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Plan of the 1st talk

• Isolated hypersurface singularity, topology, Milnor lattice

• Universal unfolding, F-manifold

• Gauss-Manin connection, Fourier-Laplace transformation,
Brieskorn lattice

• Marked singularities, their moduli spaces (Teichmüller spaces)

• µ-constant monodromy group

• Period map, Torelli type conjectures and results

Partly joint work with Falko Gauss.
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Plan of the 2nd talk

• Global unfoldings of simple and simple elliptic singularities

• Lyashko-Looijenga map locally and globally
(ADE: Looijenga, Ẽk : Jaworski, Hertling-Roucairol)

• Distinguished bases, Stokes matrices

• Stokes regions, Theorem: a bijection
(Interpretation: a Torelli result at semisimple points)

• ADE: Approach of Looijenga and Deligne ’73/’74

• ADE and Ẽk : Approach of Hertling ’07/’18

Partly joint work with Céline Roucairol.
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Isolated hypersurface singularity
f : (Cn+1, 0)→ (C, 0) holomorphic, isolated singularity at 0,

Qf := OCn+1,0/(
∂f

∂xi
) Jacobi algebra, µ := dimQf Milnor number.

Choose a good representative f : X → ∆,

∆ =(very small disk in C),
X = (small ball in Cn+1) ∩ f −1(∆),
Xτ = f −1(τ) ⊂ X for τ ∈ ∆.

For τ ∈ ∆∗, the Milnor fibre Xτ is homotopy equivalent to
∨
µ S

n.

The Milnor lattice is Ml(f ) := H
(red if n=0)
n (Xr ,Z) ∼= Zµ (some

r > 0)
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Milnor lattice

On Ml(f ) we have the monodromy Mon (quasiunipotent),
the intersection form I ((−1)n-symmetric),
the Seifert form L (unimodular).

L determines Mon and I by

L(Mon(a), b) = (−1)n+1L(b, a), I (a, b) = −L(a, b)+(−1)n+1L(b, a).

GZ(f ) := Aut(Ml(f ),Mon, I , L) = Aut(Ml(f ), L).

Well known: MonC,MonR, IR, LR.
Fairly well known: IZ.
Badly known: MonZ, LZ.
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Universal unfolding

Choose m1, ...,mµ ∈ OCn+1,0 s.t. [m1], ..., [mµ] ∈ Qf is a basis of
Qf . Define F : X ×M → C by

F = F (x , t) = Ft(x) = f (x) +

µ∑
i=1

mi ti : X ×M → C,

where M ⊂ Cµ is an open neighborhood of 0.

Theorem: F is a universal unfolding, it induces any unfolding of f .

∑
x∈Crit(Ft)

µ(Ft , x) = µ
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µ-constant stratum, modality, Arnold’s classification

For generic t ∈ M, Ft has µ A1-singularities
(i.e. x2

0 + ...+ x2
n up to coordinate changes).

Their values under F are locally canonical coordinates u1, ..., uµ.

M ⊃ Sµ := {t ∈ M |Ft has only one singularity x0

and Ft(x
0) = 0} µ-constant stratum

modality of (f ) := dim Sµ.

Arnold ’72: classification of all singularities (up to coordinate
changes) with modality in {0, 1, 2}.

mod (f ) = 0 : A-series, D-series, E6,E7,E8.
mod (f ) = 1 : Ẽ6, Ẽ7, Ẽ8,Tpqr , 14 exceptional types.
mod (f ) = 2 : 14+6 exceptional types, 8 series.
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Structure on M : Multiplication

C := Crit(F ) := {(x , t) ∈ X × T | ∂F
∂x0

, ...,
∂F

∂xn
= 0}.

