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Plan of the 1st talk

e Isolated hypersurface singularity, topology, Milnor lattice
e Universal unfolding, F-manifold

e Gauss-Manin connection, Fourier-Laplace transformation,
Brieskorn lattice

e Marked singularities, their moduli spaces (Teichmiiller spaces)
e s-constant monodromy group

e Period map, Torelli type conjectures and results

Partly joint work with Falko Gauss.
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Plan of the 2nd talk

Global unfoldings of simple and simple elliptic singularities

Lyashko-Looijenga map locally and globally
(ADE: Looijenga, Ex: Jaworski, Hertling-Roucairol)

Distinguished bases, Stokes matrices

Stokes regions, Theorem: a bijection
(Interpretation: a Torelli result at semisimple points)

e ADE: Approach of Looijenga and Deligne '73/'74
e ADE and E,: Approach of Hertling '07/'18

Partly joint work with Céline Roucairol.
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Isolated hypersurface singularity
f : (C"1,0) — (C,0) holomorphic, isolated singularity at 0,

f
Qr = O(Cn-%—170/(88)<.) Jacobi algebra, p :=dim Q¢ Milnor number.

Choose a good representative f : X — A,

A =(very small disk in C),
X = (small ball in C™1) N f~1(A),
X, =fYr)C X forr € A.

e € X
q.l-

For 7 € A*, the Milnor fibre X, is homotopy equivalent to \/“ Ssn.

The Milnor lattice is MI(f) := H® ¥ "=9)(X,,Z) = Z# (some
r>0)
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Milnor lattice

On MI(f) we have the monodromy Mon  (quasiunipotent),
the intersection form / ((—1)"-symmetric),
the Seifert form L (unimodular).

L determines Mon and / by

L(Mon(a), b) = (=1)""1L(b,a), I(a,b) = —L(a, b)+(—1)"TLL(b,a).

Gy (f) := Aut(MI(f), Mon, I, L) = Aut(MI(f), L).

Well known: Monc, Mong, Ig, Lg.
Fairly well known: I7.
Badly known: Mongy, L.
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Universal unfolding

Choose my, ..., m, € Ocni1g s.t. [mi],...,[m,] € Qf is a basis of
Qf. Define F: X x M — C by

I
F=F(x,t)=F(x)=f(x)+>_ miti: X x M = C,
i=1

where M C C* is an open neighborhood of 0.

Theorem: F is a universal unfolding, it induces any unfolding of f.

+ @ 2%
@§ \jc S wlFex)=p

i x€eCrit(F;)
v Dt

\\-_,___,,_.—,_..,_...__,—m
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(-constant stratum, modality, Arnold’s classification

For generic t € M, F; has p A;-singularities
(i.e. x¢ + ... + x2 up to coordinate changes).
Their values under F are locally canonical coordinates uy, ..., u,.

M>S,, = {te M|F; has only one singularity x°
and F¢(x°) = 0} p-constant stratum
modality of (f) := dimS,.

Arnold '72: classification of all singularities (up to coordinate
changes) with modality in {0,1,2}.

mod (f) = 0 : A-series, D-series, Eg, E7, Eg.

mod (f) =1: Eg, E7, Eg, Tpqr, 14 exceptional types.

mod (f) = 2 : 14+6 exceptional types, 8 series.

7 /46



Structure on M: Multiplication

) OF OF
C:=Crit(F) == {(x,t) e X x T| PR v 0}.
———_ CCXxM smooth
iy finite, flat of degree
M
Tm =, m.O¢c
0 OF
= % |on) -t
N\ ~
™™ = B Qe
x€Crit(Ft)

multiplication o < multiplication
unit field e  « [1]
Euler field E  +  [F]
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F-manifold

(M, o, e, E) is an F-manifold with Euler field (Def. H-Manin '98):

M a complex manifold.

o a hol. commutative and associative multiplication on the hol.
tangent bundle TM with eo = id.

