

Commissioning of Compact-ERL injector

2013.11.28
Beam physics workshop/OIST
Yosuke Honda

- An ERL test accelerator (cERL) has been constructed in KEK.
 - The injector part started operation since Apr. 2013.
- Activity of cERL has not been reported well in past domestic conferences, here might be a chance.
 - Sorry in advance, if this presentation is not appropriate.
- A future proposal at cERL

Compact ERL

- Energy Recovery Linac, a new scheme of accelerator.
 - Can be a high current CW linac
 - One of the application is a light source
- Purpose of compact ERL
 - Development of critical components
 - Restructure/training of a new group of ERL
- Construction started 2008, shield completed 2012.
- Injector commissioning has started since Apr.2013.

Parameters of the Compact ERL

	Parameters				
Beam energy (upgradability)	35 MeV 125 MeV (single loop) 245 MeV (double loops)				
Injection energy	5 MeV (10 MeV in future)				
Average current	10 mA (100 mA in future)				
Acc. gradient (main linac)	15 MV/m				
Normalized emittance	0.1 mm·mrad (7.7 pC) 1 mm·mrad (77 pC)				
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)				
RF frequency	1.3 GHz				

Injector components (gun)

- Just to quickly remind our system
 - DC photo cathode gun, developed at JAEA
 - Operate at 390kV (can reach 500kV)
 - NEA-GaAs cathode

Injector components (low energy line)

- Just to quickly remind our system
 - Space between the gun and the SC acc.
 - Trying to minimize the length of low energy beam transport line.
 - Needed instruments
 - Solenoids, Buncher, laser input, screen

Injector components(SC accelerator)

- Just to quickly remind our system
 - Three, 2-cell cavities
 - Typically operate at 7 MV/m
 - All cavities operate at on-crest in this operation period.
 - 5.6MeV at the exit of accelerator

Injector and diagnostic line

- Beam diagnostic line for 5MeV beam
- What to measure : monitor
 - Beam current: Faraday cup
 - Beam energy: Corrector magnets
 - Profile: Ce:YAG Screens
 - Position: Quad mags BBA
 - Emittance: Slit scanners
 - Bunch length: RF deflector
 - Energy spread: Screen at dump line

Laser spot on photo cathode

- Before beam operation, laser spot on the cathode was directly checked with a camera.
 - (Impossible if it is an ideal mirror surface, but possible in reality.)
 - Adjusted to be center of the cathode.
- Laser spot profile
 - Imaging a pinhole, designed to be a flat circular distribution.
 - Not perfect, but seems ok.

in an ideal case

Operational mode for commissioning

- Handling CW beam is difficult at first.
 - Can not use destructive monitor.
 - Small loss can be a fatal damage.
- Macro-pulse mode for commissioning.
 - Can use screen monitors, you can move beam as you like
 - Accelerator system works CW, only laser works gated structure.
- Typical structure at tuning/measurement
 - 1.3GHz, 1 μs (1300 bunches), 0~10mA, 5Hz

1ms pulsed pump

First beam transport

- Loss monitors were spread over the beam line.
 - cheap detector of Csl and photo-diode
- It turned out to be a reliable tool for the very first time.

CsI(TI), 5mm x 5mm x 5mm

shield box

aperture

Beam orbit tuning

- BPM did not work at low charge, beam tuning was done using screens.
- Once beam was seen on a screen, orbit tuning was straight forward.
 - Beam based tuning of Quads and Solenoids
 - Varying the magnet, and adjust the upstream correctors
 - <1mm including alignment errors</p>

Acc. phase tuning

- There are three acc, cavities.
- At the very beginning, you need to find accelerating phase.
- Varying (shaking) corrector and scan RF phase. You can find the phase of maximum energy.

SC1 7MV/m, SC2,3 OFF

SC1 7MV/m, SC2,3 7MV/m

Beam energy confirmation

- After all the cavities were set to be on-crest, we needed to confirm beam energy after acceleration
- Use gun voltage as a reference. (It is calibrated with a reference register.)
 - Measure steering kick with a screen.
 - Using a same set of steering-screen pair for SC acc. on/off measurement, systematic errors are cancelled.
- 5.6 MeV kinetic energy confirmed.

Beam current measurement

- Faraday cup in the diagnostic line
 - 50Ω readout, 0.5V corresponds to 10mA beam.
- Comparing laser power and beam current, you can tell Q.E.
 - 3.5% after more than 1 month of operation (low charge operation)

Emittance measurement at gun

- Waist scan (Solenoid)
- Input
 - K from magnetic measurement
 - L from geometry
- In order to check systematics, measurements were repeated with several sets of solenoid and screen.
- This measurement was done at very low charge.

Gun emittance result

- Beam image rotates while changing the solenoid. So, horizontal and vertical have no exact meaning.
- Anyway, normalized emittance $0.07 \mu \text{ m}$ (+-10%).
- We believe the cathode keeps good quality.

Emittance at the diagnostic line

- Waist scan by Quads. Measurement at low charge.
- Turned out orbit in acc. cavity affect the emittance.
 - Beam based orbit tuning of cavities improved the emittance to 0.2 μ m, still factor 2 to improve.
 - Since there are three cavities in the cryo module, they can not be perfectly aligned in a line.