C ⊂ X ×M smooth
↓ π finite, flat of degree µ
M

TM
∼=−→ π∗OC

∂

∂ti
7→

[
∂F

∂ti

]
= [mi ]

TtM
∼=7→

⊕
x∈Crit(Ft)

Q(Ft ,x)

multiplication ◦ ← multiplication

unit field e ← [1]

Euler field E ← [F ]
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F-manifold

(M, ◦, e,E ) is an F-manifold with Euler field (Def. H-Manin ’98):

M a complex manifold.
◦ a hol. commutative and associative multiplication on the hol.
tangent bundle TM with e◦ = id.
An integrability condition for hol. vector fields X ,Y ∈ TM :

LieX◦Y (◦) = X ◦ LieY (◦) + Y ◦ LieX (◦). (∗)

And LieE (◦) = 1 · ◦.

9 / 46



Implications of the integrability condition (∗)

(1) For t ∈ M TtM ∼=
⊕

x∈Crit(Ft)
Q(Ft ,x)

is the unique decomposition of TtM into local algebras.

(∗)⇒ It extends to a local decomposition

(M, t) =
∏

x∈Crit(Ft)

(M(x), 0) of F-manifolds.

(2) C ∼= (analytic spectrum of (M, ◦, e)) ⊂ T ∗M.

(∗) ⇐⇒ it is a Lagrange subvariety (in the gen. semisimple case).

Theorem (Arnold ’72/Hörmander ’71):

Anal. sp. smooth ⇐⇒ the F-manifold comes from a singularity.
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2 additional structures on M (details not this time)

(I) Gauss-Manin conn. and an idea of Kyoji Saito (early 80ies) and
a trick + choice of Morihiko Saito ’83

⇒ a holomorphic flat metric g on M

s.t. (M, ◦, e,E , g) becomes a Frobenius manifold with Euler field
= an F -manifold with Kyoji Saito’s flat structure.

(II) Gauss-Manin conn. and a trick of S. Cecotti & C. Vafa ’91

⇒ a natural hermitian pos. def. metric h on M(r · f ) for |r | � 0

s.t. the hol. sectional curvature is ≤ 0 everywhere and < 0 near Sµ
except for the direction e (Liana David & H 15).
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Gauss-Manin connection of a universal unfolding F

Discriminant D := F × id(C ) ⊂ C×M.

Flat cohomology bundle
⋃

(τ,t)∈C×M−D Hn(F−1
t (τ),C).

∃ canonical extension to a hol. vector bundle HGM on C×M via
hol. differential forms: ω ∈ Ωn+1

X×M/M ; the section sGM [ω] with

〈sGM [ω](τ, t), δ(τ, t)〉 :=

∫
δ(τ,t)

ω

dFt
,

here δ(τ, t) ⊂ F−1
t (τ) ⊂ X × {t} is a (vanishing) cycle.

The Gauss-Manin conn. ∇GM has a logarithmic pole along D.
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A partial Fourier-Laplace transformation

A partial Fourier-Laplace transformation ;

a hol. vector bundle Hosc on C×M with sections sosc [ω] with
(in the case of ADE or Ẽk)

〈sosc [ω](z , t), Γ(
z

|z |
, t)〉 :=

∫
Γ( z
|z| ,t)

e−Ft/zω,

here Γ( z
|z| , t) ⊂ X × {t} a Lefschetz thimble (in direction z

|z|)

Also:
∇osc flat conn. with a pole of Poincaré rank 1 along {0} ×M.
Hosc
Z → C∗ ×M a flat Z-lattice bundle dual to a bundle

generated by (hom. classes) of Lefschetz thimbles.
P a flat pairing (from intersecting Lefschetz thimbles).
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TEZP-structure ∼ non-commutative Hodge structure

(Hosc → C×M,∇osc ,HZ → C∗ ×M,P) = a ”TEZP”-structure,

(Twistor - Extension - Z-lattice - Pairing)

S. Cecotti & C. Vafa: tt∗ geometry ’91+’93.
H ’02 rephrased it as TERP-structure.
Sabbah ’05, Sevenheck ’05 and Mochizuki ’08 studied it, too.
Katzarkov-Kontsevich-Pantev ’08 rephrased it as
non-commutative Hodge structure.

