Marked singularities, their moduli spaces, distinguished bases and Stokes regions

Claus Hertling

University Mannheim

01 August 2019, Tokio

1/46

Plan of the 1st talk

- Isolated hypersurface singularity, topology, Milnor lattice
- Universal unfolding, F-manifold
- Gauss-Manin connection, Fourier-Laplace transformation, Brieskorn lattice
- Marked singularities, their moduli spaces (Teichmüller spaces)
- μ -constant monodromy group
- Period map, Torelli type conjectures and results

Partly joint work with Falko Gauss.

Plan of the 2nd talk

- Global unfoldings of simple and simple elliptic singularities
- Lyashko-Looijenga map locally and globally (ADE: Looijenga, *Ẽ_k*: Jaworski, Hertling-Roucairol)
- Distinguished bases, Stokes matrices
- Stokes regions, Theorem: a bijection (Interpretation: a Torelli result at semisimple points)
- ADE: Approach of Looijenga and Deligne '73/'74
- ADE and \tilde{E}_k : Approach of Hertling '07/'18

Partly joint work with Céline Roucairol.

Isolated hypersurface singularity

 $f:(\mathbb{C}^{n+1},0)
ightarrow(\mathbb{C},0)$ holomorphic, isolated singularity at 0,

$$Q_f := \mathcal{O}_{\mathbb{C}^{n+1},0}/(rac{\partial f}{\partial x_i})$$
 Jacobi algebra, $\mu := \dim Q_f$ Milnor number.

Choose a good representative $f: X \to \Delta$,

For $\tau \in \Delta^*$, the Milnor fibre X_{τ} is homotopy equivalent to $\bigvee_{\mu} S^n$. The Milnor lattice is $MI(f) := H_n^{(\text{red if } n=0)}(X_r, \mathbb{Z}) \cong \mathbb{Z}^{\mu}$ (some r > 0)

4 / 46

Milnor lattice

On MI(f) we have the monodromy Mon (quasiunipotent), the intersection form I ((-1)ⁿ-symmetric), the Seifert form L (unimodular).

L determines Mon and I by

 $L(Mon(a), b) = (-1)^{n+1}L(b, a), \quad I(a, b) = -L(a, b) + (-1)^{n+1}L(b, a).$

 $G_{\mathbb{Z}}(f) := \operatorname{Aut}(MI(f), Mon, I, L) = \operatorname{Aut}(MI(f), L).$

Well known: $Mon_{\mathbb{C}}, Mon_{\mathbb{R}}, I_{\mathbb{R}}, L_{\mathbb{R}}.$ Fairly well known: $I_{\mathbb{Z}}.$ Badly known: $Mon_{\mathbb{Z}}, L_{\mathbb{Z}}.$

Universal unfolding

Choose $m_1, ..., m_\mu \in \mathcal{O}_{\mathbb{C}^{n+1},0}$ s.t. $[m_1], ..., [m_\mu] \in Q_f$ is a basis of Q_f . Define $F : X \times M \to \mathbb{C}$ by

$$F = F(x,t) = F_t(x) = f(x) + \sum_{i=1}^{\mu} m_i t_i : X \times M \rightarrow \mathbb{C},$$

where $M \subset \mathbb{C}^{\mu}$ is an open neighborhood of 0.

<u>Theorem:</u> F is a *universal unfolding*, it *induces* any unfolding of f.

<ロ > < 部 > < 言 > < 言 > 言 の < で 6/46

μ -constant stratum, modality, Arnold's classification

For generic $t \in M$, F_t has μ A_1 -singularities (i.e. $x_0^2 + ... + x_n^2$ up to coordinate changes). Their values under F are locally *canonical coordinates* $u_1, ..., u_{\mu}$.

$$M \supset S_{\mu} := \{t \in M \mid F_t \text{ has only one singularity } x^0 \$$

and $F_t(x^0) = 0\} \ \mu$ -constant stratum modality of $(f) := \dim S_{\mu}$.

Arnold '72: classification of all singularities (up to coordinate changes) with modality in $\{0, 1, 2\}$.

mod
$$(f) = 0$$
: A-series, D-series, E_6, E_7, E_8 .
mod $(f) = 1$: $\widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8, T_{pqr}$, 14 exceptional types.
mod $(f) = 2$: 14+6 exceptional types, 8 series.

Structure on M: Multiplication

$$C := \operatorname{Crit}(F) := \{(x, t) \in X \times T \mid \frac{\partial F}{\partial x_0}, ..., \frac{\partial F}{\partial x_n} = 0\}.$$

$$C \subset X \times M \quad \text{smooth}$$

$$\downarrow \pi \quad \text{finite, flat of degree } \mu$$

$$M$$

$$T_M \stackrel{\cong}{\longrightarrow} \pi_* \mathcal{O}_C$$

$$\frac{\partial}{\partial t_i} \mapsto \left[\frac{\partial F}{\partial t_i}\right] = [m_i]$$

$$T_t M \stackrel{\cong}{\mapsto} \bigoplus_{x \in \operatorname{Crit}(F_t)} Q_{(F_t, x)}$$

$$\text{multiplication } \circ \leftarrow \text{ multiplication}$$

$$\text{unit field } e \leftarrow [1]$$

$$\text{Euler field } E \leftarrow [F]$$

8/46

F-manifold

 (M, \circ, e, E) is an *F-manifold with Euler field* (Def. H-Manin '98): *M* a complex manifold.

