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A determinantal structure for a finite temperature polymer model 
Tomohiro Sasamoto (Tokyo Institute of Technology) 

 
abstract: 
For the Gaussian unitary ensemble (GUE), it is well known that the eigenvalues  
are determinantal because the probability density of the eigenvalues is written  
in the form of a product of two determinants. For the 
O'Connell-Yor(OY)  model,  which is a finite temperature directed polymer 
model, a generating function of the partition function can be written as a 
Fredholm determinant but the underlying determinant structure is not well 
understood.   
We show that there is a product of determinant structure associated with the 
OY polymer model, which is related to the above-mentioned Fredholm 
determinant. This can be regarded as a generalization of Warren's Brownian 
motion in the Gelfand-Tsetlin cone for zero temperature case.  
This is based on a collaboration with T. Imamura. [Ref] arXiv:1506.05548 
 
 

Bessel Process, Schramm-Loewner Evolution, and Dyson 
Model 

 

Makoto Katori  (Chuo University) 
 

The purpose of my lecture is to introduce recent topics in mathematical 
physics and probability theory, especially the topics on the Schramm-Loewner 
evolution (SLE) and in- teracting particle systems related with random matrix 
theory. A typical example of the latter systems is Dyson’s Brownian motion 
model. For this purpose I have considered one story to tell the SLE and the 
Dyson model as ‘children’ of the Bessel processes [1]. The Bessel processes 
make a one-parameter family of one-dimensional diffusion processes with 
parameter D, in which the D-dimensional Bessel process, BES(D), is defined as 
the radial part of the D-dimensional Brownian motion, if D is an integer. This 
definition implies that Bessel processes are ‘children’ of the Brownian motion, 
and hence, the SLE and the Dyson model are ‘grandchildren’ of the Brownian 
motion. 

First the parenthood of Brownian motion in diffusion processes is clarified 
and BES(D) is defined for any D ≥ 1. There, the importance of two aspects of 
BES(3) is explained. SLE is then introduced as a complexification of BES(D). I 
show that rich mathematics related with the conformal field theory and the 
fractal physics involved in SLE are due to the nontrivial dependence of the 
Bessel flow on D. Finally Dyson’s Brownian motion model with parameter β is 



introduced as a multivariate extension of BES(D) with the relation D = β + 1. 
I will concentrate on the case where β = 2. In this case the Dyson model 
inherits the two aspects of BES(3) and has very strong solvability. That is, the 
process is proved to be determinantal in the sense that all spatio-temporal 
correlation functions are given by determinants, and all of them are controlled by 
a single function called the correlation kernel. 

 
[1] Katori, M.: Bessel Process, Schramm-Loewner Evolution, and Dyson Model, 
to be pub- lished in the series SpringerBriefs in Mathematical Physics, Springer 
(2015+). 

 
 

Random-matrix distributions under 
microscope: evidence for universal 

interfacial fluctuations 
 

Kazumasa A. Takeuchi    (Tokyo Institute of Technology) 
 

I will present recent developments on universal fluctuation properties of 
growing interfaces, known by the name of the Kardar-Parisi-Zhang (KPZ) 
universality class. While KPZ scaling exponents have been known for 30 
years, recent studies on the one-dimensional KPZ class provided exact 
solutions to finer properties such as the distribution and correlation, unveiling 
a non-trivial link to random matrix theory and many other fields in physics 
and mathematics [1]. The purpose of the talk is to illustrate such 
developments, along an experimental realization that I and a coworker 
found in turbulent convection of liquid crystal [2]. 

 
Measuring interface fluctuations of growing domains of turbulence 

(photos below), we found not only the KPZ scaling exponents, but also the 
particular distribution functions derived for solvable models (figure): namely, 
the Tracy-Widom distributions, known as the largest-eigenvalue distributions 
for Gaussian random matrices. Interestingly, circular and flat interfaces 
show the Tracy-Widom distribution for different matrix ensembles as shown 
in the figure. This implies that the KPZ class splits into a few universality 
subclasses, determined by the global geometry of interfaces, or equivalently 
by their initial condition. 

