

Chrm1

Developmental Expression of Muscarinic Receptors in the Basolateral Amygdala

Steven Miller

Uniformed Services University of the Health Sciences February 8th, 2013

Dentity Score | Fight | Medium | High | Medium | Medium

ISH Semi-Quantitative Analysis

Mouse Developmental ISH in BLA

= 5

Chrm5 not detected

The Question

• Why do immature rats have cholinergic seizures faster compared to adults and why is atropine sulfate a more effective anticonvulsant in these animals?

Hypothesis

 The expression of the excitatory muscarinic receptors is higher in early development compared to the inhibitory subtypes

Methods

- Manually annotate the basolateral amygdala throughout mouse postnatal development using amygdala genes of interest from the non-human primate study as well as finding genes that are selective for the basolateral amygdala from AGEA
- Perform a semi-quantitative analysis of muscarinic receptor expression throughout development in the basolateral amygdala

Conclusions

 The inhibitory M2 mAChR (Chrm2) does not reach its greatest density and intensity of expression until maturation and may contribute to the susceptibility of immature animals to seizures.

Future Directions

- Analyze ISH for: Acetylcholinesterase, Choline Transporter, Choline Acetyltransferase, Vesicular Acetylcholine transferase
- Developmental transcriptome for cholinergic markers
- ISH Data for non-human primate, and developing human brain