OIST Workshop

Coherent Control of Complex Quantum Systems

11 May 2013 Okinawa

Ultracold Ytterbium Atoms in an Optical Lattice

Kyoto University, JST

Y. Takahashi
Quantum Optics Group
Kyoto University
Quantum Simulation

Hubbard Model:

\[H = -J \sum_{<i,j>} c_i^+ c_j + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

→ Magnetism, Superconductivity
Quantum Simulation
Using ultracold atoms in an Optical Lattice

\[H = -J \sum_{\langle i, j \rangle} a_i^+ a_j + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_i \varepsilon_i n_i \]

→ clean system, high controllability, various geometry, etc
Quantum Simulation
Using **Ytterbium** atoms in an Optical Lattice

\[H = -J \sum_{<i,j>} a_i^+ a_j + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_i \varepsilon_i n_i \]
Outline

Quantum Simulation of Strongly-Correlated States
- dual Mott insulator of Boson and Fermion
- SU(6) Mott insulator
- high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:
- anisotropy-induced Feshbach resonance between 1S_0 and 3P_2 states

Prospects:
- Lieb lattice
- Yb-Li atomic mixture
Quantum Simulation of Strongly-Correlated States

dual Mott insulator of Boson and Fermion
SU(6) Mott insulator
high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:
anisotropy-induced Feshbach resonance between 1S_0 and 3P_2 states

Prospects:
Lieb lattice
Yb-Li atomic mixture
Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

<table>
<thead>
<tr>
<th>Yb</th>
<th>Yb</th>
<th>Yb</th>
<th>Yb</th>
<th>Yb</th>
<th>Yb</th>
<th>Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>168Yb (0.13%)</td>
<td>170Yb (3.05%)</td>
<td>171Yb (14.3%)</td>
<td>172Yb (21.9%)</td>
<td>173Yb (16.2%)</td>
<td>174Yb (31.8%)</td>
<td>176Yb (12.7%)</td>
</tr>
<tr>
<td>Boson</td>
<td>Boson</td>
<td>Fermion</td>
<td>Boson</td>
<td>Fermion</td>
<td>Boson</td>
<td>Boson</td>
</tr>
</tbody>
</table>

- **Attractive Interaction:**
 \[a_{BF} = -4.3 \text{ nm} \]

- **Repulsive Interaction:**
 \[a_{BF} = +7.3 \text{ nm} \]
“Strongly Interacting Dual Mott Insulators”

trigger theoretical studies

- arXiv:1205.4026v1 Ehud Altman, Eugene Demler, Achim Rosch
 “Mott criticality and pseudogap in Bose-Fermi mixtures”

- arXiv:1204.3988 Ippei Danshita and L. Mathey
 “Counterflow superfluid of polaron pairs in Bose-Fermi mixtures in optical lattices”
Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

<table>
<thead>
<tr>
<th>Yb</th>
<th>Percentage</th>
<th>Boson/Fermion</th>
</tr>
</thead>
<tbody>
<tr>
<td>168Yb</td>
<td>0.13%</td>
<td>Boson</td>
</tr>
<tr>
<td>170Yb</td>
<td>3.05%</td>
<td>Boson</td>
</tr>
<tr>
<td>171Yb</td>
<td>14.3%</td>
<td>Fermion</td>
</tr>
<tr>
<td>172Yb</td>
<td>21.9%</td>
<td>Boson</td>
</tr>
<tr>
<td>173Yb</td>
<td>16.2%</td>
<td>Fermion</td>
</tr>
<tr>
<td>174Yb</td>
<td>31.8%</td>
<td>Boson</td>
</tr>
<tr>
<td>176Yb</td>
<td>12.7%</td>
<td>Boson</td>
</tr>
</tbody>
</table>

173Yb (I=5/2) \[+5/2, +3/2, +1/2, -1/2, -3/2, -5/2\]

"origin of spin degrees of freedom is "nuclear spin"

$$H_{int} = \frac{4\pi\hbar^2a_s}{M}\delta(\vec{r}_1 - \vec{r}_2)$$ \[SU(6)\text{ system}\]

"Experimental realization is very difficult in solid state system"
Unique Features of Ytterbium Atoms