 \circ a hol. commutative and associative multiplication on the hol. tangent bundle *TM* with $e\circ = id$. An integrability condition for hol. vector fields $X, Y \in T_M$:

$$\operatorname{Lie}_{X\circ Y}(\circ) = X \circ \operatorname{Lie}_{Y}(\circ) + Y \circ \operatorname{Lie}_{X}(\circ). \tag{(*)}$$

And $Lie_E(\circ) = 1 \cdot \circ$.

Implications of the integrability condition (*)

(1) For $t \in M$ $T_t M \cong \bigoplus_{x \in Crit(F_t)} Q_{(F_t,x)}$ is the unique decomposition of $T_t M$ into local algebras.

 $(*) \Rightarrow$ It extends to a local decomposition

$$(M, t) = \prod_{x \in Crit(F_t)} (M^{(x)}, 0)$$
 of F-manifolds.

(2) C ≅ (analytic spectrum of (M, ∘, e)) ⊂ T*M.
(*) ⇔ it is a Lagrange subvariety (in the gen. semisimple case).
<u>Theorem</u> (Arnold '72/Hörmander '71):

Anal. sp. smooth \iff the F-manifold comes from a singularity.

2 additional structures on M (details not this time)

(I) Gauss-Manin conn. and an idea of Kyoji Saito (early 80ies) and a trick + choice of Morihiko Saito '83

 \Rightarrow a holomorphic flat metric g on M

s.t. (M, \circ, e, E, g) becomes a Frobenius manifold with Euler field = an F-manifold with Kyoji Saito's flat structure.

(II) Gauss-Manin conn. and a trick of S. Cecotti & C. Vafa '91 \Rightarrow a natural hermitian pos. def. metric *h* on $M(r \cdot f)$ for $|r| \gg 0$ s.t. the hol. sectional curvature is ≤ 0 everywhere and < 0 near S_{μ} except for the direction *e* (Liana David & H 15).

Gauss-Manin connection of a universal unfolding F

Discriminant $\mathcal{D} := F \times id(C) \subset \mathbb{C} \times M$.

Flat cohomology bundle $\bigcup_{(\tau,t)\in\mathbb{C}\times M-\mathcal{D}} H^n(F_t^{-1}(\tau),\mathbb{C}).$

 \exists canonical extension to a hol. vector bundle H^{GM} on $\mathbb{C} \times M$ via hol. differential forms: $\omega \in \Omega^{n+1}_{X \times M/M} \rightsquigarrow$ the section $s^{GM}[\omega]$ with

$$\langle s^{GM}[\omega](au,t),\delta(au,t)
angle:=\int_{\delta(au,t)}rac{\omega}{d{\sf F}_t}$$

here $\delta(\tau, t) \subset F_t^{-1}(\tau) \subset X \times \{t\}$ is a (vanishing) cycle. The Gauss-Manin conn. ∇^{GM} has a logarithmic pole along \mathcal{D} .

A partial Fourier-Laplace transformation

A partial Fourier-Laplace transformation \rightsquigarrow

a hol. vector bundle H^{osc} on $\mathbb{C} \times M$ with sections $s^{osc}[\omega]$ with (in the case of ADE or \tilde{E}_k)

$$\langle s^{osc}[\omega](z,t), \Gamma(rac{z}{|z|},t)
angle := \int_{\Gamma(rac{z}{|z|},t)} e^{-F_t/z} \omega,$$

here $\Gamma(\frac{z}{|z|}, t) \subset X \times \{t\}$ a Lefschetz thimble (in direction $\frac{z}{|z|}$) Also:

 ∇^{osc} flat conn. with a pole of Poincaré rank 1 along $\{0\} \times M$. $H^{osc}_{\mathbb{Z}} \to \mathbb{C}^* \times M$ a flat \mathbb{Z} -lattice bundle dual to a bundle generated by (hom. classes) of Lefschetz thimbles. P a flat pairing (from intersecting Lefschetz thimbles).

TEZP-structure \sim non-commutative Hodge structure

 $(H^{osc} o \mathbb{C} imes M,
abla^{osc}, H_{\mathbb{Z}} o \mathbb{C}^* imes M, P) = a$ "TEZP"-structure,

(Twistor - Extension - Z-lattice - Pairing)

S. Cecotti & C. Vafa: tt^* geometry '91+'93.

H '02 rephrased it as TERP-structure.