An integrability condition for hol. vector fields X, Y € Tp:

Liexoy (o) = X o Liey(o) + Y o Liex(o). (*)

And Lieg(c) =1-o.
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Implications of the integrability condition ()

(1) FOI’ t e M TtM =~ @XGCrit(Ft) Q(th)
is the unique decomposition of T;M into local algebras.

() = It extends to a local decomposition

(M, t) = H (MX), 0) of F-manifolds.
x€Crit(Ft)

(2) C = (analytic spectrum of (M,o,€)) C T*M.

(x¥) < it is a Lagrange subvariety (in the gen. semisimple case).

Theorem (Arnold '72/Hérmander '71):

Anal. sp. smooth <= the F-manifold comes from a singularity.
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2 additional structures on M (details not this time)

(1) Gauss-Manin conn. and an idea of Kyoji Saito (early 80ies) and
a trick + choice of Morihiko Saito '83

= a holomorphic flat metric g on M

s.t. (M,o,e, E,g) becomes a Frobenius manifold with Euler field
= an F-manifold with Kyoji Saito’s flat structure.

(I1) Gauss-Manin conn. and a trick of S. Cecotti & C. Vafa '91
= a natural hermitian pos. def. metric h on M(r - f) for |r| > 0

s.t. the hol. sectional curvature is < 0 everywhere and < 0 near S,
except for the direction e  (Liana David & H 15).
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Gauss-Manin connection of a universal unfolding F

Discriminant D := F x id(C) € C x M.
Flat cohomology bundle |, yecxm—p H"(F Y(7), Q).

3 canonical extension to a hol. vector bundle H™ on C x M via

hol. differential forms: w € Q;’<+X1M/M ~» the section s®M[w] with

w

(sMLu)(r, 1), 8(r, 1)) = /5 =

here &(7,t) C F;}(7) € X x {t} is a (vanishing) cycle.

The Gauss-Manin conn. VM has a logarithmic pole along D.
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A partial Fourier-Laplace transformation

A partial Fourier-Laplace transformation ~»

a hol. vector bundle H%*¢ on C x M with sections s°*“[w] with
(in the case of ADE or Ej)

(sl ). F(57.0) = /r e

79
here r(|—§|, t) C X x {t} a Lefschetz thimble (in direction é)
Also:
V¢ flat conn. with a pole of Poincaré rank 1 along {0} x M.
HZ>¢ — C* x M a flat Z-lattice bundle dual to a bundle
generated by (hom. classes) of Lefschetz thimbles.
P a flat pairing (from intersecting Lefschetz thimbles).
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TEZP-structure ~ non-commutative Hodge structure
(H*¢ — C x M,V Hy — C* x M, P) = a " TEZP"-structure,
(Twistor - Extension - Z-lattice - Pairing)

S. Cecotti & C. Vafa: tt* geometry '91+4'93.

H '02 rephrased it as TERP-structure.
Sabbah '05, Sevenheck '05 and Mochizuki '08 studied it, too.

Katzarkov-Kontsevich-Pantev '08 rephrased it as
non-commutative Hodge structure.

(HM — C x M, VM) (Ho¢ — C x M, V)
A Cx o}
:rr' po& .
(o} ovder]) {0} x M
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Brieskorn lattice

Brieskorn lattice

Hl/ f I HGM _ QS'(_‘:OI
b(f) = l(c,0)x{0} = W

= (inverse Fourier-Laplace transform of TEZP(0)),

free C{7}-module of rank y, free C{{0-1}}-module of rank p.

H> := {global flat multivalued sections in H%*¢|c, (0} },

p-dim C-vector space, H> D Hz°® D H;°,

with monodromy Mon = Mongs - Mon,,, Mon, = eV N nilpotent,

and a polarizing form S.

15 /46



PMHS and nilpotent orbit of PHS

Brieskorn lattice and (Kashiwara-Malgrange) V*-filtration
~> a polarized mixed Hodge structure (F®, W,, S, N) on H*
with automorphism Mongs.

Varchenko '80, M. Saito & Scherk-Steenbrink '82, polarization H '97.

Observation Cecotti-Vafa '91, H '02:

Real structure & flat structure on H%¢|cx«

~> twin along {oco} x M of extension along {0} x M.
~s bundle Hos¢ — P! x M, real analytic in t, hol. in z.

