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Quantum Information studies what you can do if you store
information in a physical, quantum system and manipulate
it with all the advantages and constraints of quantum mechanics.

We should therefore master the rules or quantum mechanics.
Those can be condensed into 4 axioms, or postulates. They
answer the following questions:

|. How do you describe a system!?

2. How does a system evolve!?

3. What happens when you do a measurement!
4. How do you compose different systems?

This lecture will focus on those points in the context of quantum
information.
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Postulate 1: Associated to any isolated physical system i1s a complex vector space
with inner product (that i1s, a Hilbert space) known as the state space of the

system. The system is completely described by its state vector, which is a unit
vector in the system’s state space.

We write such a state |¢) € 'H

The smallest non trivial Hilbert space is C? and allows to describe
a two-state system, called a qubit, with complex vectors of

dimension 2. In matrix notations, he vector basis for a qubit is
given by

|o>z((1)>, ‘1>E<(1)> . |¢>:a\0>+5|1>5(g>

Let us define the Hermitian conjugate of this qubit:
(lo)' = (Wl = a0 + 571l = (a* §*)
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A Hilbert space is defined on a inner product. In the case of C?,
we have the scalar product

wilun) = (af 57 ) (G2 ) = afas+ 330k

which allows us to normalize our state vectors
W)y =1 <= |of* + | =1

There exist operators in the Hilbert space that act on the vector

T A=Yl A = a
(161) (2] 1) = |61) (alth) = (olth)|b1)

a a o
In C2, they are 2x2 matrices A1) = < >0 0 ) < 3 )

| aro a1,
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We define the Hermitian conjugate of the operators as
an o a3 Q
Salitil — == (e fo ) (]

as well as a few other useful things; an operator is Hermitian if it
satisfies
AT =A

and it is unitary if AAT — ATA =T

The trace of an operator is given by

Tr(A):Z i| Ali) Zau

The commutator and anticommutator of two operators are
respectively defined as

A, B] = AB — BA {A,B} = AB + BA
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For studying qubits, the Pauli matrices are absolutely essential.
They are defined by

1 O 0 1
O'OEO']EIE(O 1> leaxEXE(l O>

0 —q I 0
02EOyEYE<i O> USEOZEZE<O _1>

Any hermitian operator in C? can be written as a real linear
combination of these matrices. They obey the commutation
rules 3

[O‘j,O‘k] — QiZijlO'l

[=1

with €;%; the antisymmetric tensor.
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Eigenvectors and eigenvalues of a matrix also play a crucial role in
quantum mechanics.An eigenvector of an operator is a non zero

t ch that
vector su A|?}> _ v\v)

with v a complex number, called eigenvalue. Those may be found
from the roots of the characteristic function

det |[A —vI| =0
The diagonal representation of a matrix is given by
A=Y vl (vl

All operators may not, in general, possess such a form but
Hermitian operators always do, and their eigenvalues are always
real. When two eigenvalues are equal, their eigensystems are
called degenerate.
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An important class of operators are called the projectors. Suppose
Vis a d-dimensional sub-vector space of W, we find an
orthonormal basis of V and the projector on V is defined as

P = Z|v¢><v¢|

The projector is Hermitian, and P*=P

It is possible to apply any function to an operator, the result is
obtained by applying the function on the eigenvalues in the
diagonal form of the operator,

F(A) =N f(vs)|vi)(vi

With this, you can evaluate the exponential, logarithm, square
root, etc, of an operator.
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Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |1)) of the system at time ¢; is related to the
state [1)') of the system at time £, by a unitary operator U which depends only on
the times £, and £,,

[¥') = Ul). (2.84)

Postulate 2': The time evolution of the state of a closed quantum system is
described by the Schridinger equation,

ik~ = H[). (2.86)

In this equation, £ is a physical constant known as Planck’s constant whose value
must be experimentally determined. The exact value is not important to us. In
practice, it is common to absorb the factor A into H, effectively setting h = 1. H
1s a fixed Hermitian operator known as the Hamailtonian of the closed system.

The specific form of the Hamiltonian depends on the physical
system. In quantum information, we assume any quantum gates
can be realized.
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Postulate 3: Quantum measurements are described by a collection { M, } of
measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes that

may occur in the experiment. If the state of the quantum system is |¢)
immediately before the measurement then the probability that result m occurs is

given by
p(m) = (Y| M M, |¥) (2.92)
and the state of the system after the measurement is
Mn|¥) ia (2.93)
V 1M M0 )
The measurement operators satisfy the completeness equation,

> MIM,=1.
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The notion of projective measurement of an observable can be used
to replace the measurement operators with some advantages.

Projective measurements: A projective measurement 1s described by an
observable, M , a Hermitian operator on the state space of the system being
observed. The observable has a spectral decomposition,

M=) mP,, (2.102)

where P, is the projector onto the eigenspace of M with eigenvalue m. The
possible outcomes of the measurement correspond to the eigenvalues, m, of the
observable. Upon measuring the state |¢/), the probability of getting result m is

given by

p(m) = (Y| Pr|v) . (2.103)

Given that outcome m occurred, the state of the quantum system immediately
after the measurement is

P |v)
g 2.104
/p(m) e
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Although the result of each measurement is in general

unpredictable, supposing that you can measure the same state
many time, you will find a predictable average value, given by

E(M) =) mp(m)
=Y m(y|Pn|t)

along with the variance of the distribution of your measurements

[AM)] = (M — (M))*)
= (M*) — (M)*.
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13

Postulate 4: The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have

systems numbered 1 through n, and system number ¢ is prepared in the state
);), then the joint state of the total system is [¢;) ® [1;) ® - -+ ® |¥,,).

Where the ® represents a tensor product, which joins different
vector spaces. Some of its properties are

(@|Y)) @ (|g1) + [P2)) = alt) & |@1) + aly)) @ |@2)
(A® B)(|[v) @9)) = Alt) @ Blo)

in matrix notations, we have the Kronecker product

/ ai1 A1m \ / allB almB \
M=A® B = S : ® B = ; ' :

\aﬂ,;ﬂ aﬂ;m/ \am.lB am,,.nB/

{a 27 s
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Sometimes, the state of the system is only known probabilistically.

In those cases, we have to use the density matrix

PEZPi|¢i><%| pi = 0 Vi, sz:l
i=1 i=1

with no constraint on n. If only one pi is non zero, we recover a
pure state. Note that this probability distribution is very different
from a coherent superposition in a pure state.

The normalization of a density matrix is obtained through a trace

szTl” ‘wz % sz—l

and the eigenvalues are always positive or zero.
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The density matrix evolves according to
o =UpU!

as for measurements we have

=) _pip(mli) ZPZTTP i il) =T

PoP,,
Tr (P p)

10 p—

r(Pp,p)

— Zmp( ZmTr np) = Tr(pM)
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