Sabbah '05, Sevenheck '05 and Mochizuki '08 studied it, too. Katzarkov-Kontsevich-Pantev '08 rephrased it as *non-commutative Hodge structure*.

$$(H^{GM} \to \mathbb{C} \times M, \nabla^{GM}) \qquad (H^{osc} \to \mathbb{C} \times M, \nabla^{osc})$$

$$(H^{osc} \to \mathbb{C} \times M, \nabla^{osc}) \qquad (H^{osc} \to \mathbb{C} \times M, \nabla^{osc})$$

$$(f_{x \{0\}} \downarrow 0) \qquad (f_{x \{0\}}$$

। 14/46

Brieskorn lattice

Brieskorn lattice

$$\begin{aligned} H_0''(f) &:= H^{GM}|_{(\mathbb{C},0)\times\{0\}} = \frac{\Omega_{X,0}^{n+1}}{df \wedge d\Omega_{X,0}^{n-1}} \\ &= (\text{inverse Fourier-Laplace transform of $TEZP(0)$}), \end{aligned}$$

free $\mathbb{C}\{\tau\}$ -module of rank μ , free $\mathbb{C}\{\{\partial_{\tau}^{-1}\}\}$ -module of rank μ .

$$\begin{split} H^{\infty} &:= \{ \text{global flat multivalued sections in } H^{osc}|_{\mathbb{C}\times\{0\}} \}, \\ \mu\text{-dim } \mathbb{C}\text{-vector space, } H^{\infty} \supset H^{\infty}_{\mathbb{R}} \supset H^{\infty}_{\mathbb{Z}}, \\ \text{with monodromy } Mon = Mon_{ss} \cdot Mon_u, Mon_u = e^N, N \text{ nilpotent, } \\ \text{such a such is in form } C \end{split}$$

and a polarizing form S.

PMHS and nilpotent orbit of PHS

Brieskorn lattice and (Kashiwara-Malgrange) V^{\bullet} -filtration \rightarrow a polarized mixed Hodge structure ($F^{\bullet}, W_{\bullet}, S, N$) on H^{∞} with automorphism Mon_{ss} .

Varchenko '80, M. Saito & Scherk-Steenbrink '82, polarization H '97.

Observation Cecotti-Vafa '91, H '02: Real structure & flat structure on $H^{osc}|_{\mathbb{C}^* \times M}$ \rightsquigarrow twin along $\{\infty\} \times M$ of extension along $\{0\} \times M$. \rightsquigarrow bundle $\tilde{H}^{osc} \rightarrow \mathbb{P}^1 \times M$, real analytic in t, hol. in z.

Observations H '02: PMHS \iff nilpotent orbit of PHS (Cattani-Kaplan-Schmid '85) $\sim (H^{\infty}, H^{\infty}_{\mathbb{R}}, S, F^{\bullet}(r \cdot f_0))$ is a (pure) PHS for $|r| \gg 0$. $\sim \widetilde{H}^{osc}|_{\mathbb{P}^1 \times \{t\}}(r \cdot f_0)$ trivial for $t \in M$.

Torelli type conjecture

The tuple $(MI(f), \text{Seifert form } L, H_0''(f)) \sim TEZP(0)$ is rich. It is a generalization of a polarized mixed Hodge structure and can be seen as a *non-commutative Hodge structure*.

Torelli type conjecture (H '91): Up to isomorphism, it determines the germ f up to hol. coordinate changes.

H since '91: Proof for special families. Infinitesimal Torelli result. Generic Torelli result. Version for *marked singularities*.

 \rightsquigarrow Study families of singularities. Study period maps and the action of the group $G_{\mathbb{Z}}$.

Torelli result

<u>Theorem</u> (H '92+'93): The Torelli type conjecture is true for all singularities with modality ≤ 2 and for the families containing the singularities $\sum_{i=0}^{n} x_i^{a_i}$ with $gcd(a_i, a_j) = 1$ for $i \neq j$.

Proofs by calculations of two types:

(1) Period maps for families with the Gauss-Manin connection.

(2) $G_{\mathbb{Z}} := Aut(MI(f), L) =?,$

and its action on a classifying space for Brieskorn lattices.

Marked singularities

Fix a singularity f_0 .

Definition (H '11)

(a) Its μ -homotopy class is

{singularities $f \mid \exists$ a μ -constant family connecting f and f_0 }.

(b) A marked singularity is a pair $(f,\pm\rho)$ with f as in (a) and

$$\rho: (MI(f), L) \stackrel{\cong}{\to} (MI(f_0), L).$$

$M_{\mu}^{mar}(f_0)$ and $M_{\mu}(f_0)$

Definition (H '11)

(c) Two marked singularities $(f_1, \pm \rho_1)$ and $(f_2, \pm \rho_2)$ are right equivalent (\sim_R)

 $\iff \exists \text{ biholomorphic } \varphi : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0) \text{ s.t.}$

$$\begin{array}{cccc} (\mathbb{C}^{n+1},0) & \stackrel{\varphi}{\to} & (\mathbb{C}^{n+1},0) & & \textit{MI}(f_1) & \stackrel{\varphi_{hom}}{\to} & \textit{MI}(f_2) \\ \downarrow f_1 & & \downarrow f_2 & , & \downarrow \rho_1 & & \downarrow \pm \rho_2 \\ \mathbb{C} & = & \mathbb{C} & & \textit{MI}(f_0) & = & \textit{MI}(f_0) \end{array}$$

(d)

$$M^{mar}_{\mu}(f_0) \stackrel{ ext{as set}}{:=} \{(f,\pm
ho) ext{ as above}\}/\sim_R .$$

