NEARLY GORENSTEIN RINGS AND ALMOST GORENSTEIN RINGS AND OF DIMENSION 2 – METHODS USING RESOLUTIONS OF SINGULARITIES

KEI-ICHI WATANABE (NIHON UNIVERSITY AND MEIJI UNIVERSITY)

This is a joint work in progress with Tomohiro Okuma (Yamagata Univ.) and Ken-ichi Yoshida (Nihon Univ.) (partially [6]).

In this talk, we always assume that (A, \mathfrak{m}) is an excellent normal local ring of dimension 2, containing an algebraic closed field isomorphic to A/\mathfrak{m} .

Let $f: X \to \operatorname{Spec}(A)$ be a resolution of singularities of A and $\mathbb{E} = \bigcup_{i=1}^{r} E_i$ be the exceptional set of f, where E_i $(1 \le i \le r)$ be the irreducible components of \mathbb{E} .

Recently, 2 concepts on Cohen-Macaulay rings which try to determine which Cohen-Macaulay rings are "near" to Gorenstein rings came up.

- (1) Nearly Gorenstein Rings (Herzog, Hibi, and Stamate (2019), [5]),
- (2) Almost Gorenstein Rings ((Barucci and Fröberg (1997) [2] in dimension 1 and Goto, Takahashi and Taniguchi (Endo) in dimension ≥ 1 [3]),)

We analyze these properties using the methods of resolution of singularities – cohomology of coherent shaves and intersection theory.

1. NEARLY GORENSTEIN RINGS

For an A-module M, the Trace ideal of M is defined by

 $\operatorname{Tr}_A(M) = \{f(m) \mid m \in M \text{ and } f \in \operatorname{Hom}_A(M, A)\}$

In particular, we are interested in Trace ideals of the canonical module K_A os A. Note that $\text{Tr}_A(K_A)$ is always **m**-primary ideal in our case and $\text{Tr}_A(K_A) = A$ if and only if A is Gorenstein.

Definition 1.1. ([5]) A is nearly Gorenstein if A is Cohen-Macaulay and if $\operatorname{Tr}_A(K_A) \supset \mathfrak{m}$.

Our main Thorem is;

Theorem 1.2. Assume that A is a 2-dimensional rational singularity which is not Gorenstein and that X is the minimal resolution of A. Then we can describe $\operatorname{Tr}_A(K_A)$ as

$$\operatorname{Tr}_A(K_A) = H^0(X, \mathcal{O}_X(-\mathbb{F})),$$

where K_X is the canonical divisor of X and \mathbb{F} is the **minimal** positive cycle such that $K_X + \mathbb{F}$ is anti-nef. Namely, $(K_X + \mathbb{F})E_i \leq 0$ for every E_i .

In particular, A is nearly Gorenstein if and only if $K_X + \mathbb{Z}_0$ is anti-nef, where Z_0 is the fundamental cycle (minimal positive anti-nef cycle).

Example 1.3. Let A be a rational triple point (multiplicity 3). Then the dual graph of \mathbb{E} is star-shaped ([1]), all E_i are \mathbb{P}^1 and there is unique E_i with $E_i^2 = -3$ (otherwise $E_i^2 = -2$). Then A is nearly Gorenstein if and only if (-3) curve is an end curve (intersects to only one E_i). By the classification of rational triple points

in [1], rational triple points are classified into 9 families and among them 4 families are nearly Gorenstein.

2. Almost Gorenstein Rings.

Almost Gorenstein rings are defined as follows;

Definition 2.1. ([3]) Let A be a Cohen-Macaulay ring of dimension d and let $\omega \in K_A$ a "general" element of K_A . Then A is almost Gorenstein if $U := K_A/\omega A$ is an Ulrich module of dimension d-1, where we say U is an Ulrich module if the multiplicity (as an d-1-dimensional A-module) is equal to $\mu(U) = \text{type}(A) - 1$, the number of minimal generators of U. (Almost Gorenstein rings of dimension 1 are nearly Gorenstein. But in dimension 2, the situation is very different.)

Our main Theorem is;

Theorem 2.2. Let (A, \mathfrak{m}) be a normal 2-dimensional ring. Then A is almost Gorenstein in the following cases.

- (1) rational singularities (this is already proved in [3]).
- (2) *elliptic singularities*
- (3) \mathfrak{m} is a p_g -ideal (multiplicity of A is $\mathrm{embdim}(A) 1$ and \mathfrak{m}^n are integrally closed for all $n \geq 2$).

The following example is interesting but at the same time, show that the notion of almost Gorenstein ring is very complicated in dimension 2.

Example 2.3. ([4] Chapter 5, §2). Let C be a smooth curve over $k = A/\mathfrak{m}$ (of genus $g \geq 2$) and $P \in C$ be a closed point. We define

$$R(C,P) = \bigoplus_{n \ge 0} H^0(C, \mathcal{O}_C(nP))T^n \subset k(C)[T].$$

and $H_{C,P} := \{n \geq 0 \mid h^0(\mathcal{O}_C(nP)) > h^0(\mathcal{O}_C((n-1)P))\}$ the "Weierstrass semigroup" of $P \in C$. Then R(C, P) (localized at the unique graded maximal ideal) is almost Gorensein if and only if $H_{C,P}$ is almost symmetric; namely, if 2g(H) =F(H) + type(H), where g(H) = g(C) and $F(H) = \max\{n \in \mathbb{Z} \mid n \notin H\}$.

References

- [1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129–136.
- [2] Valentina Barucci and Ralf Fröberg, One-dimensional almost Gorenstein rings, J. Algebra 188 (1997), no. 2, 418–442.
- [3] Shiro Goto, Ryo Takahashi, and Naoki Taniguchi, Almost Gorenstein rings—towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), no. 7, 2666–2712.
- [4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179–213.
- [5] Jürgen Herzog, Takayuki Hibi, and Dumitru I. Stamate, The trace of the canonical module, Israel J. Math. 233 (2019), no. 1, 133–165.
- [6] Tomohiro Okuma, Kei-ichi Watanabe, and Ken-ichi Yoshida, A geometric description of almost gorensteinness for two-dimensional normal singularities, arXiv:2410.23911.

Email address: watnbkei@gmail.com