Observations H '02:

PMHS «~ nilpotent orbit of PHS (Cattani-Kaplan-Schmid '85)
~ (H>®, HR°, S, F*(r - fo)) is a (pure) PHS for |r| > 0.

~ HOSC|P1X{t}(r- fo) trivial for t € M.
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Torelli type conjecture

The tuple  (MI(f), Seifert form L, H{(f)) ~ TEZP(0) s rich.

It is a generalization of a polarized mixed Hodge structure
and can be seen as a non-commutative Hodge structure.

Torelli type conjecture (H '91): Up to isomorphism, it determines
the germ f up to hol. coordinate changes.

H since '91: Proof for special families. Infinitesimal Torelli result.
Generic Torelli result. Version for marked singularities.

~» Study families of singularities.
Study period maps and the action of the group Gg.
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Torelli result

Theorem (H '92+4'93): The Torelli type conjecture is true for all
singularities with modality < 2 and for the families containing the
singularities > 7o x7" with ged(a;, aj) = 1 for i # J.

Proofs by calculations of two types:

(1) Period maps for families with the Gauss-Manin connection.

(2) Gz := Aut(MI(f), L) =7,
and its action on a classifying space for Brieskorn lattices.
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Marked singularities

Fix a singularity fo.
Definition (H '11)

(a) Its u-homotopy class is

{singularities f |3 a p-constant family connecting f and f}.

(b) A marked singularity is a pair (f,+p) with f asin (a) and

p: (MI(f),L) S (MI(f), L).
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M7 () and M, (%)

Definition (H '11)

(c) Two marked singularities (1, +p1) and (£, £p2) are
right equivalent (~g)

<= 3 biholomorphic ¢ : (C"*1,0) — (C"10) s.t.

(crtl0) 5 (C"t1)0) MI(f) 8" MI(f)
LA 1h 1 p L £p2
C = C Mi(fo) = Mi(fy)

(d)
M (f5) %2 {(f, +p) as above}/ ~g .

(e) ~pg for f gives

M, (fo) := {f in the p-homotopy class of fo}/ ~r .
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Results on M (fy) and M,,(f))

Theorem ((a) H '99, (b)-(d) H '11)
(a) M, (fy) can be constructed as an analytic geometric quotient.
(b) M (fy) can be constructed as an analytic geometric quotient.

(c) Gz(fo) acts properly discontinuously on M (fy) via
¥ € Gu(fo) : [(f, £p)] = [(f, £2p 0 p)].

Myu(fo) = M (fo)/ Gz(fo)-

d) Locally M (fy) is isomorphic to a u-constant stratum.

M ]
Locally M,,(fy) is isomorphic to a (u-constant stratum)/(a finite
group).
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M7 (fo) for the singularities with modality 0, 1, 2

(Joint work with Falko Gauss '15+'17)

Singularity family Isom class of M7 (fy)

ADE sing point

Eﬁ, E7, Eg = simple ell sing H

Tpgr C

exceptional unimodal sing C

exceptional bimodal sing C?

quadrangle sing (H — (discrete set)) x C

series, generic, e.g. E3, with 18 fJp C* x C

subseries, e.g. E3 p with 18|p countably many copies of C* x C

Analogue of Teichmiiller space for Riemann surfaces,
but in general (?) not contractible and co many components.
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pi-constant monodromy group G™¥(f;)
Mather '68: ;(f,0) < oo = f ~g juy1f = (u+ 1)-jet of f.
Choose fy with isol sing, p = u(fy), Gz = Gz(f).

J(f) = component of {g € C[x]aeg<p+1|1(g) = p}
which contains j,1fy, (big p-constant family)
m(J(h)) — Gz
G™"(fy) := (image in Gz, *id) C Gy
= {g € Gz | + g transversal mon of a p-constant family}.