(e) \sim_R for f gives

 $M_\mu(f_0):=\{f ext{ in the }\mu ext{-homotopy class of }f_0\}/\sim_R.$

Results on $M_{\mu}^{mar}(f_0)$ and $M_{\mu}(f_0)$

Theorem ((a) H '99, (b)-(d) H '11)

(a) M_μ(f₀) can be constructed as an analytic geometric quotient.
(b) M^{mar}_μ(f₀) can be constructed as an analytic geometric quotient.
(c) G_Z(f₀) acts properly discontinuously on M^{mar}_μ(f₀) via

$$\psi \in G_{\mathbb{Z}}(f_0) : [(f, \pm \rho)] \mapsto [(f, \pm \psi \circ \rho)].$$

$$M_{\mu}(f_0) = M_{\mu}^{mar}(f_0)/G_{\mathbb{Z}}(f_0).$$

(d) Locally $M_{\mu}^{mar}(f_0)$ is isomorphic to a μ -constant stratum. Locally $M_{\mu}(f_0)$ is isomorphic to a $(\mu$ -constant stratum)/(a finite group).

$M_{\mu}^{mar}(f_0)$ for the singularities with modality 0, 1, 2

(Joint work with Falko Gauss '15+'17)

Singularity family	lsom class of $M_{\mu}^{mar}(f_0)$
ADE sing	point
$\widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8 = \text{simple ell sing}$	IHI
T _{pqr}	\mathbb{C}
exceptional unimodal sing	\mathbb{C}
exceptional bimodal sing	\mathbb{C}^2
quadrangle sing	$(\mathbb{H}-(discrete\;set)) imes\mathbb{C}$
series, generic, e.g. $E_{3,p}$ with 18 $/p$	$\mathbb{C}^* \times \mathbb{C}$
subseries, e.g. $E_{3,p}$ with $18 p$	countably many copies of $\mathbb{C}^* imes \mathbb{C}$

Analogue of Teichmüller space for Riemann surfaces, but in general (?) not contractible and ∞ many components.

 $\begin{array}{l} \mu\text{-constant monodromy group } G^{mar}(f_0) \\ \text{Mather '68: } \mu(f,0) < \infty \quad \Rightarrow \quad f \sim_{\mathcal{R}} j_{\mu+1}f := (\mu+1)\text{-jet of } f. \\ \text{Choose } f_0 \text{ with isol sing, } \mu := \mu(f_0), \ G_{\mathbb{Z}} := G_{\mathbb{Z}}(f_0). \end{array}$

Lemma

 $G^{mar} = subgroup \text{ of } G_{\mathbb{Z}}$ which acts on the component of $M_{\mu}^{mar}(f_0)$ which contains $[(f_0, \pm id)]$. Thus

$$G_{\mathbb{Z}}/G^{mar}(f_0) \stackrel{1:1}{\longleftrightarrow} \{\text{components of } M^{mar}_{\mu}(f_0)\}.$$

Classifying space D_{BL} for Brieskorn lattices, period map

Fix a sing f_0 . \rightarrow A classifying space D_{BL} for Brieskorn lattices with PMHS with same invariants (spectral pairs) as $H_0''(f_0)$ (H 99).

$$\begin{array}{l} D_{BL} & \longleftarrow \mathbb{C}^{N_1} \\ \downarrow \\ D_{PMHS} & \longleftarrow \mathbb{C}^{N_2} \\ \downarrow \\ \prod_i D_{PHS_i} \end{array}$$

Hol period map $BL: M^{mar}_{\mu}(f_0) \to D_{BL}, f \mapsto \text{marked } H^{\prime\prime}_0(f).$

Theorem (M. Saito '89 weaker statement, H '01) Infinitesimal Torelli result: BL is an immersion.

Torelli type conjectures

Conjecture A (H '91): $H_0''(f)$ determines f up to \sim_R . Equiv. (H 00): The period map

 $BL/G_{\mathbb{Z}}: M_{\mu}(f_0) \to D_{BL}(f_0)/G_{\mathbb{Z}}(f_0), \quad [f] \mapsto H_0''(f) \text{ mod isom},$

is injective.

Conjecture B (H '11): $BL: M_{\mu}^{mar}(f_0) \rightarrow D_{BL}$ is injective.

<u>Lemma</u> (H '11): $B \Rightarrow A$.

Theorem (A: H '92+'93, B: Gauss+H '11+'15+'17)

A and B are true for the singularities with modality ≤ 2 and for the Brieskorn-Pham singularities with coprime exponents.

Present and future (?) methods

Present methods:

- (i) Determination of $G_{\mathbb{Z}}$ and G^{mar} (both difficult).
- (ii) Gauss-Manin connection calculations for the period map *BL* (rather easy, classical).

Future (?) methods:

- (iii) Thicken M_{μ}^{mar} to a germ of a μ -dim F-manifold M^{mar} along M_{μ}^{mar} which is everywhere locally the base of a universal unfolding. Glue it with a global space of semisimple Stokes regions.
- (iv) Extend Torelli type conjectures to points beyond M_{μ}^{mar} , especially to semisimple points. There Stokes structure instead of PMHS and H_0'' . Compare semisimple points and points in M_{μ}^{mar} .

