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OIST Neural Computation Unit
Create flexible learning systems
n robot experiments

Reveal brain’s learning mechanisms
n neurobiology



Reinforcement Learning

Learn action policy: s ® a to maximize rewards

n Efficient algorithms for artificial agents

n Circuit and molecular mechanisms in the brain

environment

reward r

action a

state s

agent



Learning to Walk
 (Doya & Nakano, 1985)

n Explore actions (cycle of 4 postures)
n Learn from performance feedback (speed sensor)



(1983)



Markov Decision Process (MDP)
n Markov decision process

lstate s ∈ S
laction a ∈ A
lpolicy p(a|s)
lreward p(r|s,a)
ldynamics p(s’|s,a)

n Optimal policy: maximize cumulative reward
lfinite horizon: E[ r(1) + r(2) + r(3) + ... + r(T)]
l infinite horizon: E[ r(1) + gr(2) + g2r(3) + … ]

0≤g≤1: temporal discount factor
laverage reward: E[ r(1) + r(2) + ... + r(T)]/T, T→∞

environment

reward r

action a

state s

agent



Actor-Critic and TD learning
n Actor: policy with parameter w

e.g., a(t) = Sj wjsj(t) + sn(t)
n Critic: learn state value function

lV(s(t)) = E[ r(t) + gr(t+1) + g2r(t+2) +…]
e.g., V(s(t);v) = Sj vjsj(t)

n Temporal Difference (TD) error: 
ld(t) = r(t) + g V(s(t+1)) – V(s(t))

n Critic learning: DV(s(t)) ∝ d(t)
Dvj = a d(t) sj(t)

n Actor learning: Dw ∝ d(t) ¶logP(a(t)|s(t);w)/¶w
Dwj = aa d(t) {a(t)–Sjwjsj(t)} sj(t) … weighted Hebb



Pendulum Swing-Up
n state: angle q, angular velocity w
n reward function: potential energy: cos q

 w

 q
n Value function   



SARSA and Q Learning
n Action value function

lQ(s,a) = E[ r(t) + gr(t+1) + g2r(t+2) …| s(t)=s,a(t)=a]
n Action selection

le-greedy: a = argmaxa Q(s,a) with prob 1-e
lBoltzman: P(ai|s) = exp[bQ(s,ai)] / Sjexp[bQ(s,aj)]

n Update by temporal difference (TD) error
lDQ(s(t),a(t)) = a d(t)
lSARSA: on-policy

d(t) = r(t) + gQ(s(t+1),a(t+1)) - Q(s(t),a(t))
lQ learning: off-policy 

d(t) = r(t) + gmaxa’Q(s(t+1),a’) - Q(s(t),a(t))



SARSA and Q Learning
n Cliff walking task (Sutton & Barto, 1998)

consider exploration
optimal greedy policy
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Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
S  S0

;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.
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Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.



“Pain-Gain” Task
n N states, 2 actions

n if r2 >> r1 , then better take a2

-r1 -r1

+r2

+r1 +r1

-r2

a2

s1 s2 s3 s4
-r1

+r1
a1



Learning to Stand Up
(Morimoto & Doya, 2001)

n Learning from reward and punishment
lreward: height of the head
lpunishment: bump on the floor



TD Learning and Backprop
n TD Gammon

(Tesauro 1992, 1994) 
n TD Learning can diverge

(Boyan & Moore, 1995)
ld(t) = r(t) + g V(s(t+1)) – V(s(t))

Backgammon
• TD-gammon: number of states: 1020

• Reward: zero for all time steps except those on 
which the game is won

• Outperformed the human experts

[Tesauro, 1992]

[Tesauro, 1992]

Backgammon
• TD-gammon: number of states: 1020

• Reward: zero for all time steps except those on 
which the game is won

• Outperformed the human experts

[Tesauro, 1992]

[Tesauro, 1992]

関数近似が失敗する例
• 2層のニューラルネットを
使用

[Boyan and Moore, 1995]

関数近似が失敗する例
• 2層のニューラルネットを
使用

[Boyan and Moore, 1995]



difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Q-Network
 (Mnih et al. 2015)

n Game screen as input

lExperience replay
lFixing the target network

n DNN captures important features
lhuman level in 29/49 Atari games

Indeed, in certain games DQN is able to discover a relatively long-term
strategy (for example, Breakout: the agent learns the optimal strategy,
which is to first dig a tunnel around the side of the wall allowing the ball
to be sent around the back to destroy a large number of blocks; see Sup-
plementary Video 2 for illustration of development of DQN’s perfor-
mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).