(HGM → C×M,∇GM) (Hosc → C×M,∇osc)
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Brieskorn lattice

Brieskorn lattice

H ′′0 (f ) := HGM |(C,0)×{0} =
Ωn+1
X ,0

df ∧ dΩn−1
X ,0

= (inverse Fourier-Laplace transform of TEZP(0)),

free C{τ}-module of rank µ, free C{{∂−1
τ }}-module of rank µ.

H∞ := {global flat multivalued sections in Hosc |C×{0}},

µ-dim C-vector space, H∞ ⊃ H∞R ⊃ H∞Z ,
with monodromy Mon = Monss ·Monu,Monu = eN ,N nilpotent,
and a polarizing form S .
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PMHS and nilpotent orbit of PHS

Brieskorn lattice and (Kashiwara-Malgrange) V •-filtration
; a polarized mixed Hodge structure (F •,W•,S ,N) on H∞

with automorphism Monss .

Varchenko ’80, M. Saito & Scherk-Steenbrink ’82, polarization H ’97.

Observation Cecotti-Vafa ’91, H ’02:
Real structure & flat structure on Hosc |C∗×M
; twin along {∞} ×M of extension along {0} ×M.
; bundle H̃osc → P1 ×M, real analytic in t, hol. in z .

Observations H ’02:
PMHS ! nilpotent orbit of PHS (Cattani-Kaplan-Schmid ’85)
; (H∞,H∞R , S ,F

•(r · f0)) is a (pure) PHS for |r | � 0.

; H̃osc |P1×{t}(r · f0) trivial for t ∈ M.
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Torelli type conjecture

The tuple (Ml(f ),Seifert form L,H ′′0 (f )) ∼ TEZP(0) is rich.

It is a generalization of a polarized mixed Hodge structure
and can be seen as a non-commutative Hodge structure.

Torelli type conjecture (H ’91): Up to isomorphism, it determines
the germ f up to hol. coordinate changes.

H since ’91: Proof for special families. Infinitesimal Torelli result.
Generic Torelli result. Version for marked singularities.

; Study families of singularities.
Study period maps and the action of the group GZ.
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Torelli result

Theorem (H ’92+’93): The Torelli type conjecture is true for all
singularities with modality ≤ 2 and for the families containing the
singularities

∑n
i=0 x

ai
i with gcd(ai , aj) = 1 for i 6= j .

Proofs by calculations of two types:

(1) Period maps for families with the Gauss-Manin connection.

(2) GZ := Aut(Ml(f ), L) =?,
and its action on a classifying space for Brieskorn lattices.
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Marked singularities

Fix a singularity f0.

Definition (H ’11)

(a) Its µ-homotopy class is

{singularities f | ∃ a µ-constant family connecting f and f0}.

(b) A marked singularity is a pair (f ,±ρ) with f as in (a) and

ρ : (Ml(f ), L)
∼=→ (Ml(f0), L).
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Mmar
µ (f0) and Mµ(f0)

Definition (H ’11)

(c) Two marked singularities (f1,±ρ1) and (f2,±ρ2) are
right equivalent (∼R)

⇐⇒ ∃ biholomorphic ϕ : (Cn+1, 0)→ (Cn+1, 0) s.t.

(Cn+1, 0)
ϕ→ (Cn+1, 0)

↓ f1 ↓ f2
C = C

,
Ml(f1)

ϕhom→ Ml(f2)
↓ ρ1 ↓ ±ρ2

Ml(f0) = Ml(f0)

(d)

Mmar
µ (f0)

as a set
:= {(f ,±ρ) as above}/ ∼R .

(e) ∼R for f gives

Mµ(f0) := {f in the µ-homotopy class of f0}/ ∼R .
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Results on Mmar
µ (f0) and Mµ(f0)

Theorem ((a) H ’99, (b)-(d) H ’11)

(a) Mµ(f0) can be constructed as an analytic geometric quotient.

(b) Mmar
µ (f0) can be constructed as an analytic geometric quotient.

(c) GZ(f0) acts properly discontinuously on Mmar
µ (f0) via

ψ ∈ GZ(f0) : [(f ,±ρ)] 7→ [(f ,±ψ ◦ ρ)].

