

## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Binary image operations


## Image Processing Toolbox

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Binary image operations
- Region of interest operations


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

## Images in Matlab

Import /Export several image format

Data types in MATLAB

- JPEG (Joint Photographic Experts Group)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)


## Images in Matlab

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)


## Import /Export several image format

## Data types in MATLAB

## Images in Matlab

## Data types in MATLAB

## Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)


## Images in Matlab

## Data types in MATLAB

## Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data


## Images in Matlab

## Import /Export several

 image format
## Data types in MATLAB

- JPEG (Joint Photographic Experts Group) - Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group) • Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- $\quad$ Single (32 -bit single-precision floating point)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group) • Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group) - Double (64-bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- $\quad$ IntI6 (16-bit signed integer)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- $\quad$ IntI6 (16-bit signed integer)
- $\quad$ Int8 (8-bit signed integer)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- $\quad$ IntI6 (16-bit signed integer)
- $\quad$ Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- $\quad$ IntI6 (16-bit signed integer)
- $\quad$ Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)
- Uintl6 (8-bit unsigned integer)


## Images in Matlab

## Import /Export several image format

## Data types in MATLAB

- JPEG (Joint Photographic Experts Group)
- Double (64 -bit double-precision floating point)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data
- $\quad$ Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- $\quad$ IntI6 (I6-bit signed integer)
- $\quad$ Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)
- Uintl6 (8-bit unsigned integer)
- Uint8 (8-bit unsigned integer)


## Images in Matlab

Cox wic

## Images in Matlab

Binary images : $\{0, I\}$

## Images in Matlab

Binary images : $\{0, I\}$


## Images in Matlab

Binary images : $\{0, I\}$
Intensity images : [0, I] or uint8, double etc.


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$
Intensity images : [0, I] or uint8, double etc.


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$

Intensity images : [0, I] or uint8, double etc.


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


Intensity images : [0, I] or uint8, double etc.



## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$


Intensity images : [0, I] or uint8, double etc.


Indexed Image

## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$


Intensity images : [0, I] or uint8, double etc.


Indexed Image


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$

Intensity images : [0, I] or uint8, double etc.


Indexed Image


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$


Intensity images : [0, I] or uint8, double etc.


$$
m \times n \times p
$$

Indexed Image


## Images in Matlab

Binary images : $\{0, \mathrm{I}\}$


RGB images $m \times n \times 3$


Intensity images : [0, I] or uint8, double etc.


$$
m \times n \times p
$$

Indexed Image p is the number of layers


## Image Import and Export

Sunday, 13 October, 13

## Image Import and Export

- Read and write images in Matlab


## Image Import and Export

- Read and write images in Matlab img = imread('filename.jpg');


## Image Import and Export

Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
```


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
```


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
```


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

- Alternatives of imshow


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

- Alternatives of imshow

```
imagesc(I)
```


## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

- Alternatives of imshow

imagesc(I)<br>imtool(I)

## Image Import and Export

- Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

- Alternatives of imshow

```
imagesc(I)
imtool(I)
image(I)
```


## Image conversions

Sunday, 13 October, 1

## Image conversions

dither

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image
grayslice
Create an indexed image from a grayscale intensity image by thresholding

## Image conversions

## dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image ind2rgb

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image ind2rgb
Create an RGB image from an indexed image mat2gray

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray
Create a grayscale intensity image from an RGB image

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering
gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray
Create a grayscale intensity image from an RGB image rgb2ind

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray
Create a grayscale intensity image from an RGB image rgb2ind
Create an indexed image from an RGB image

## Image conversions

dither
Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind
Create an indexed image from a grayscale intensity image grayslice
Create an indexed image from a grayscale intensity image by thresholding im2bw
Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold
ind2gray
Create a grayscale intensity image from an indexed image
ind2rgb
Create an RGB image from an indexed image
mat2gray
Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray
Create a grayscale intensity image from an RGB image rgb2ind
Create an indexed image from an RGB image

## Images and Matrices

Sunday, 13 October, 1

## Images and Matrices

Building a matrix (or image) ? Intensity Image :

## Images and Matrices

Building a matrix (or image) ? Intensity Image :


## Images and Matrices

Building a matrix (or image) ? Intensity Image :


## Images and Matrices

Building a matrix (or image) ? Intensity Image :


Column I to 300

## Images and Matrices

Building a matrix (or image) ? Intensity Image :
row $=300$;


Column I to 300

## Images and Matrices

Building a matrix (or image) ? Intensity Image :

$$
\begin{aligned}
& \text { row }=300 ; \\
& \text { col }=300 ;
\end{aligned}
$$



Column I to 300

## Images and Matrices

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
```



Column I to 300

## Images and Matrices

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
```



Column I to 300

## Images and Matrices

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
```