I will also briefly present our latest attempt to characterize KPZ time 
correlation properties [2,3], which remain analytically intractable in large 
part. Our analysis showed that time correlation is also different between 



circular and flat interfaces, even qualitatively [2]. Moreover, we found an 
interesting connection to the renewal theory, studied in the context of aging 
and ergodicity breaking [3]. 

 
[1] For a review, see I. Corwin, Random Matrices Theory Appl. 1, 1130001 (2012). 
[2] K. A. Takeuchi and M. Sano, Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 
34 (2011); J. Stat. Phys. 147, 853 (2012). 
[3] K. A. Takeuchi and T. Akimoto, arXiv:1509.03082 (2015). 
 

 

 
Figure: Growing domains of liquid-crystal turbulence. Fluctuations of the height h 
(as defined in the top images) for the circular and flat interfaces show the 
Tracy-Widom distribution for the Gaussian unitary and orthogonal ensembles, 
respectively. [2] 
 
 

Two methods of computing the 
inverse localization length in 
one dimension 

 
Naomichi Hatano 

Institute of Industrial Science, University of Tokyo 
hatano@iis.u-tokyo.ac.jp 

 
I will present two independent methods that I have found to compute nu- 
merically the inverse localization length (the Lyapunov exponent) of the one- 
dimensional random Anderson model. They indeed give consistent results for the 
random-potential model. 



I proposed the first method as a by-product  of  studying  the  spectrum  of 
the non-Hermitian random Anderson model [1]. We obtain the inverse localiza- 
tion length of the Hermitian model as the edges of the bubble of the complex 
spectrum of the non-Hermitian model. 
The second method is the kernel-polynomial expansion [2] of the inverse lo- 
calization length. I transform the Chebyshev-polynomial expansion of the den- sity 
of states [3] to that of the localization length, using the Thouless formula [4]. 
The expansion produces a smoother dataset than the expansion of the den- sity of 
states because the expansion coefficients become smaller in high orders. I noticed 
this method during the collaboration with A. Amir and D.R. Nelson [5]. 
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Correlation functions for products of truncated unitary matrices  
Taro Nagao (Nagoya Univ.) 
 
Abstract: 
We study the products of M complex random matrices obtained by  
removing L rows and L columns of unitary random matrices uniformly  
distributed on the group U(N+L). The correlation functions for  
the complex eigenvalues of the products are investigated and  
various large N limits at fixed M are evaluated.  
 



 
Title: H-bond rotations in proteins and H-bond networks. 
Jørgen	
 Ellegaard	
 Andersen	
 

 
Abstract: First we will review our joint work with Bob Penner, Ebbe Andersen, 
Jens Ledet Jensen, Jakob Nielsen and the rest of the Aarhus team concerning 
rotations for H-bonds in proteins. We will then discuss our latest results joint 
with Jens Ledet Jensen, Rasmus Villemoes and Jakob Nielsen, regarding 
relations between H-bond rotations and the local networks the H-bonds form. 
 
 
 
Non-Hermitian Localization in Ecological and Neural Networks  
David R. Nelson 
Lyman Laboratory of Physics Harvard University  
 
In the 70 years since Phillip Anderson proposed his ideas about localized states 
in disordered systems, it has become clear that virtually all electronic states are 
localized in one-dimension.   We show that the situation is quite different when 
the hopping matrix becomes non-Hermitian.   Non-Hermitian matrices, with 
complex eigenvalue spectra, arise naturally in simple models of complex 
ecosystems, with many interacting predator and prey species.  Recent work 
has revealed particularly striking departure from the conventional wisdom in 
the one-dimensional non-Hermitian random matrices that describe sparse 
neural networks.[1]   Approximately equal numbers of random excitatory and 
inhibitory connections lead to an intricate fractal eigenvalue spectrum that 
controls the spontaneous activity and induced response.   When rings of 
neurons become directed, with a systematic  bias for the transfer of 
excitations in the clockwise direction, an hole centered on the origin opens up 
in the density of states in the complex plane.   All states are extended on the 
rim of this hole, while the states outside the hole are localized.    Time 
permitting, we will review a simpler application of non-Hermitian localization to 
biology, relevant to Fisher-Kolmogorov-Petrovsky-Piscounov population waves 
and growth in disordered media.[2] 
 