Mµ(f0) = Mmar
µ (f0)/GZ(f0).

(d) Locally Mmar
µ (f0) is isomorphic to a µ-constant stratum.

Locally Mµ(f0) is isomorphic to a (µ-constant stratum)/(a finite
group).
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Mmar
µ (f0) for the singularities with modality 0, 1, 2

(Joint work with Falko Gauss ’15+’17)

Singularity family Isom class of Mmar
µ (f0)

ADE sing point

Ẽ6, Ẽ7, Ẽ8 = simple ell sing H
Tpqr C
exceptional unimodal sing C
exceptional bimodal sing C2

quadrangle sing (H− (discrete set))× C
series, generic, e.g. E3,p with 18 6 |p C∗ × C
subseries, e.g. E3,p with 18|p countably many copies of C∗ × C

Analogue of Teichmüller space for Riemann surfaces,
but in general (?) not contractible and ∞ many components.
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µ-constant monodromy group Gmar(f0)
Mather ’68: µ(f , 0) <∞ ⇒ f ∼R jµ+1f := (µ+ 1)-jet of f .

Choose f0 with isol sing, µ := µ(f0), GZ := GZ(f0).

J(f0) := component of {g ∈ C[x ]deg≤µ+1 |µ(g) = µ}
which contains jµ+1f0, (big µ-constant family)

π1(J(f0)) → GZ

Gmar (f0) := 〈image in GZ,± id〉 ⊂ GZ

= {g ∈ GZ | ± g transversal mon of a µ-constant family}.

Lemma
Gmar = subgroup of GZ which acts on the component of

Mmar
µ (f0) which contains [(f0,± id)]. Thus

GZ/G
mar (f0)

1:1←→ {components of Mmar
µ (f0)}.
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Classifying space DBL for Brieskorn lattices, period map

Fix a sing f0. ; A classifying space DBL for Brieskorn lattices
with PMHS with same invariants (spectral pairs) as H ′′0 (f0) (H 99).

DBL ←− CN1

↓
DPMHS ←− CN2

↓∏
i DPHSi

Hol period map BL : Mmar
µ (f0)→ DBL, f 7→ marked H ′′0 (f ).

Theorem (M. Saito ’89 weaker statement, H ’01)

Infinitesimal Torelli result: BL is an immersion.
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Torelli type conjectures

Conjecture A (H ’91): H ′′0 (f ) determines f up to ∼R .
Equiv. (H 00): The period map

BL/GZ : Mµ(f0)→ DBL(f0)/GZ(f0), [f ] 7→ H ′′0 (f ) mod isom,

is injective.

Conjecture B (H ’11): BL : Mmar
µ (f0)→ DBL is injective.

Lemma (H ’11): B ⇒ A.

Theorem (A: H ’92+’93, B: Gauss+H ’11+’15+’17)

A and B are true for the singularities with modality ≤ 2 and for the
Brieskorn-Pham singularities with coprime exponents.
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Present and future (?) methods
Present methods:

(i) Determination of GZ and Gmar (both difficult).

(ii) Gauss-Manin connection calculations for the period map BL
(rather easy, classical).

Future (?) methods:

(iii) Thicken Mmar
µ to a germ of a µ-dim F-manifold Mmar along

Mmar
µ which is everywhere locally the base of a universal

unfolding. Glue it with a global space of semisimple Stokes
regions.

(iv) Extend Torelli type conjectures to points beyond Mmar
µ ,

especially to semisimple points.
There Stokes structure instead of PMHS and H ′′0 .
Compare semisimple points and points in Mmar

µ .
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Global unfolding of the simple singularities (ADE)

From now on, most of the time only the simple singularities (ADE)
and the simple elliptic singularities (Ẽ6, Ẽ7, Ẽ8, 1-par-families)
are considered. There I have results on (iii) and (iv).