Column I to 300

## Images and Matrices

## Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
```



Column I to 300

## Images and Matrices

## Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
```



Column I to 300

## Images and Matrices

## Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
figure;
```



Column I to 300

## Images and Matrices

## Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
figure;
imshow(img);
```



## Images and Matrices

## Binary Image :



Column I to 300


## Images and Matrices

## Binary Image :

$$
\text { row }=300 ;
$$



Column I to 300

## Images and Matrices

## Binary Image :

$$
\begin{aligned}
& \text { row }=300 ; \\
& \text { col }=300 ;
\end{aligned}
$$



Column I to 300

## Images and Matrices

## Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
```



Column I to 300


## Images and Matrices

## Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
```



Column I to 300

## Images and Matrices

## Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
figure;
```



Column I to 300

## Images and Matrices

## Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
figure;
```



Column I to 300

## Lets try this out

## Lets try this out

[Q1;MP]


## Lets try this out

$$
\text { row }=300 ;
$$



$$
\text { row }=300 ;
$$



$$
\begin{aligned}
& \text { row }=300 ; \\
& \operatorname{col}=300 ; \\
& \text { img }=\text { zeros(row, col); }
\end{aligned}
$$

$$
\begin{aligned}
& \text { row }=300 ; \\
& \operatorname{col}=300 ; \\
& \text { img }=\text { zeros (row, col); } \\
& \text { img }(30: 50,:)=0.6 ;
\end{aligned}
$$

## Lets try this out

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
```


## Lets try this out

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
```


## Lets try this out

$$
\begin{aligned}
& \text { row }=300 ; \\
& \operatorname{col}=300 ; \\
& \operatorname{img}=\text { zeros (row, col); } \\
& \operatorname{img}(30: 50,:)=0.6 ; \\
& \operatorname{img}(:, 70: 90)=1 ; \\
& \operatorname{img}(:, 160: 165)=1 ; \\
& \operatorname{img}(210: 218,:)=0.8 ;
\end{aligned}
$$

## Lets try this out

$$
\begin{aligned}
& \text { row }=300 ; \\
& \operatorname{col}=300 ; \\
& \operatorname{img}=\text { zeros (row, col); } \\
& \operatorname{img}(30: 50,:)=0.6 ; \\
& \operatorname{img}(:, 70: 90)=1 ; \\
& \operatorname{img}(:, 160: 165)=1 ; \\
& \operatorname{img}(210: 218,:)=0.8 ;
\end{aligned}
$$

## Lets try this out

row $=300$;
col $=300$;
img $=$ zeros(row, col);
img(30:50, : ) $=0.6$;
img(: 70:90) = 1;
img(: , 160:165) = 1;
img(210:218, : ) $=0.8$;
for i $=90: 160$

## Lets try this out

$$
\begin{aligned}
& \text { row }=300 ; \\
& \text { col }=300 ; \\
& \text { img }=\text { zeros (row, col); } \\
& \operatorname{img}(30: 50,:)=0.6 ; \\
& \operatorname{img}(:, 70: 90)=1 ; \\
& \text { img( }:, 160: 165)=1 ; \\
& \operatorname{img}(210: 218,:)=0.8 ; \\
& \text { for } \begin{array}{l}
\text { i }=90: 160 \\
\text { for } j=170: 260
\end{array}
\end{aligned}
$$

## Lets try this out



```
row = 300;
```

row = 300;
col = 300;
col = 300;
img = zeros(row, col);
img = zeros(row, col);
img(30:50, :) = 0.6;
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(:, 160:165) = 1;
img(210:218, :) = 0.8;
img(210:218, :) = 0.8;
for i = 90:160
for i = 90:160
for j = 170:260
for j = 170:260
img(i, j) = rand;

```
        img(i, j) = rand;
```


## Lets try this out

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, :) = 0.8;
for i = 90:160
    for j = 170:260
        img(i, j) = rand;
    end
```


## Lets try this out

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, :) = 0.8;
for i = 90:160
        for j = 170:260
        img(i, j) = rand;
    end
end
```


## Lets try this out

```
```

row $=300$;

```
```

row $=300$;
col $=300$;
col $=300$;
img $=$ zeros(row, col);
img $=$ zeros(row, col);
img(30:50, : ) = 0.6;
img(30:50, : ) = 0.6;
img(: $70: 90)=1 ;$
img(: $70: 90)=1 ;$
img(: , 160:165) = 1;
img(: , 160:165) = 1;
img(210:218, : ) $=0.8$;
img(210:218, : ) $=0.8$;
for $i=90: 160$
for $i=90: 160$
for $j=170: 260$
for $j=170: 260$
img(i, j) = rand;
img(i, j) = rand;
end
end
end
end
figure;

```
```

    figure;
    ```
```



## Lets try this out

```
```

row $=300$;