Theoretically, *Physics of large-spin Fermi gas* was extensively discussed

C. Wu *et al.*, PRL*91*, 186402(2003); C. Wu, MPL.*B20*, 1707(2006); C. Wu, PRL*95*, 266404(2005), etc

, etc

valence bond solid, spin liquid, etc

\[\begin{align*}
\text{173} & \text{Yb (I=5/2)} \quad \text{+5/2} \quad \text{+3/2} \quad \text{+1/2} \quad \text{-1/2} \quad \text{-3/2} \quad \text{-5/2} \\
\end{align*} \]

“origin of spin degrees of freedom is “*nuclear spin”*

\[H_{\text{int}} = \frac{4\pi\hbar^2}{M} a_s \delta(\vec{r}_1 - \vec{r}_2) \quad \text{SU(6) system} \]

“Experimental realization is very difficult in solid state system”
SU(6) Fermion

The first quantum gas with SU(N>2) symmetry

$^{173}\text{Yb}:SU(6)$

[Optical Stern-Gerlach Spin-Separator]

[S. Taie et al., PRL105, 190401(2010)]

SU(6) Hubbard model

[T. Fukuhara et al., PRL 98, 030401 (2007)]
Lattice Modulation Technique

“doublon production rate Γ is a sensitive probe of T_{lattice}”

[D. Greif et al., PRL 106, 145302 (2011)]

$N=1.9 \times 10^4$, $11E_R$, $18\%\text{pp mod. } U/t=62.4$

$Lattice$ $Modulation$ $Technique$

$T_{\text{lattice}}=5.1t=16\text{ nK}$

$T_{\text{lattice}}=5.1t=16\text{ nK}$

0.5

$T_{\text{lattice}}=5.1t=16\text{ nK}$

3 nK

T: low

(in a harmonic trap)

T: high
Density and Entropy Distribution in a Trap

\[T_{\text{lattice}} = 5.1 t = 16 \text{ nK} \quad U/t = 62.4 \]

Minimum (\(n=1\)):

\[s = 1.81 \]

cf. \(\ln(6) = 1.79\)
"Lower temperature is achieved with larger spin system" [S. Taie et al, Nature Physics 8, 825(2012)]

SU(6) versus SU(2)

```

```

"Enhanced Pomeranchuk Cooling of an Atomic Gas"

"isolated spin carries large entropy of \(\log(N) \)"
“Lower temperature is achieved with larger spin system”
[S. Taie et al, Nature Physics 8, 825(2012)]

“Enhanced Pomeranchuk Cooling of an Atomic Gas”
“isolated spin carries large entropy of log(N)”

Theory
SU(2) case: [F. Werner, et al, PRL.95, 056401(2005)]
Zi Cai et al., Pomeranchuk cooling of the SU(2N) ultra-cold fermions in optical lattices
Unique Features of Ytterbium Atoms

Long-lived metastable state
Ultra-narrow Optical Transitions

$^1S_0 \rightarrow ^3P_2 \sim 15 \text{ s (10-40 mHz)}$

$^1S_0 \rightarrow ^3P_0 \sim 23 \text{ s (15 mHz)}$

High-resolution laser spectroscopy
“We can spectroscopically resolve and independently control the single, double, and triple occupancy”
High-resolution laser spectroscopy is a powerful tool for the study of Bose-Hubbard phase diagram.
Quantum Simulation of Strongly-Correlated States

dual Mott insulator of Boson and Fermion
SU(6) Mott insulator
high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:

anisotropy-induced Feshbach resonance between 1S_0 and 3P_2 states

Prospects:

Lieb lattice
Yb-Li atomic mixture
Quantum Simulation
Using Ytterbium atoms in an Optical Lattice

\[H = -J \sum_{\langle i, j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i(n_i - 1) + \sum_i \varepsilon_i n_i \]

one important ingredient is missing

Independent Control of U
How to Control U for alkali-atoms

Magnetic Feshbach Resonance $(^{2S_{1/2}} + ^{2S_{1/2}})$

Coupling between “Open Channel” and “Closed Channel”

Control of Interaction (a_s)

\[a_s (B) = a_{bg} \left(1 - \frac{\Delta B}{B - B_0}\right) \]

[C. Regal and D. Jin, PRL 90, 230404(2003)]
How to Control U for Yb atoms

Optical Feshbach Resonance for Yb atoms ($^{1}S_0 + ^{1}S_0$)

"Optical Feshbach Resonance Using the Intercombination Transition"
K. Enomoto, et al., PRL, 101, 203201 (2008),