[1]  A. Amir, N. Hatano and D. R. Nelson, to be published. 
[2]  D. R. Nelson, Biophysical dynamics in disorderly environments, Ann. Rev. of 
Biophysics, 41, 371 (2012). 
 

 
Annulus Diagram of Modules in Biological Molecules 

Sigeo Ihara* 
Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), 

Research Center for Advanced Science and Technology & Graduate School of 
Mathematical Sciences, The University of Tokyo 

Mail: ihara@genome.rcast.u-tokyo.ac.jp 
A major challenge in working with structural biology is to elucidate the 
implications hidden in the three-dimensional atomic configurations of a 
given structure. The easier-to-use representation of biological molecules 
other than 3D computer graphics is important. We introduce the annulus 
diagram for proteins, where the peptide units in protein backbone structure 
are mapped onto the annulus. Using this annulus diagram for the data in 
Protein Data Bank (PDB), the SO(3) rotation of the peptide units and the 
interactions between them are studied with the distribution of water 
molecules and compounds. We show that our representation is useful in 
characterizing the protein structure and the role of water molecule, and 
thereby able to detect the change due to the mutation or the time evolution. 
Applying our approach to a specific protein complex, we found that a 
previously unrecognized role of the water molecules. We also discuss the 
extensions of our method to the wider range of biological molecules.  
* Collaboration with Y. Ohta, H. Kodama, A. Sugiyama, M. Matsuoka, H.  
Doi, T. Tsuboi, J.E. Andersen, and R.C. Penner 

 
Matrix models for the topological enumeration of RNA molecules 
Hiroyuki Fuji (Kagawa Univ.) 
 
Abstract: 
In this talk, the construction of matrix models to enumerate the 
topological configuration of RNA molecules will be discussed. Among 



various secondary structures, the pseudo-knot structures cause interesting 
topological structure of the RNA folding. To study such structure of RNA 
molecules, we will consider the enumerative problem of topological 
configurations on basis of the chord diagram. Such problem is efficiently 
studied by applying matrix model techniques, and some new matrix models 
can be proposed recently. I discuss about the construction of RNA matrix 
models that enumerate the number of chord diagrams. This talk is based on 
the work in progress with Joergen Andersen et.al. 
 
 
Symmetric functions and solvable lattice models   
Paul Zinn-Justin (Universite Pierre et Marie Curie) 
 
Abstract: 

This is joint work with I. Ikhlef, R. Weston and M. Wheeler. I will discuss the 
interplay between two properties of two-dimensional statistical models, 
namely integrability (or exact solvability) and discrete holomorphicity. After 
introducing these concepts, I will explain how the Bernard-Felder 
construction of nonlocal currents out of quantized affine algebras provides a 
link between them, relating the discrete holomorphicity equation with 
conservation of these nonlocal currents. I will discuss as an example the case 
of the Temperley--Lieb (dense) loop model. 
 
 
 
Random matrix analysis for molecular networks in biological systems 
A. Kikkawa (OIST) 
 
Abstract:  
The proteins interact with each other inside/outside cells and their 
interacting networks regulate the biological responses to the ever-changing 
environments.  For example, the study of protein – protein interaction (PPI) 
network is very important in order to understand the functions and the 
dynamics of the biological systems.  The application of the random matrix 
theory (RMT) is one of the methods for the investigation of the topology of 



the PPI networks.  We study the behavior of eigenvalues of interaction 
matrices where the elements are generated by the pair of the interacting 
proteins or transcripts.  We compare several networks such as PPI in cancer 
cells and micro RNA – target genes (transcripts) interactions. 
 