Emittance measurement (slit)

Slit scan result

- Scanning the slit position (x), density map I(x,x') was obtained.
- Emittance ε was calculated from I(x,x') by the definition.
- To check the measurement system, results of quad scan and slit scan for the same beam are compared.
- $0.2 \mu m$ normalized emittance at the diagnostic line (low charge), factor 2 increase compared with the upstream of acc.

X,

Emittance result at high charge

Bunch length measurement

- RF deflector
 - 2.6GHz dipole mode
 - Q-loaded 7000 (time constant $0.4 \mu s$)
 - $10\mu s$, 600W pulsed operation
 - Kick in vertical direction

reference down-mixed

down-mixed

Faraday cup Laser pulse down-mixed

Bunch length measurement

- Special defocusing optics for improving resolution in a limiting distance.
- 0.7ps resolution (can be better)

Laser pulse duration

- At space-charge dominated case, emittance optimization can be done by laser shape.
 - Flat time structure is preferable than gaussian.
 - 16ps flat pulse is assumed in the simulation
- Laser pulse
 - 3.4 ps rms gaussian
 - 16 ps flat-like structure by pulse stacking
- Confirmed by beam measurement at buncher off condition

YVO₄ crystal

Energy spread

- · Dispersion at dump line was for energy spread measurement
 - $\eta = 0.83$ m at the screen MS7
 - Beam focus by a quad at upstream of the bending, QMGE04
- Momentum jitter was improved to be 6x10^-5 after phase optimization.

Before phase fine tuning

After fine tuning of on-crest

Longitudinal phase space

- Combine bunch length and energy measurements.
 - Deflector kicks in vertical
 - Bend kicks in horizontal
- Easily confirm on-crest condition

Beam measurement

- Most of the first commissioning period was for debugging components.
- Finally at the last week, there was a chance to take systematic data in a fixed beam condition.
- At bunch charge 7.7pC, emittance, bunch length, energy spread were measured.

	日付	バンチ電荷	レーザー時間幅	バンチャー電圧	SL1	SL2	測定内容
		[pC/b]	[ps]	[kV]	[A]	[A]	
A	6/21	0.02, 0.77	3 (RMS, gauss)	40	7.2, 8.7	3.0	エミッタンス
\mathbf{B}	6/26	3.1, 7.7	3 (RMS, gauss)	50	8.3	4.99	エミッタンス
\mathbf{B}	6/26	$0.03 \sim 7.7$	3 (RMS, gauss)	50	8.3	4.99	バンチ長
\mathbf{B}	6/26	$0.03 \sim 7.7$	3 (RMS, gauss)	50	8.3	4.99	エネルギー拡がり
\mathbf{C}	6/27	$0.03 \sim 7.7$	16 (FWHM, flat)	50	8.3	4.99	バンチ長
\mathbf{C}	6/27	$0.03 \sim 7.7$	16 (FWHM, flat)	50	8.3	4.99	エネルギー拡がり
D	6/28	1.5,7.7	16 (FWHM, flat)	50	8.3	4.99	エミッタンス

Beam performance results

- Not too terrible. Relieved as a first commissioning.
 - At 7.7 pC/bunch
 - 0.8μ m emittance
 - 7ps (RMS) bunch length
 - 0.15% (RMS) energy spread
- Apparent discrepancy from simulation.

Beam profile at high charge

- Profile distortion at high bunch charge
- All quads are turned off, so it should be a round beam
- Distortion seen especially at high charge and high buncher voltage...

_

Some trials

- Buncher voltage changes the emittance.
- No significant effect of buncher on/off at low charge.
- It seems there is something at high charge AND high buncher voltage.

Summary of commissioning

- Operation
 - no significant trouble
 - quick start than expected, done most of the planned
- Beam performance result
 - normalized emittance
 - At gun 390keV, low charge, 0.1 μ m
 - At diagnostic line 5.6MeV, low charge 0.2μ m
 - 7.7pC/bunch, 0.8μ m
 - bunch length
 - 7.7pC/bunch, 7ps(RMS)
 - energy spread
 - 7.7pC/bunch, 0.15%(RMS)
- Training
 - not much done...

Future proposal at cERL

- 250MeV, 2-loop system was what originally planned
 - One possibility is a coherent VUV radiation source
 - CW, high repetition rate, seeded scheme
- Present situation
 - 20MeV 1-loop system
 - First priority is demonstration of a laser-Compton X-ray source.
 - High power optical cavity for Compton target will be established.
- This optical cavity technique can be used for seeding energy modulation
 - laser and beam are the same direction (difference from Compton configuration)

Energy modulator

- Higher transverse laser mode acceleration
 - Longitudinal field in laser light
 - Old laser acceleration idea
 - not powerful for an accelerator
 - but enough for giving energy modulation
- Optical cavity
 - high efficiency and continuous operation system
 - well defined transverse mode
 - no net loading
- Specification and configuration
 - Almost same as the laser-Compton case
 - 10MW peak, wavelength $1 \mu \text{m}$, spot $100 \mu \text{m}$
 - good enough for modulation of ~50keV, comparable with the initial energy spread

$$E_z = \frac{1}{kw_0^2} \sqrt{\frac{P}{c\epsilon_0}}$$

$$G = E_z \times 2z_0 = e\sqrt{\frac{P}{c\epsilon_0}}$$

Example of calculation

- Same as EEHG scheme
 - RF accelerator works as the second modulator

Example of calculation

- Same as EEHG scheme
 - Three stage system

thanks