```
```

row $=300$;
col $=300$;
col $=300$;
img = zeros(row, col);
img = zeros(row, col);
img(30:50, : ) = 0.6;
img(30:50, : ) = 0.6;
img(: 70:90) = 1;
img(: 70:90) = 1;
img(: , 160:165) = 1;
img(: , 160:165) = 1;
img(210:218, :) $=0.8$;
img(210:218, :) $=0.8$;
for $i=90: 160$
for $i=90: 160$
for $j=170: 260$
for $j=170: 260$
img(i, j) = rand;
img(i, j) = rand;
end
end
end
end
figure;
figure;
imshow(img);

```
```

    imshow(img);
    ```
```



## Image Processing



## Outline of an Image

## Outline of an Image

Ravel


## Outline of an Image

Roum


OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

## Outline of an Image

[Q1;MP]


OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

## Outline of an Image



OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

## Outline of an Image

[Q1;MP]

A = 'music.jpg';


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');


## Outline of an Image

[Q1;MP]

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);


## Outline of an Image

[Q1;MP]

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);
figure(2), imshow(D);


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);
figure(2), imshow(D);
figure(3), imshow(E);


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);
figure(2), imshow(D);
figure(3), imshow(E);

imwrite(C, 'wbphoto.jpg', 'jpg')


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);
figure(2), imshow(D);
figure(3), imshow(E);

imwrite(C, 'wbphoto.jpg', 'jpg')
imwrite(D, 'prewittoutline.jpg', 'jpg')


## Outline of an Image

A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C,'prewitt');
E = edge(C,'canny');
figure(1), imshow(C);
figure(2), imshow(D);
figure(3), imshow(E);

imwrite(C, 'wbphoto.jpg', 'jpg')
imwrite(D, 'prewittoutline.jpg', 'jpg')
imwrite(E, 'cannyoutline.jpg', 'jpg')


## Cell counting

input : cell.bmp

## Cell counting

input : cell.bmp

okinawa institute of science and technology graduate university

## Cell counting

input : cell.bmp



## Cell counting ...


input : cells.bmp


## Cell counting ...

[Q1;MP]

input : cells.bmp


## Cell counting

```
nucleiImage = imread('cells.bmp');
threshImage = nucleiImage >20;
edgeImage = edge(threshImage, 'sobel');
labeledImage = bwlabel(threshImage);
figure(1);
subplot(2, 2, 1);imagesc(nucleiImage);
subplot(2, 2, 2);imagesc(threshImage);
subplot(2, 2, 3);imagesc(edgeImage);
subplot(2, 2, 4);imagesc(labeledImage);
```


input : cells.bmp



## Cell counting ...

## Cell counting ...


(J) OIST OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

## Cell counting ...


input : cells.bmp

O OIST okinaliwa institute of science and technology graduate university

## Cell counting ...


input : cells.bmp


## Cell counting


input : cells.bmp

stats = regionprops(labeledImage,'Centroid', 'Area');
edges = find(edgeImage $\sim=0$ );
nucleiImage(edges) = 255;
figure(2);
imshow(nucleiImage);
for i =1:length(stats)
text(stats(i).Centroid(1), stats(i).Centroid(2),...
num2str(i), 'Color',[1, 1, 0], 'FontSize', 14,...
'HorizontalAlignment', 'center');
end;

## Cell counting


input : cells.bmp

stats = regionprops(labeledImage,'Centroid', 'Area');
edges $=$ find(edgeImage $\sim=0)$;
nucleiImage(edges) = 255;
figure(2);
imshow(nucleiImage);
for i =1:length(stats)
text(stats(i).Centroid(1), stats(i).Centroid(2),...
num2str(i), 'Color',[1, 1, 0], 'FontSize', 14,...
'HorizontalAlignment', 'center');
end;

## Cell counting


input : cells.bmp


output

stats $=$ regionprops(labeledImage,'Centroid', 'Area');
edges = find(edgeImage $\sim=0$ );
nucleiImage(edges) = 255;
figure(2);
imshow(nucleiImage);
for i =1:length(stats)
text(stats(i).Centroid(1), stats(i).Centroid(2),...
num2str(i), 'Color', $1,1,0],{ }^{\prime}$ FontSize', 14,...
'HorizontalAlignment', 'center');
end;

## Cell counting ...

[Q1;MP]

input : cells2.jpg

output

$$
\begin{aligned}
& \text { nucleiImage0 = imread('cells2.jpg'); } \\
& \text { nucleiImage = rgb2gray(nucleiImage0); }
\end{aligned}
$$

