Interaction between Two Stopped Light Pulses

Ite A. Yu

Department of Physics
and
Frontier Research Center on Fundamental & Applied Sciences of Matters
National Tsing Hua University
Taiwan
Acknowledgements

NSC Science Vanguard Research Program $$$
NTHU Top-Notch Research Center Program $$$

Collaborators:
Dr. Ying-Cheng Chen
(IAMS, AS)
Prof. Yong-Fan Chen
(NCKU)

Postdoc &
Students:
Dr. Yi-Hsin Chen
Meng-Jung Lee
Weilun Hong
Motivation

- Photons are superior information carriers: ultimate speed, inert to the environment, no collision with each other \Rightarrow Ideal for quantum information.

- One qubit = single photon, so qubit-qubit operation or photon-photon interaction: nonlinear optical process.

- Nonlinear efficiency $= (\text{transition rate}) \times (\text{interaction time})$, but transition rate \propto light intensity and is usually very low at single-photon level.

- Stopping light pulses and making them interact can greatly enhance the interaction time \Rightarrow A sufficient nonlinear efficiency can be achieved even at single-photon level.
Outline

- Electromagnetically induced transparency (EIT), slow light, and storage of light.
- Experimental setup.
- Cross-phase modulation (XPM) and all-optical switching (AOS) based on stored light.
- Stationary light in cold atoms.
- Interaction between two stopped light pulses.
- Conclusion.
The Phenomenon of Electromagnetically Induced Transparency (EIT)

Large Optical Density (OD), defined by $I_{\text{out}} = I_{\text{in}} e^{-\text{OD}}$.

Diagram:
- Probe laser
- Coupling laser
- Atoms

States:
- $|1\rangle$
- $|2\rangle$
- $|3\rangle$
• Near the resonance, probe transmission \(\sim 0 \), because \(\text{OD} \approx 7 \) \((I_{\text{out}} = I_{\text{in}} e^{-\text{OD}}) \).
• Narrow-width & high-contrast absorption profile => large dispersion => slow group velocity.
The medium length was 1~2 mm and speed of the light pulse ≤ 600 m/s.

After the coupling field is quickly turned off, the gap of $\sim 5 \mu$s in the probe signal demonstrates the storage of the probe pulse. $\tau_{coh} \sim 10 \mu$s.
i) The two-photon transition that absorbs probe photons.

ii) All the probe photons are absorbed; the ground-state (Raman) coherence or spin excitation still remains in the atoms.

iii) The retrieval is the reversal process.

The EIT storage is a coherent process and provides a method for exchange of wave functions between photons and atoms.
• We produce 10^9^{87}Rb atoms with a temperature of 300 µK with a magneto-optical trap (MOT).

• Coherence time (τ_{coh}) \sim 100 µs & optical density (OD) \geq 190.

• EIT physics can work in any of the 3-level systems of other atomic species, room-temperature atoms, solids, quantum wells/dots, etc.
EIT Experiment

8 diode lasers; MOPA; UHV system; > 300 optical components

simple physics system; complicate experimental setup
Magneto-Optical Trap

Dimension: $9.2 \times 1.8 \times 1.8 \ mm^3$
We report a 78% storage efficiency, which is the best record of the EIT-based memory.

High Fidelity of the EIT Storage

\[F \text{ (fidelity)} = \frac{|\langle \psi_{\text{in}} | \psi_{\text{out}} \rangle|^2}{\langle \psi_{\text{in}} | \psi_{\text{in}} \rangle \langle \psi_{\text{out}} | \psi_{\text{out}} \rangle} \]
\[= \frac{\left| \int E_{\text{in}}^*(t - t_d) E_{\text{out}}(t) dt \right|^2}{\left[\int |E_{\text{in}}(t)|^2 dt \right] \left[\int |E_{\text{out}}(t)|^2 dt \right]} \]

- The theoretical \(F = 0.97 \) due to the broadening of the output pulse.
- \(F = 0.94 \) @ storage time of 7 \(\mu s \); \(F = 0.90 \) @ 55 \(\mu s \) due to (S/N).
Cross-Phase Modulation (XPM) based on Stored Light

- The stored coherence is equivalent to the probe pulse.
- During the storage, a signal pulse induces the AC Stark shift and changes the frequency and, hence, the phase of the ground-state coherence.
- Therefore, the phase of the retrieved probe pulse is also modulated.
The stored coherence is equivalent to the probe pulse.