Lemma
G™" = subgroup of Gy, which acts on the component of
M7 (fo) which contains [(fo, =id)]. Thus

Gz/G™ () <£> {components of I\/I[L"a’(fb)}.
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Classifying space Dg,; for Brieskorn lattices, period map

Fix a sing f5. ~» A classifying space Dpg,; for Brieskorn lattices
with PMHS with same invariants (spectral pairs) as H{(fp) (H 99).

DBL — (CNl
!

Dpmps — +— CM2
!

I1; Dpis,

Hol period map BL: M[L”a’(fo) — Dpi, f+ marked HJ(f).

Theorem (M. Saito '89 weaker statement, H '01)

Infinitesimal Torelli result: BL is an immersion.
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Torelli type conjectures
Conjecture A (H '91): Hy(f) determines f up to ~pg.
Equiv. (H 00): The period map
BL/Gg : Mu(fo) — Dpi(fo)/Gz(f),  [f] — Hg(f) mod isom,
is injective.
Conjecture B (H '11): BL: M (fy) — Dp is injective.

Lemma (H '11): B = A.

Theorem (A: H '92+'93, B: Gauss+H '11+'15+'17)

A and B are true for the singularities with modality < 2 and for the
Brieskorn-Pham singularities with coprime exponents.
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Present and future (?) methods
Present methods:
(i) Determination of Gz and G™" (both difficult).

(i) Gauss-Manin connection calculations for the period map BL
(rather easy, classical).

Future (?) methods:

(iii) Thicken M to a germ of a y-dim F-manifold M™" along
M7 which is everywhere locally the base of a universal
unfolding. Glue it with a global space of semisimple Stokes
regions.

(iv) Extend Torelli type conjectures to points beyond M,
especially to semisimple points.

There Stokes structure instead of PMHS and H{'.
Compare semisimple points and points in M/’

26
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Global unfolding of the simple singularities (ADE)

From now on, most of the time only the simple singularities (ADE)
and the simple elliptic singularities (Eﬁ, E;, Eg, 1-par- -families)
are considered. There | have results on (iii) and (iv).

Each ADE-singularity f(x) has a global unfolding

F(x,t) = F(x +th,,

mj € C[xg, ..., X| suitable monomials, t = (t1,...,t,) € M = C*.

Here M = M?%& = M™" = CH is a thickening of M = {pt}.
Therefore Gz acts on M™", and (Theorem H '18:)

{+id} < Gz — Aut(M™ o, e, E)
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Global unfolding of the simple elliptic singularities
3 Legendre families f;, with t, € C —{0,1}.
Jaworski '86: 3 a global unfolding F = f;, + Zﬁ‘;ll mjt; with
M3 = Ccr=1 x (C - {0,1}),
and F = F(x,t) = F¢(x) is locally universal.

Its universal covering M™" := C+~1 x H.
is a thickening of M = H.

Therefore Gz acts on M™?" and (Theorem H '18:)

{£id} — Gz — Aut(M™" o, e, E)
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Caustic and Maxwell stratum

Let M be the base space of a universal unfolding F of a sing. f.

M D Ksz:={te€ M|F; has not pu A;j-singularities} caustic.

M D Kj:={t € M]|F; has u A;-singularities,

but < p critical values} Maxwell stratum.

M > K3>S5,:={te M|F; has only one singularity x°
and F;(x°) =0} p-constant stratum.

K3 and Ky are (irreducible) hypersurfaces.

On M — K3 the critical values uq, ..., u, are locally canonical
coordinates, there the multiplication is semisimple.
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Lyashko-Looijenga map locally

Let M be the base space of a universal unfolding F of a sing. f.

t — critical values of F; mod Symu
LL: M — CH/Sym,,
U U

K3 UKy, — discriminant =: Dy

It is locally biholomorphic on M — (K3 U K2),
branched of order 3 along K3 and of order 2 along /.
(Looijenga '74, Lyashko '74 (published '79+'84))
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Lyashko-Looijenga map globally for ADE

ADE-singularities:

Theorem (Looijenga '74): LL8 : M3& — CH/ Sym,, is a branched
covering of order

! INE
de LLalg _ M 'u Coxeter .
: M degut; (W)
Here w = (wo, ..., wn) € (QN (0, 3])"*! is a weight system with

deg,, xj = wj, deg,(f) =1, deg, tj =1 — deg,, m;.