Global unfolding of the simple singularities (ADE)

From now on, most of the time only the simple singularities (ADE) and the simple elliptic singularities ($\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$, 1-par-families) are considered. There I have results on (iii) and (iv).

Each ADE-singularity f(x) has a global unfolding

$$F(x,t) = F_t(x) = f(x) + \sum_{i=1}^{\mu} m_i t_i,$$

 $m_i \in \mathbb{C}[x_0,...,x_n]$ suitable monomials, $t = (t_1,...,t_\mu) \in M = \mathbb{C}^\mu$.

Here $M = M^{alg} = M^{mar} = \mathbb{C}^{\mu}$ is a thickening of $M_{\mu}^{mar} = \{pt\}$. Therefore $G_{\mathbb{Z}}$ acts on M^{mar} , and (<u>Theorem</u> H '18:)

$$\{\pm \mathsf{id}\} \hookrightarrow G_{\mathbb{Z}} \twoheadrightarrow \mathsf{Aut}(M^{mar}, \circ, e, E)$$

Global unfolding of the simple elliptic singularities

 \exists Legendre families $f_{t_{\mu}}$ with $t_{\mu} \in \mathbb{C} - \{0, 1\}$.

Jaworski '86: \exists a global unfolding $F = f_{t_{\mu}} + \sum_{i=1}^{\mu-1} m_i t_i$ with

$$M^{alg} = \mathbb{C}^{\mu-1} \times (\mathbb{C} - \{0,1\}),$$

and $F = F(x, t) = F_t(x)$ is locally universal.

Its universal covering $M^{mar} := \mathbb{C}^{\mu-1} \times \mathbb{H}$.

is a thickening of $M_{\mu}^{mar} \cong \mathbb{H}$.

Therefore $G_{\mathbb{Z}}$ acts on M^{mar} , and (<u>Theorem</u> H '18:)

$$\{\pm \operatorname{id}\} \hookrightarrow G_{\mathbb{Z}} \twoheadrightarrow \operatorname{Aut}(M^{mar}, \circ, e, E)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Caustic and Maxwell stratum

Let M be the base space of a universal unfolding F of a sing. f.

 $M \supset \mathcal{K}_3 := \{t \in M \mid F_t \text{ has not } \mu \text{ } A_1 \text{-singularities} \}$ caustic.

$$\begin{array}{rcl} M & \supset & \mathcal{K}_2 := \overline{\{t \in \underline{M \,|\, F_t \text{ has } \mu \ A_1 \text{-singularities,}}} & \\ & & \overline{\text{but} \ < \mu \text{ critical values}\}} & \text{Maxwell stratum.} \end{array}$$

$$M \supset \mathcal{K}_3 \supset S_\mu := \{t \in M \,|\, F_t \text{ has only one singularity } x^0 \$$
and $F_t(x^0) = 0\} \ \mu$ -constant stratum.

 \mathcal{K}_3 and \mathcal{K}_2 are (irreducible) hypersurfaces.

On $M - \mathcal{K}_3$ the critical values $u_1, ..., u_\mu$ are locally *canonical* coordinates, there the multiplication is semisimple.

Lyashko-Looijenga map locally

Let M be the base space of a universal unfolding F of a sing. f.

 $t \mapsto \text{critical values of } F_t \mod \text{Sym}_{\mu}$

$$\begin{array}{cccc} LL : & \mathcal{M} & \to & \mathbb{C}^{\mu}/\operatorname{Sym}_{\mu} \\ & \cup & & \cup \\ & \mathcal{K}_3 \cup \mathcal{K}_2 & \to & \operatorname{discriminant} =: \mathcal{D}_{LL} \end{array}$$

It is locally biholomorphic on $M - (\mathcal{K}_3 \cup \mathcal{K}_2)$, branched of order 3 along \mathcal{K}_3 and of order 2 along \mathcal{K}_2 . (Looijenga '74, Lyashko '74 (published '79+'84))

Lyashko-Looijenga map globally for ADE

ADE-singularities:

<u>Theorem</u> (Looijenga '74): $LL^{alg} : M^{alg} \to \mathbb{C}^{\mu} / \operatorname{Sym}_{\mu}$ is a branched covering of order

$$\deg LL^{alg} = \frac{\mu!}{\prod_{i=1}^{\mu} \deg_{\mathbf{w}} t_i} = \frac{\mu! N_{Coxeter}^{\mu}}{|W|}.$$

Here $\mathbf{w} = (w_0, ..., w_n) \in (\mathbb{Q} \cap (0, \frac{1}{2}])^{n+1}$ is a weight system with $\deg_{\mathbf{w}} x_j = w_j$, $\deg_{\mathbf{w}} (f) = 1$, $\deg_{\mathbf{w}} t_i = 1 - \deg_{\mathbf{w}} m_i$.

The restriction

$$\mathit{LL}^{\mathit{alg}}: \mathit{M}^{\mathit{alg}} - (\mathcal{K}^{\mathit{alg}}_3 \cup \mathcal{K}^{\mathit{alg}}_2)
ightarrow \mathbb{C}^{\mu} / \operatorname{Sym}_{\mu} - \mathcal{D}_{\mathit{LL}}$$

is a covering.

