and assign a value

Deleting variables:

- >> clear a \longrightarrow deletes variable a
- >> clear \longrightarrow deletes all variables

 \rightarrow Special syntax is needed when defining and manipulating arrays

Long Matrices

Matlab has many ways that help you define larger matrices

>> $t = 1 : 10$					
t =					
1 2 3 4 5 6 7 8 9 10					
>> s = 1 : 2 : 10					
s =					
1 3 5 7 9					
>> k = 2 : -0.5 : -1					
k =					
2 1.5 1 0.5 0 -0.5 -1					
>> B = [1:4 ; 6:9]					
B =					
1 2 3 4					
6 7 8 9					
>>					

Matrix Indices

 \rightarrow matrix indices begin from 1 (not 0) >> A = [3 5 3 ; 6 8 2 ; 2 7 3] A =3 5 3 6 8 2 2 7 3 >> A(3,2)ans =????? >>A(6) ans =????? >> A(2,:) ans= 6 8 2

>> A = (1:2,2)A =5 8 >>A(-2) ans =????? >> A(0)ans =????? >>A(4,2) ans= ?????

Concatenation of Matrices


```
>> x = [1 2]; y = [3 4]; z = [0 0];

>> A = [x y]

A =

1 2 3 4

>> B = [x; y]

B =

1 2

3 4

>> C = [x y; z]

C=

?????
```

as long as done consistently, this works for matrices and arrays of any dimension!

Matrix Operations

>> A = [1 2 3 ; 4 5 6 ; 7 8 9] A = 1 2 3 4 5 6 7 8 9

complex conjugate

Addition	Subtraction	Product	Transpose
>> X = A + B	>> X = A - B	>> X = A * B	>> X = A'
X =	X =	X =	X =
4 7 5	-2 -3 1	22 27 45	1 4 7
9 7 14	-1 3 -2	55 66 102	2 5 8
10 14 9	4 2 0	88 105 159	3 6 9

A =

$$1 2 3
4 5 6
7 8 -9
>> x = A(1,:)
x =
1 2 3
>> y = A(3,:)$$

y

*

- /

Element by Element Operations

$$b = x \cdot y$$

$$b = 7 \cdot 16 - 27$$

$$>> c = x \cdot / y$$

$$c = 0.14 \cdot 0.25 - 0.33$$

$$>> d = x \cdot ^2$$

$$d = 1 \cdot 4 \cdot 9$$

$$>> K = x^2$$

$$?????$$

$$>> B = x * y$$

$$?????$$

OGY GRADUATE UNIVERSITY

[QI;MP]