The restriction
LLYE : M8 — (KC3® UK3®) — C*/Sym, —Dy;

is a covering.
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Lyashko-Looijenga map globally for Es. B, Eg

Simple elliptic singularities:
Theorem (Jaworski '86+'88): The restriction
LLYE . ME — (K38 UK3®E) — C*/Sym, —Dy;

is a covering (of finite degree).
Theorem (H-Roucairol '07/'18): 3 partial compactification

Morb B Malg — (CN*l

\ 1
P! > C-{0;1} t

to an orbibundle s.t. LL°? : Mo — CH/Sym,,
is (almost) a branched covering, except that O-section — {0}.
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Degree of LL?% for E;, E;, Eg

Jaworski's methods do not allow to calculate deg LL?.
The calculation of the orbibundles M°™® allows it.

Theorem (H-Roucairol '07/'18):

ZI =2 degW t;

deg LL°® = deg L1768 =
¢ ¢ H¢:21 degw ti

Here w = (wp, ..., w,) € (QN (0, 3])"+! is a weight system with
deg,, xj = w;, deg,(f) =1, deg, t; =1 — deg,, m;.
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Intersection form and vanishing cycles
Simple elliptic singularities with n =0 mod 4:
The intersection form [ is positive semi-definite.

~» For any n and any two vanishing cycles 01, 62 with 01 # +0d5.

/((51, (52) S {O, +1, i2}.

Theorem (Jaworski '88, H-Roucairol '18) Consider a path in
Male — (K;Ig U IC;Ig) tending to a generic point in

IC;Ig U ,Cg/g U (fibers of M°™® above 0,1, 00)

such that uj and uj11 come together.

1(6j,0i4+1) = generic point in
0 Ko,
+1 Ks,
+2 fibers of M°™ above 0,1, 00

T T3

Analogous result for ADE with /(d;,0;4+1) € {0,+1}.
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Distinguished bases

Let M be the base space of a universal unfolding F of a sing f.
Choose t € M — (K3 U K2),

choose a distinguished system of paths 71, ...,7, in A:

Push vanishing cycles to r > 0, r € 0A:
81, -0 € MI(F) = Ho(F7(r), Z)

0 = (01, ...,0,) is a distinguished basis of the Milnor lattice,

it is unique up to signs: (301, ..., +0,).
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Stokes matrices and Coxeter-Dynkin diagrams

A distinguished basis ~» a Stokes matrix S,

(n+1)(n+2)

Si=(-1)"2 . L(3",8) =

S <— Coxeter-Dynkin diagram (CDD) of ¢ :

Numbered vertices 1, ..., u,
the line between i and j is weighted by s;; (no line if s;; = 0).

Theorem (Gabrielov, Lazzeri, L& '73): All CDD's are connected.
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Numbers |B| and |{Stokes matrices}|

B := {all distinguished bases in MI(f)},
(B up to signs) = B/{£1}*,
The braid group Br, acts on B, B is one orbit of Br, x {£1}*.

B comes from one t, many (71, ..., 7).

f |B(f)|  |{Stokes matrices}| S;

ADE finite  finite € {0,+1}

Ee, By, Eg infinite  finite € {0,+1,+2}
any other sing. infinite infinite unbounded

(Last line: Ebeling '18)
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Stokes regions

But now: many t, one special (71, ...,7.):

b>0

Now S is a Stokes matrix of the TEZP-structure of F;.
Get a map

LD:M—(K3sUKy) — B/{£1}*
t — (J (mod signs) from these paths)

The connected components of the fibers are Stokes regions,
the boundaries are Stokes walls.
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Theorem: a bijection
LD induces

LD : {Stokes regions} — B/{+1}*.

Theorem (Loouenga+Dellgne '74 for ADE,
H- Roucalrol '07/'18 for Es, E7 Eg)
D™ - : {Stokes regions in M™"} — B/{£1}* is a bijection.

