

4 C ₹ ۳ ۲ Ζ C Ċ. ע ע ב ע - 11 t ≤ ホーショー ٩C <u><</u> I, -1 M. (

Chandrash हर्ष 2 F < 日日日日 Zρ ħ. 1/2 40 Ŧu

ĽĽ

H

Sunday, 13 October, 13

. À Ţ ⊐ n **C**. 4€ 8-īΰ. "C Β £. Э П ū C 7 5

...

2

C

5

1

5

下れてい

6

3

С

1

Star B

¢.

0

ショット

Β

7

×٤

8

2

e:

ゆび大きの見つめるこ

:

E

Π

C

Ŧ

ミエヒア

また

190 # 44--VI

ソロセッソ

eka

Э

58

1

ľ

Z

*n∩

0

€ þ

8

2

÷

L

⊏● 2

4

A^C

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

• Geometric operations

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Binary image operations

Collection of function to extend numeric computing environment of MATLAB. Supports wide range of image processing operations :

- Geometric operations
- Image analysis and enhancement
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Binary image operations
- Region of interest operations

Import /Export several image format Data types in MATLAB

Import /Export several image format

Data types in MATLAB

• JPEG (Joint Photographic Experts Group)

Data types in

MATLAB

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)

Data types in

MATLAB

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)

Data types in

MATLAB

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)

Data types in MATLAB

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)

Data types in MATLAB

Sunday, 13 October, 13

AND TECHNOLOGY GRADUATE UNIVERSITY

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

OIST OKINAWA INS

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

Double (64 -bit double-precision floating point)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- Intl6 (16-bit signed integer)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- Int16 (16-bit signed integer)
- Int8 (8-bit signed integer)

- China Const

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- Int16 (16-bit signed integer)
- Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)

OIST OKINA

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- Int16 (16-bit signed integer)
- Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)
- Uint16 (8-bit unsigned integer)

Import /Export several image format

- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- BMP (windows bitmap)
- TIFF (Tagged Image File Format)
- XWD (X window Dump)
- RAW and other types of image data

Data types in MATLAB

- Double (64 -bit double-precision floating point)
- Single (32 -bit single-precision floating point)
- Int32 (32-bit signed integer)
- Int16 (16-bit signed integer)
- Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)
- Uint16 (8-bit unsigned integer)
- Uint8 (8-bit unsigned integer)

Binary images : {0, 1}

Binary images : {0, 1}

Binary images : {0, I}

Intensity images : [0, 1] or uint8, double etc.

Binary images : {0, I}

Intensity images : [0, 1] or uint8, double etc.

Binary images : {0, I}

Intensity images : [0, 1] or uint8, double etc.

RGB images

Binary images : {0, I }

Intensity images : [0, 1] or uint8, double etc.

RGB images $m \times n \times 3$

Binary images : {0, I }

Intensity images : [0, 1] or uint8, double etc.

5342

0.5342

0.2051

0.1789

0.2826

0.1789

0.2483 0.2624 0.3344 0.3344 0.2524 0.2545

0.2157

0.1307

0.2826 0.3822 0.4391 0.4391

0.2051 0.3256 0.2483

RGB images $\,m imes n imes 3\,$

Binary images : {0, I }

RGB images $m \times n \times 3$

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Indexed Image

Sunday, 13 October, 13

Images in Matlab

Sunday, 13 October, 13

Images in Matlab

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

lQI;N

• Read and write images in Matlab

• Read and write images in Matlab

```
img = imread('filename.jpg');
```


• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
```


• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
```


• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
```


• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```


• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

Alternatives of imshow

• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

Alternatives of imshow

imagesc(I)

• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

Alternatives of imshow

imagesc(I)
imtool(I)

• Read and write images in Matlab

```
img = imread('filename.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

Alternatives of imshow

imagesc(I)
imtool(I)
image(I)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

LQI;N

dither

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering gray2ind

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

Create a grayscale intensity image from an RGB image

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

Create a grayscale intensity image from an RGB image

rgb2ind

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

Create a grayscale intensity image from an RGB image

rgb2ind

Create an indexed image from an RGB image

dither

Create a binary image from a grayscale intensity image by dithering; create an indexed image from an RGB image by dithering

gray2ind

Create an indexed image from a grayscale intensity image

grayslice

Create an indexed image from a grayscale intensity image by thresholding

im2bw

Create a binary image from an intensity image, indexed image, or RGB image, based on a luminance threshold

ind2gray

Create a grayscale intensity image from an indexed image

ind2rgb

Create an RGB image from an indexed image

mat2gray

Create a grayscale intensity image from data in a matrix, by scaling the data rgb2gray