Lyashko-Looijenga map globally for $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$

Simple elliptic singularities:

Theorem (Jaworski '86+'88): The restriction

$$LL^{alg}: M^{alg} - (\mathcal{K}_3^{alg} \cup \mathcal{K}_2^{alg}) o \mathbb{C}^{\mu} / \operatorname{Sym}_{\mu} - \mathcal{D}_{LL}$$

is a covering (of finite degree).

<u>Theorem</u> (H-Roucairol '07/'18): \exists partial compactification

$$egin{array}{rcl} \mathcal{M}^{orb} &\supset & \mathcal{M}^{alg} &\leftarrow & \mathbb{C}^{\mu-1} \ \downarrow & & \downarrow \ \mathbb{P}^1 &\supset & \mathbb{C}-\{0;1\} & t \end{array}$$

to an orbibundle s.t. $LL^{orb} : M^{orb} \to \mathbb{C}^{\mu}/Sym_{\mu}$ is (almost) a branched covering, except that 0-section $\to \{0\}$.

Degree of LL^{alg} for $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$

Jaworski's methods do not allow to calculate deg LL^{alg} . The calculation of the orbibundles M^{orb} allows it.

Theorem (H-Roucairol '07/'18):

$$\deg LL^{orb} = \deg LL^{alg} = \frac{\mu! \cdot \frac{1}{2} \cdot \sum_{i=2}^{\mu-1} \frac{1}{\deg_{\mathbf{w}} t_i}}{\prod_{i=2}^{\mu-1} \deg_{\mathbf{w}} t_i}$$

Here $\mathbf{w} = (w_0, ..., w_n) \in (\mathbb{Q} \cap (0, \frac{1}{2}])^{n+1}$ is a weight system with $\deg_{\mathbf{w}} x_j = w_j$, $\deg_{\mathbf{w}} (f) = 1$, $\deg_{\mathbf{w}} t_i = 1 - \deg_{\mathbf{w}} m_i$.

Intersection form and vanishing cycles

Simple elliptic singularities with $n \equiv 0 \mod 4$: The intersection form I is positive semi-definite. \sim For any n and any two vanishing cycles δ_1, δ_2 with $\delta_1 \neq \pm \delta_2$. $I(\delta_1, \delta_2) \in \{0, \pm 1, \pm 2\}.$

<u>Theorem</u> (Jaworski '88, H-Roucairol '18) Consider a path in $M^{alg} - (\mathcal{K}_3^{alg} \cup \mathcal{K}_2^{alg})$ tending to a generic point in $\mathcal{K}_3^{alg} \cup \mathcal{K}_2^{alg} \cup$ (fibers of M^{orb} above $0, 1, \infty$) such that u_i and u_{i+1} come together.

$$egin{aligned} &\mathcal{K}(\delta_i,\delta_{i+1}) = & & ext{generic point in} \ & 0 &\leftrightarrow & \mathcal{K}_2, \ & \pm 1 &\leftrightarrow & \mathcal{K}_3, \ & \pm 2 &\leftrightarrow & ext{fibers of } M^{orb} ext{ above } 0, 1, \infty \end{aligned}$$

Analogous result for ADE with $I(\delta_i, \delta_{i+1}) \in \{0, \pm 1\}$

Distinguished bases

Let M be the base space of a universal unfolding F of a sing f. Choose $t \in M - (\mathcal{K}_3 \cup \mathcal{K}_2)$,

choose a distinguished system of paths $\gamma_1, ..., \gamma_\mu$ in Δ :

Push vanishing cycles to $r > 0, r \in \partial \Delta$:

$$\delta_1, ..., \delta_\mu \in Ml(f) \cong H_n(F_t^{-1}(r), \mathbb{Z})$$

 $\underline{\delta} = (\delta_1, ..., \delta_{\mu})$ is a *distinguished basis* of the Milnor lattice, it is unique up to signs: $(\pm \delta_1, ..., \pm \delta_{\mu})$.

35 / 46

Stokes matrices and Coxeter-Dynkin diagrams

A distinguished basis \sim a *Stokes matrix S*,

$$S := (-1)^{\frac{(n+1)(n+2)}{2}} \cdot L(\underline{\delta}^{tr}, \underline{\delta})^t = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

 $S \longleftrightarrow$ Coxeter-Dynkin diagram (CDD) of $\underline{\delta}$:

Numbered vertices $1, ..., \mu$, the line between *i* and *j* is weighted by s_{ij} (no line if $s_{ij} = 0$). <u>Theorem</u> (Gabrielov, Lazzeri, Lê '73): All CDD's are connected.