Interpretation: M™" — (KC5@" U IC5@") is an atlas of Stokes data.

Corollary

D™ ~ {Stokes regions in MM} . {Stokes matrices}
GZ - GZ {:i:].}“

is a bijection.
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ADE: Looijenga '73

Looijenga 73: M2 =~ Cr. L% . M3 — CH/Sym,, is a

. |
branched covering of order ——&——.
& [T, degw &

s LL78(one Stokes region) 2 (C*/Sym, — Dy1),

~  deg LL%%8 = |{Stokes regions in M€}

—~ al
and LL?8 branched covering ~~ LD’ is surjective.

—~ al,
For A, LD™* is injective. Question 73: Also for D,,, E,?
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ADE: Deligne '74

In the case n =0 mod 4, (MI(f), 1) is the root lattice of type ADE.

Deligne 74: In that case
B = {bases § of MI(f)|1(d;,0;) =2, ss, ©...0s5, = Mon}
and

|B/{£1}*| = ... = deg LL?®.

—~ al
~ LD™® : {Stokes regions in M@} — B/{-1}* is a bijection.
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ADE: Hertling '18

New argument for o™ injective:
Let A and B be Stokes regions in M™" with LND(A) = LND(B)
~» CDD(A) = CDD(B) and S(A) = S(B).

A — B
w30 deck tef. hpy: N — ) M > /cgiug
Cu/sym,u D) DLL

Proof with: s;; € {0, £1} ,
S,'J':0<—>/C2, S,‘j::I:].HICg,.
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ADE: Hertling '18

Recall the Theorem (H '18): Aut(M™" o, e, E) = Gz /{£id}.

~» 1hpy comes from an element Ypom € Gz with
LD(B) = hom(LD(A)).

Now LD(A) = LD(B) = tpom = £id = thyy = id = A = B.

The proof for Eg, By, Eg is analogous.
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Tables for ADE

Sing deg LL?8 Ncoxeter |Gzl |{Stokes matrices}|
A (L+1 1 p+1 2zu+1) 271 (u+ 12
Dy 2.3% 6 36 23.32
Du(p>5) 2(u-1" 2(n-1) 4p-1) 21 (u—1p"
Es 29 .34 12 24 212. 33
E; 2.312 18 18 27 .310
Es 2.35.57 30 30 28.3%.56

deg LL?%8 (= |B/{£1}*|): Looijenga '74,

Ncoxeter: classical,

|Gz|: I.S. Lifshits '81, Yu Jianming '90, H '11,

|{Stokes matrices}| (= 2" -degLL?%¢/|Gz|): Deligne '74.
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Tables for Eg, E7, Eg

|{Stokes matrices}| = 2#~1 . |{Stokes matrices}/{%1}*|,

_ deg LL%
n —
|{Stokes matrices}/{£+1}/| = deg(M7E — Mmr G’
Sing degLL® deg(M?'8 — M™ /G;)  |{Stokes matrices}|
Ee 22-3%.5.7  6.2.3-32=326 27.37.5.7
E; 2®.3.5%.7  6-1-4-22=06 221.53.7

Eg 29.310.7.101 6-1-6-12=136 216.38.7.101

deg LL?'¢ and deg(l\/l"i’g — MM/ Gy): H—RNoucairol '07/'18.
|[{Stokes matrices}|: §6 Kluitmann '83, E7 Kluitmann '87,
Eg H-Roucairol '07/'18.
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Interpretation: Torelli result at semisimple points

Choose t € M™a — (KCTar U KCpr).

~+ The TEZP-structure of F; is a hol vector bundle H%¢|¢ (4
with merom conn V¢ with a semisimple pole of order 2 at 0.

~» The marked TEZP-structure is equivalent to

(u1, ..., u,) = (eigenvalues of the pole part)
LD(t) € B/{x1}" : (the Stokes structure of the conn)

The bijections LD {Stokes regions in MM} — B/{+1}#
and LL™" : (One Stokes region) — C*/Sym , —Dy;

together give a global Torelli result for the marked semisimple
TEZP-structures above M™" — (IC5@" U K5").
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