Create a grayscale intensity image from an RGB image

rgb2ind

Create an indexed image from an RGB image

Images and Matrices

Images and Matrices

Building a matrix (or image) ? Intensity Image :

Images and Matrices

Building a matrix (or image) ? Intensity Image :

Building a matrix (or image) ? Intensity Image :

- OIST

Building a matrix (or image) ? Intensity Image :

Column I to 300

Building a matrix (or image) ? Intensity Image :

row = 300;

Column I to 300

Building a matrix (or image) ? Intensity Image :

row = 300; col = 300;

Column I to 300

Building a matrix (or image) ? Intensity Image :

Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
```


Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
```


Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
```


Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
```


Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
figure;
```


Column I to 300

Building a matrix (or image) ? Intensity Image :

```
row = 300;
col = 300;
img = zeros(row, col);
img(30:50, :) = 0.6;
img(:, 70:90) = 1;
img(:, 160:165) = 1;
img(210:218, 1) = 0.8;
figure;
imshow(img);
```


Column I to 300

Row I to 300

Binary Image :

Column I to 300

- OIST

Binary Image :

row = 300;

Row | to 300

Column I to 300

- China Colst

Binary Image :

row = 300; col = 300;

Row I to 300

Column I to 300

Row I to 300

Binary Image :

Column I to 300

Row I to 300

Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
```


Column I to 300

Row I to 300

Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
figure;
```


Column I to 300

Row I to 300

Binary Image :

```
row = 300;
col = 300;
img = rand(row, col);
img = round(img);
figure;
imshow(img);
```


Column I to 300

- Cist

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Sunday, 13 October, 13

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Sunday, 13 October, 13

- Cist

- OIST

OIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Sunday, 13 October, 13

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Sunday, 13 October, 13

Sunday, 13 October, 13

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

9

Sunday, 13 October, 13

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Sunday, 13 October, 13

figure;

- China Colst

end

```
figure;
imshow(img);
```

Image Processing

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

A = 'music.jpg';

- Cist

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

A = 'music.jpg'; B = imread(A, 'jpeg');

A = 'music.jpg'; B = imread(A, 'jpeg'); C =rgb2gray(B);

A = 'music.jpg'; B = imread(A, 'jpeg'); C =rgb2gray(B); D = edge(C, 'prewitt');


```
A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C, 'prewitt');
E = edge(C, 'canny');
```



```
A = 'music.jpg';
B = imread(A, 'jpeg');
C =rgb2gray(B);
D = edge(C, 'prewitt');
E = edge(C, 'canny');
figure(1), imshow(C);
```


OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

- CIST

- CIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Cell counting

input : cell.bmp

Cell counting

input : cell.bmp

Cell counting

input : cell.bmp

input : cells.bmp

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

input : cells.bmp

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY


```
nucleiImage = imread('cells.bmp');
threshImage = nucleiImage >20;
edgeImage = edge(threshImage, 'sobel');
labeledImage = bwlabel(threshImage);
figure(1);
subplot(2, 2, 1);imagesc(nucleiImage);
subplot(2, 2, 2);imagesc(threshImage);
subplot(2, 2, 3);imagesc(edgeImage);
subplot(2, 2, 4);imagesc(labeledImage);
```


input : cells.bmp

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

input : cells.bmp

input : cells.bmp

input : cells.bmp

```
stats = regionprops(labeledImage, 'Centroid', 'Area');
edges = find(edgeImage ~= 0);
nucleiImage(edges) = 255;
figure(2);
imshow(nucleiImage);
for i =1:length(stats)
text(stats(i).Centroid(1), stats(i).Centroid(2),...
num2str(i), 'Color',[1, 1, 0], 'FontSize', 14,...
'HorizontalAlignment', 'center');
end;
```


input : cells.bmp

```
stats = regionprops(labeledImage,'Centroid', 'Area');
edges = find(edgeImage ~= 0);
nucleiImage(edges) = 255;
figure(2);
imshow(nucleiImage);
for i =1:length(stats)
text(stats(i).Centroid(1), stats(i).Centroid(2),...
num2str(i), 'Color',[1, 1, 0], 'FontSize', 14,...
'HorizontalAlignment', 'center');
end;
```


nucleiImage0 = imread('cells2.jpg'); nucleiImage = rgb2gray(nucleiImage0);