Numbers $|\mathcal{B}|$ and $|\{\text{Stokes matrices}\}|$

 $\mathcal{B} := \{ \text{all distinguished bases in } MI(f) \},\$

(${\cal B}$ up to signs) = ${\cal B}/\{\pm 1\}^\mu,$

The braid group Br_{μ} acts on \mathcal{B} , \mathcal{B} is one orbit of $Br_{\mu} \ltimes \{\pm 1\}^{\mu}$. \mathcal{B} comes from one t, many $(\gamma_1, ..., \gamma_{\mu})$.

f	$ \mathcal{B}(f) $	{Stokes matrices}	S_{ij}	
ADE	finite	finite	$\in \{0,\pm 1\}$	
$ ilde{E}_6, ilde{E}_7, ilde{E}_8$	infinite	finite	$\in \{0,\pm 1,\pm 2\}$	
any other sing.	infinite	infinite	unbounded	
(Last line: Ebeling '18)				

Stokes regions

But now: many t, one special $(\gamma_1, ..., \gamma_\mu)$:

Now S is a Stokes matrix of the TEZP-structure of F_t . Get a map

$$LD: M - (\mathcal{K}_3 \cup \mathcal{K}_2) \rightarrow \mathcal{B}/\{\pm 1\}^{\mu}$$

 $t \mapsto (\underline{\delta} \pmod{\text{signs}} \text{ from these paths})$

The connected components of the fibers are *Stokes regions*, the boundaries are *Stokes walls*.

イロト イポト イヨト イヨト

Theorem: a bijection

LD induces

is a

$$\widetilde{\textit{LD}}: \{ \mathsf{Stokes regions} \}
ightarrow \mathcal{B} / \{ \pm 1 \}^{\mu}.$$

Theorem (Looijenga+Deligne '74 for ADE, H-Roucairol '07/'18 for $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$) \widetilde{LD}^{mar} : {Stokes regions in M^{mar} } $\rightarrow \mathcal{B}/\{\pm 1\}^{\mu}$ is a bijection.

Interpretation: $M^{mar} - (\mathcal{K}_3^{mar} \cup \mathcal{K}_2^{mar})$ is an *atlas of Stokes data*. Corollary

$$\frac{\widetilde{LD}^{mar}}{G_{\mathbb{Z}}}:\frac{\{\text{Stokes regions in } M^{mar}\}}{G_{\mathbb{Z}}} \to \frac{\{\text{Stokes matrices}\}}{\{\pm 1\}^{\mu}}$$

bijection.

イロト 不得 とくほと くほとう ほ

ADE: Looijenga '73

Looijenga 73: $M^{alg} \cong \mathbb{C}^{\mu}$. $LL^{alg} : M^{alg} \to \mathbb{C}^{\mu}/Sym_{\mu}$ is a branched covering of order $\frac{\mu!}{\prod_{i=1}^{\mu} \deg_{\mathbf{w}} t_{i}}$.

$$\rightsquigarrow$$
 LL^{alg} (one Stokes region) $\stackrel{1:1}{\rightarrow} (\mathbb{C}^{\mu}/Sym_{\mu} - \mathcal{D}_{LL}),$

 $\rightsquigarrow \quad \deg LL^{alg} = |\{\text{Stokes regions in } M^{alg}\}|$ and LL^{alg} branched covering $\rightsquigarrow \widetilde{LD}^{alg}$ is surjective.

For $A_{\mu} \widetilde{LD}^{alg}$ is injective. Question 73: Also for D_{μ} , E_{μ} ?

ADE: Deligne '74

In the case $n \equiv 0 \mod 4$, (MI(f), I) is the root lattice of type ADE.

Deligne 74: In that case

$$\mathcal{B} = \{ \mathsf{bases} \ \underline{\delta} \ \mathsf{of} \ \mathcal{M}(f) \, | \, \mathcal{I}(\delta_i, \delta_i) = 2, \ s_{\delta_1} \circ ... \circ s_{\delta_{\mu}} = \mathcal{M} \mathsf{on} \}$$

and

$$|\mathcal{B}/\{\pm 1\}^{\mu}| = \dots = \deg LL^{alg}.$$

 $\rightsquigarrow \widetilde{LD}^{alg}$: {Stokes regions in M^{alg} } $\rightarrow \mathcal{B}/\{\pm 1\}^{\mu}$ is a bijection.

ADE: Hertling '18

New argument for \widetilde{LD}^{mar} injective:

Let A and B be Stokes regions in M^{mar} with $\widetilde{LD}(A) = \widetilde{LD}(B)$. $\rightsquigarrow CDD(A) = CDD(B)$ and S(A) = S(B).

$$\stackrel{A}{\longrightarrow} \exists ! \text{ deck trf. } \psi_{M} : \stackrel{M}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{B}{\longrightarrow} \stackrel{M}{\longrightarrow} \mathcal{K}_{2} \cup \mathcal{K}_{3}$$
$$\stackrel{\downarrow}{\searrow} \stackrel{\swarrow}{\swarrow} \stackrel{\swarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\mathcal{D}_{LL}}$$

Proof with: $s_{ij} \in \{0, \pm 1\}$, $s_{ij} = 0 \leftrightarrow \mathcal{K}_2$, $s_{ij} = \pm 1 \leftrightarrow \mathcal{K}_3$.

> ・ロ ・ < 部 ・ < 言 ・ < 言 ・ 言 ・ う へ (* 42 / 46

ADE: Hertling '18

Recall the <u>Theorem</u> (H '18): Aut(M^{mar} , \circ , e, E) \cong $G_{\mathbb{Z}}/\{\pm id\}$.