Each ADE-singularity f (x) has a global unfolding

F (x , t) = Ft(x) = f (x) +

µ∑
i=1

mi ti ,

mi ∈ C[x0, ..., xn] suitable monomials, t = (t1, ..., tµ) ∈ M = Cµ.

Here M = Malg = Mmar = Cµ is a thickening of Mmar
µ = {pt}.

Therefore GZ acts on Mmar , and (Theorem H ’18:)

{± id} ↪→ GZ � Aut(Mmar , ◦, e,E )
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Global unfolding of the simple elliptic singularities

∃ Legendre families ftµ with tµ ∈ C− {0, 1}.

Jaworski ’86: ∃ a global unfolding F = ftµ +
∑µ−1

i=1 mi ti with

Malg = Cµ−1 × (C− {0, 1}),

and F = F (x , t) = Ft(x) is locally universal.

Its universal covering Mmar := Cµ−1 ×H.

is a thickening of Mmar
µ
∼= H.

Therefore GZ acts on Mmar , and (Theorem H ’18:)

{± id} ↪→ GZ � Aut(Mmar , ◦, e,E )

28 / 46



Caustic and Maxwell stratum

Let M be the base space of a universal unfolding F of a sing. f .

M ⊃ K3 := {t ∈ M |Ft has not µ A1-singularities} caustic.

M ⊃ K2 := {t ∈ M |Ft has µ A1-singularities,

but < µ critical values} Maxwell stratum.

M ⊃ K3 ⊃ Sµ := {t ∈ M |Ft has only one singularity x0

and Ft(x
0) = 0} µ-constant stratum.

K3 and K2 are (irreducible) hypersurfaces.

On M −K3 the critical values u1, ..., uµ are locally canonical
coordinates, there the multiplication is semisimple.
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Lyashko-Looijenga map locally

Let M be the base space of a universal unfolding F of a sing. f .

t 7→ critical values of Ft mod Symµ

LL : M → Cµ/Symµ

∪ ∪
K3 ∪ K2 → discriminant =: DLL

It is locally biholomorphic on M − (K3 ∪ K2),

branched of order 3 along K3 and of order 2 along K2.

(Looijenga ’74, Lyashko ’74 (published ’79+’84))
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Lyashko-Looijenga map globally for ADE

ADE-singularities:

Theorem (Looijenga ’74): LLalg : Malg → Cµ/ Symµ is a branched
covering of order

deg LLalg =
µ!∏µ

i=1 degw ti
=
µ!Nµ

Coxeter

|W |
.

Here w = (w0, ...,wn) ∈ (Q ∩ (0, 1
2 ])n+1 is a weight system with

degw xj = wj , degw(f ) = 1, degw ti = 1− degw mi .

The restriction

LLalg : Malg − (Kalg
3 ∪ Kalg

2 )→ Cµ/ Symµ−DLL

is a covering.
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Lyashko-Looijenga map globally for Ẽ6, Ẽ7, Ẽ8

Simple elliptic singularities:

Theorem (Jaworski ’86+’88): The restriction

LLalg : Malg − (Kalg
3 ∪ Kalg

2 )→ Cµ/ Symµ−DLL

is a covering (of finite degree).

Theorem (H-Roucairol ’07/’18): ∃ partial compactification

Morb ⊃ Malg ← Cµ−1

↓ ↓
P1 ⊃ C− {0; 1} t

to an orbibundle s.t. LLorb : Morb → Cµ/Symµ

is (almost) a branched covering, except that 0-section → {0}.
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Degree of LLalg for Ẽ6, Ẽ7, Ẽ8

Jaworski’s methods do not allow to calculate deg LLalg .
The calculation of the orbibundles Morb allows it.

Theorem (H-Roucairol ’07/’18):

deg LLorb = deg LLalg =
µ! · 1

2 ·
∑µ−1

i=2
1

degw ti∏µ−1
i=2 degw ti

.