“Submicron Spatial Modulation of an Interatomic Interaction in a BEC”

“Observation of a p-wave Optical Feshbach Resonance”
R. Yamazaki et al., PRA 87, 010704 (R) (2013)

There is a significant loss due to Photoassociation
Unique Features of Ytterbium Atoms

Long-lived metastable state

\[{\text{1S}}_{0}{\rightarrow^{3}\text{P}}_{0} \sim 23 \text{ s (15 mHz)}}

\[{\text{1S}}_{0}{\rightarrow^{3}\text{P}}_{2} \sim 15 \text{ s (10\text{-}40 \text{ mHz)}}

\[{507 \text{ nm}}\]

\[{507 \text{ nm}}\]

Another Useful Orbital States with Different Characters
Magnetic Feshbach Resonance (174Yb)

[S. Kato et al., PRL 110, 173201(2013)]

$^{1}S_0 \leftrightarrow ^{3}P_2 (m=+2)$: 174Yb
Magnetic Feshbach Resonance \((^{170}\text{Yb})\)

\[^1S_0 \leftrightarrow ^3P_2(m= -2) \]: \(^{170}\text{Yb}\)

[S. Kato et al., PRL 110, 173201(2013)]

Anisotropy-induced Feshbach Resonance

[A. Petrov, E. Tiesinga, and S. Kotochigova, PRL(2012)]
Various Applications

Cooper Pairing between Different Electronic States;

- s-state: ⚫ ⚪ : p-state

Topological Superfluids:

- strong s-wave interaction + Spin-Orbit Interaction

Implementing Spin-Orbit Interaction between $^1S_0 - ^3P_2(^{174}Yb)$

$SOI \propto \sigma_y k_x$

“Boson: ^{87}Rb” “Fermion: $^6\text{Li, }^{40}\text{K}$”

P. Wang et al., PRL (2012),
L. W. Cheuk et al., PRL (2012)

“Two-level system”
arXiv:1208.3055, Qi Zhang et al.,

$$Q = k_{x,L}, \quad |e, \uparrow \rangle = |^3P_2 \rangle$$

$$|g, \downarrow \rangle = |^1S_0 \rangle$$

$$\hat{P}^{(\text{quasi})} = \begin{cases}
P_0 - \frac{\hbar Q}{2}, & |^3P_2 \rangle \\
P_0 + \frac{\hbar Q}{2}, & |^1S_0 \rangle
\end{cases}$$

$q = P^{(\text{quasi})}/\hbar$
Outline

Quantum Simulation of Strongly-Correlated States
- dual Mott insulator of Boson and Fermion
- SU(6) Mott insulator
- high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:
- anisotropy-induced Feshbach resonance between 1S_0 and 3P_2 states

Prospects:
- Lieb lattice
- Yb-Li atomic mixture
Non-Standard Lattice-Lieb Lattice

\(\Delta = 0 \)

\[E_0 = \Delta \]

\[E_\pm(\Delta, k) \]

\[\Delta \neq 0 \]

\[\Delta = 0 \]

\[\Delta \neq 0 \]

\[E_\pm = \pm \sqrt{\Delta^2 + 4t^2 \{ \cos^2 (k_x a / 2) + \cos^2 (k_y a / 2) \}} \]

\[V(x,y) = V_1 (\sin^2 k^L x + \sin^2 k^L y + \sin^2 2k^L x + \sin^2 2k^L y) \]

\[+ V_2 \left(\sin^2 \left[k^L (x+y) + \frac{\pi}{2} \right] + \sin^2 \left[k^L (x-y) + \frac{\pi}{2} \right] \right) \]

"proposal for optical lattice implementation" R. Shen et al., PRB 81, 041410(R), 2010
Simulation of Impurity System with Yb-Li atomic mixture

the hopping rate $t_{\text{Yb}} << t_{\text{Li}}$

localized impurity

Yb

delocalized carrier

“Anderson’s Orthogonality Catastrophe”

absorption spectrum

scattering length $\alpha < 0 \rightarrow$ no bound state

(b) (c)
Quantum Simulation of Strongly-Correlated States

dual Mott insulator of Boson and Fermion
$SU(6)$ Mott insulator
high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:
anisotropy-induced Feshbach resonance between 1S_0 and 3P_2 states

Prospects:
Lieb lattice
Yb-Li atomic mixture
Thank you very much for attention

16 August Mount Daimonji at Kyoto