During the storage, a signal pulse induces the AC Stark shift and changes the frequency and, hence, the phase of the ground-state coherence.

Therefore, the phase of the retrieved probe pulse is also modulated.
A phase shift of 44° with a transmission of 65% is obtained at 18 photons per $3\lambda^2/(2\pi)$ (atomic absorption cross section).

Phase shifts of the order of π with single photons: quantum phase gates, entangled photon pairs, quantum nondemolition measurements.

How to further improve?
Stationary Light Pulses (SLPs)

A light pulse is actually stopped while maintaining its EM wave.

Simultaneously switching on the forward and backward coupling fields makes the probe stationary.
Formation of SLPs

Coupling \(\rightarrow \Omega_+^e e^{ik_+^cz} + \Omega_-^e e^{-ik_-^cz} \)

Probe \(\rightarrow \Omega_+^p e^{ik_+^pz} + \Omega_-^p e^{-ik_-^pz} \)

Optical Coherence \(\rightarrow \rho_{31}^+ e^{ik_+^pz} + \rho_{31}^- e^{-ik_-^pz} \)

Assume \(k_+^c \approx k_+^p \); \(k_-^c \approx k_-^p \)

Neglect \(e^{inkz} \) terms for \(n \geq 2 \)

\[
\begin{align*}
\frac{\partial \rho_{21}}{\partial t} &= \frac{i}{2} (\Omega_+^c)^* \rho_{31}^+ + \frac{i}{2} (\Omega_-^c)^* \rho_{31}^- - \gamma \rho_{21}, \\
\frac{\partial \rho_{31}^+}{\partial t} &= \frac{i}{2} \Omega_+^p + \frac{i}{2} \Omega_+^c \rho_{21} - \frac{\Gamma}{2} \rho_{31}^+, \\
\frac{\partial \rho_{31}^-}{\partial t} &= \frac{i}{2} \Omega_-^p + \frac{i}{2} \Omega_-^c \rho_{21} - \frac{\Gamma}{2} \rho_{31}^-, \\
\frac{1}{c} \frac{\partial \Omega_+^p}{\partial t} + \frac{\partial \Omega_+^p}{\partial z} &= \frac{i}{2L} \rho_{31}^+, \\
\frac{1}{c} \frac{\partial \Omega_-^p}{\partial t} - \frac{\partial \Omega_-^p}{\partial z} &= \frac{i}{2L} \rho_{31}^-.
\end{align*}
\]

Timing Sequence of Coupling Fields
Forward and Backward Probe Pulses as Functions of \(z \) and \(t \)

With (c) & (d) Destroy (c) & (d)

SLPs in Cold Atoms

Without detuning

With detuning

With (c) & (d) Destroy (c) & (d)

EIT-based XPM and AOS

Cross-Phase Modulation (XPM): phase shift (ϕ) = $\frac{\psi (N/A) \sigma}{4}$ at $|\Delta_s| = \Gamma/2$

All-Optical Switching (AOS): attenuation (R) = $\exp[-\psi (N/A) \sigma]$ at $\Delta_s = 0$

where ψ is nonlinear efficiency depending on the operation scheme and $(N/A)\sigma$ is number of photons per absorption cross section.

S. E. Harris & Y. Yamamoto, PRL 81, 3611 (1998)
AOS with Moving Pulses

\[\text{AOS attenuation} = \exp\left[-\psi \left(\frac{N}{A}\right)\sigma_a \right] \]

Experimentally, with moving light pulses, we showed \(\psi \approx 0.45 \) is the limit.

S. E. Harris & L. V. Hau, “Nonlinear Optics at Low Light Levels,” PRL 82, 4611 (1999): Theoretically, at a very large OD, \(\psi \to 0.5 \).
Two Stopped Light Pulses

Two EIT Systems

- Store probe pulse in the atoms and make signal pulse stationary in the same medium.
- Use stationary signal to switch stored probe.
- Ideally, the interaction time can be as long as possible.

780nm $|F' = 2\rangle$

795nm $|F' = 1\rangle$

Stationary Signal

Probe Coherence

Probe
AOS with Stopped Light Pulses

$$AOS \text{ attenuation} = \exp[-\psi \,(N/A)\sigma_a]$$

- With stopped light pulses, $\psi \approx 1.8$ or the switch was achieved at 0.56 photons per atomic absorption cross section \Rightarrow 4-fold improvement.
- Most importantly, ψ has no upper limit and can be further improved by increasing OD.
Frozen “light switch”

Nature Physics, April 2012, p. 252, research highlights