Here w = (w0, ...,wn) ∈ (Q ∩ (0, 1
2 ])n+1 is a weight system with

degw xj = wj , degw(f ) = 1, degw ti = 1− degw mi .
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Intersection form and vanishing cycles
Simple elliptic singularities with n ≡ 0 mod 4:
The intersection form I is positive semi-definite.
; For any n and any two vanishing cycles δ1, δ2 with δ1 6= ±δ2.
I (δ1, δ2) ∈ {0,±1,±2}.

Theorem (Jaworski ’88, H-Roucairol ’18) Consider a path in

Malg − (Kalg
3 ∪ Kalg

2 ) tending to a generic point in

Kalg
3 ∪ Kalg

2 ∪ (fibers of Morb above 0, 1,∞)
such that ui and ui+1 come together.

I (δi , δi+1) = generic point in

0 ↔ K2,

±1 ↔ K3,

±2 ↔ fibers of Morb above 0, 1,∞

Analogous result for ADE with I (δi , δi+1) ∈ {0,±1}.
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Distinguished bases
Let M be the base space of a universal unfolding F of a sing f .

Choose t ∈ M − (K3 ∪ K2),

choose a distinguished system of paths γ1, ..., γµ in ∆:

Push vanishing cycles to r > 0, r ∈ ∂∆:

δ1, ..., δµ ∈ Ml(f ) ∼= Hn(F−1
t (r),Z)

δ = (δ1, ..., δµ) is a distinguished basis of the Milnor lattice,

it is unique up to signs: (±δ1, ...,±δµ).
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Stokes matrices and Coxeter-Dynkin diagrams

A distinguished basis ; a Stokes matrix S ,

S := (−1)
(n+1)(n+2)

2 · L(δtr , δ)t =

1 ∗
. . .

0 1

 .

S ←→ Coxeter-Dynkin diagram (CDD) of δ :

Numbered vertices 1, ..., µ,
the line between i and j is weighted by sij (no line if sij = 0).

Theorem (Gabrielov, Lazzeri, Lê ’73): All CDD’s are connected.
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Numbers |B| and |{Stokes matrices}|

B := {all distinguished bases in Ml(f )},

(B up to signs) = B/{±1}µ,

The braid group Brµ acts on B, B is one orbit of Brµ n {±1}µ.

B comes from one t, many (γ1, ..., γµ).

f |B(f )| |{Stokes matrices}| Sij
ADE finite finite ∈ {0,±1}
Ẽ6, Ẽ7, Ẽ8 infinite finite ∈ {0,±1,±2}
any other sing. infinite infinite unbounded

(Last line: Ebeling ’18)
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Stokes regions

But now: many t, one special (γ1, ..., γµ):

Now S is a Stokes matrix of the TEZP-structure of Ft .
Get a map

LD : M − (K3 ∪ K2) → B/{±1}µ

t 7→ (δ (mod signs) from these paths)

The connected components of the fibers are Stokes regions,
the boundaries are Stokes walls.
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Theorem: a bijection

LD induces

L̃D : {Stokes regions} → B/{±1}µ.

Theorem (Looijenga+Deligne ’74 for ADE,
H-Roucairol ’07/’18 for Ẽ6, Ẽ7, Ẽ8)

L̃D
mar

: {Stokes regions in Mmar} → B/{±1}µ is a bijection.

Interpretation: Mmar − (Kmar
3 ∪ Kmar

2 ) is an atlas of Stokes data.

Corollary

L̃D
mar

GZ
:
{Stokes regions in Mmar}

GZ
→ {Stokes matrices}

{±1}µ

is a bijection.
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ADE: Looijenga ’73

Looijenga 73: Malg ∼= Cµ. LLalg : Malg → Cµ/Symµ is a

branched covering of order µ!∏µ
i=1 degw ti

.

 LLalg (one Stokes region)
1:1→ (Cµ/Symµ −DLL),

 deg LLalg = |{Stokes regions in Malg}|

and LLalg branched covering  L̃D
alg

is surjective.

For Aµ L̃D
alg

is injective. Question 73: Also for Dµ, Eµ?
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ADE: Deligne ’74

In the case n ≡ 0 mod 4, (Ml(f ), I ) is the root lattice of type ADE.