 $\rightsquigarrow \psi_M$ comes from an element $\psi_{hom} \in \mathcal{G}_{\mathbb{Z}}$ with

$$\widetilde{LD}(B) = \psi_{hom}(\widetilde{LD}(A)).$$

Now $\widetilde{LD}(A) = \widetilde{LD}(B) \Rightarrow \psi_{hom} = \pm \operatorname{id} \Rightarrow \psi_M = \operatorname{id} \Rightarrow A = B$.

The proof for $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$ is analogous.

Tables for ADE

Sing	deg <i>LL^{alg}</i>	N _{Coxeter}	$ G_{\mathbb{Z}} $	{Stokes matrices}			
A_{μ}	$(\mu + 1)^{\mu - 1}$	$\mu + 1$	$2(\mu + 1)$	$2^{\mu-1} \cdot (\mu+1)^{\mu-2}$			
D_4	$2 \cdot 3^{4}$	6	36	$2^{3} \cdot 3^{2}$			
$D_{\mu}(\mu\geq5)$	$2(\mu-1)^{\mu}$	$2(\mu - 1)$	$4(\mu-1)$	$2^{\mu-1} \cdot (\mu-1)^{\mu-1}$			
E_6	$2^9 \cdot 3^4$	12	24	$2^{12} \cdot 3^3$			
E ₇	$2 \cdot 3^{12}$	18	18	$2^{7} \cdot 3^{10}$			
E_8	$2\cdot 3^5\cdot 5^7$	30	30	$2^8\cdot 3^4\cdot 5^6$			
deg LL^{alg} $(= \mathcal{B}/\{\pm1\}^{\mu})$: Looijenga '74,							
N _{Coxeter} : classical,							
$ G_{\mathbb{Z}} $: I.S. Lifshits '81, Yu Jianming '90, H '11,							
$ \{ ext{Stokes matrices}\} (= 2^{\mu} \cdot \deg LL^{alg}/ G_{\mathbb{Z}}): ext{Deligne '74}.$							

Tables for $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$

$$\begin{split} |\{\text{Stokes matrices}\}| &= 2^{\mu-1} \cdot |\{\text{Stokes matrices}\}/\{\pm 1\}^{\mu}|, \\ |\{\text{Stokes matrices}\}/\{\pm 1\}^{\mu}| &= \frac{\deg LL^{alg}}{\deg(M^{alg} \to M^{mar}/G_{\mathbb{Z}})}. \end{split}$$

 $\begin{array}{c|cccc} Sing & \deg LL^{alg} & \deg(M^{alg} \to M^{mar}/G_{\mathbb{Z}}) & |\{Stokes \ matrices\}| \\ \hline \tilde{E}_6 & 2^2 \cdot 3^{11} \cdot 5 \cdot 7 & 6 \cdot 2 \cdot 3 \cdot 3^2 = 326 & 2^7 \cdot 3^7 \cdot 5 \cdot 7 \\ \hline \tilde{E}_7 & 2^{18} \cdot 3 \cdot 5^3 \cdot 7 & 6 \cdot 1 \cdot 4 \cdot 2^2 = 96 & 2^{21} \cdot 5^3 \cdot 7 \\ \hline \tilde{E}_8 & 2^9 \cdot 3^{10} \cdot 7 \cdot 101 & 6 \cdot 1 \cdot 6 \cdot 1^2 = 36 & 2^{16} \cdot 3^8 \cdot 7 \cdot 101 \end{array}$

deg LL^{alg} and deg $(M^{alg} \rightarrow M^{mar}/G_{\mathbb{Z}})$: H-Roucairol '07/'18. |{Stokes matrices}|: \tilde{E}_6 Kluitmann '83, \tilde{E}_7 Kluitmann '87, \tilde{E}_8 H-Roucairol '07/'18.

Interpretation: Torelli result at semisimple points

Choose $t \in M^{mar} - (\mathcal{K}_3^{mar} \cup \mathcal{K}_2^{mar})$.

 \rightsquigarrow The TEZP-structure of F_t is a hol vector bundle $H^{osc}|_{\mathbb{C}\times\{t\}}$ with merom conn ∇^{osc} with a semisimple pole of order 2 at 0.

 \rightsquigarrow The marked TEZP-structure is equivalent to

 $\begin{cases} (u_1, ..., u_{\mu}) = (\text{eigenvalues of the pole part}) \\ LD(t) \in \mathcal{B}/\{\pm 1\}^{\mu} : (\text{the Stokes structure of the conn}) \end{cases}$

The bijections \widetilde{LD}^{mar} : {Stokes regions in M^{mar} } $\rightarrow \mathcal{B}/\{\pm 1\}^{\mu}$ and LL^{mar} : (One Stokes region) $\rightarrow \mathbb{C}^{\mu}/\operatorname{Sym}_{\mu} - \mathcal{D}_{LL}$ together give a global Torelli result for the marked semisimple TEZP-structures above $M^{mar} - (\mathcal{K}_3^{mar} \cup \mathcal{K}_2^{mar})$.