Deligne 74: In that case

B = {bases δ of Ml(f ) | I (δi , δi ) = 2, sδ1 ◦ ... ◦ sδµ = Mon}

and

|B/{±1}µ| = ... = deg LLalg .

 L̃D
alg

: {Stokes regions in Malg} → B/{±1}µ is a bijection.

41 / 46



ADE: Hertling ’18

New argument for L̃D
mar

injective:

Let A and B be Stokes regions in Mmar with L̃D(A) = L̃D(B).

 CDD(A) = CDD(B) and S(A) = S(B).

 ∃! deck trf. ψM :

A 7→ B
M → M ⊃ K2 ∪ K3

↘ ↙ ↓
Cµ/Symµ ⊃ DLL

Proof with: sij ∈ {0,±1} ,
sij = 0↔ K2, sij = ±1↔ K3.
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ADE: Hertling ’18

Recall the Theorem (H ’18): Aut(Mmar , ◦, e,E ) ∼= GZ/{± id}.

; ψM comes from an element ψhom ∈ GZ with

L̃D(B) = ψhom(L̃D(A)).

Now L̃D(A) = L̃D(B)⇒ ψhom = ± id⇒ ψM = id⇒ A = B.

The proof for Ẽ6, Ẽ7, Ẽ8 is analogous.
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Tables for ADE

Sing deg LLalg NCoxeter |GZ| |{Stokes matrices}|
Aµ (µ+ 1)µ−1 µ+ 1 2(µ+ 1) 2µ−1 · (µ+ 1)µ−2

D4 2 · 34 6 36 23 · 32

Dµ (µ ≥ 5) 2(µ− 1)µ 2(µ− 1) 4(µ− 1) 2µ−1 · (µ− 1)µ−1

E6 29 · 34 12 24 212 · 33

E7 2 · 312 18 18 27 · 310

E8 2 · 35 · 57 30 30 28 · 34 · 56

deg LLalg (= |B/{±1}µ|): Looijenga ’74,
NCoxeter : classical,
|GZ|: I.S. Lifshits ’81, Yu Jianming ’90, H ’11,
|{Stokes matrices}| (= 2µ · deg LLalg/|GZ|): Deligne ’74.
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Tables for Ẽ6, Ẽ7, Ẽ8

|{Stokes matrices}| = 2µ−1 · |{Stokes matrices}/{±1}µ|,

|{Stokes matrices}/{±1}µ| =
deg LLalg

deg(Malg → Mmar/GZ)
.

Sing deg LLalg deg(Malg → Mmar/GZ) |{Stokes matrices}|
Ẽ6 22 · 311 · 5 · 7 6 · 2 · 3 · 32 = 326 27 · 37 · 5 · 7
Ẽ7 218 · 3 · 53 · 7 6 · 1 · 4 · 22 = 96 221 · 53 · 7
Ẽ8 29 · 310 · 7 · 101 6 · 1 · 6 · 12 = 36 216 · 38 · 7 · 101

deg LLalg and deg(Malg → Mmar/GZ): H-Roucairol ’07/’18.
|{Stokes matrices}|: Ẽ6 Kluitmann ’83, Ẽ7 Kluitmann ’87,

Ẽ8 H-Roucairol ’07/’18.
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Interpretation: Torelli result at semisimple points

Choose t ∈ Mmar − (Kmar
3 ∪ Kmar

2 ).

; The TEZP-structure of Ft is a hol vector bundle Hosc |C×{t}
with merom conn ∇osc with a semisimple pole of order 2 at 0.

; The marked TEZP-structure is equivalent to{
(u1, ..., uµ) = (eigenvalues of the pole part)
LD(t) ∈ B/{±1}µ : (the Stokes structure of the conn)

The bijections L̃D
mar

: {Stokes regions in Mmar} → B/{±1}µ

and LLmar : (One Stokes region)→ Cµ/Symµ−DLL

together give a global Torelli result for the marked semisimple
TEZP-structures above Mmar − (Kmar

3 ∪ Kmar
2 ).
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