In this work, we demonstrate that a single architecture can success-
fully learn control policies in a range of different environments with only
very minimal prior knowledge, receiving only the pixels and the game
score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player
would have. In contrast to previous work24,26, our approach incorpo-
rates ‘end-to-end’ reinforcement learning that uses reward to continu-
ously shape representations within the convolutional network towards
salient features of the environment that facilitate value estimation. This
principle draws on neurobiological evidence that reward signals during
perceptual learning may influence the characteristics of representations
within primate visual cortex27,28. Notably, the successful integration of
reinforcement learning with deep network architectures was critically
dependent on our incorporation of a replay algorithm21–23 involving the
storage and representation of recently experienced transitions. Conver-
gent evidence suggests that the hippocampus may support the physical

realization of such a process in the mammalian brain, with the time-
compressed reactivation of recently experienced trajectories during
offline periods21,22 (for example, waking rest) providing a putative mech-
anism by which value functions may be efficiently updated through
interactions with the basal ganglia22. In the future, it will be important
to explore the potential use of biasing the content of experience replay
towards salient events, a phenomenon that characterizes empirically
observed hippocampal replay29, and relates to the notion of ‘prioritized
sweeping’30 in reinforcement learning. Taken together, our work illus-
trates the power of harnessing state-of-the-art machine learning tech-
niques with biologically inspired mechanisms to create agents that are
capable of learning to master a diverse array of challenging tasks.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 4 | Two-dimensional t-SNE embedding of the representations in the
last hidden layer assigned by DQN to game states experienced while playing
Space Invaders. The plot was generated by letting the DQN agent play for
2 h of real game time and running the t-SNE algorithm25 on the last hidden layer
representations assigned by DQN to each experienced game state. The
points are coloured according to the state values (V, maximum expected reward
of a state) predicted by DQN for the corresponding game states (ranging
from dark red (highest V) to dark blue (lowest V)). The screenshots
corresponding to a selected number of points are shown. The DQN agent

predicts high state values for both full (top right screenshots) and nearly
complete screens (bottom left screenshots) because it has learned that
completing a screen leads to a new screen full of enemy ships. Partially
completed screens (bottom screenshots) are assigned lower state values because
less immediate reward is available. The screens shown on the bottom right
and top left and middle are less perceptually similar than the other examples but
are still mapped to nearby representations and similar values because the
orange bunkers do not carry great significance near the end of a level. With
permission from Square Enix Limited.
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Deep Q-Net [Mnih et al., 2015]
• DQNは状態行動価値関数𝑄𝜋を深層畳み込み
ニューラルネットワークで近似

• 入力は4枚の時間的に連続したサイズ84x84 の画像
•幾つかのゲームにおいてDQNはプロのゲーム
テスターよりもうまくゲームができた

𝒙

𝑄(𝒙, 𝑎)



AlphaGo
(Silver et al., 2016)

l Supervised learning from play data
l Reinforcement learning by self-play
l Representation learning by deep neural networks
l Not too deep, wide tree search
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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ChatGPT

https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt-plus


What is Bayesian Inference?
Joint probability: P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X) 
Bayes theorem: P(X|Y) = P(Y|X)P(X)/P(Y)
Integrating prior belief and observation

X: unknown variable
Y: observation

lP(X): prior probability of X
lP(Y|X): probability of observing Y if X is true

likelihood of X after observing Y
lP(X|Y): posterior probability of X after observing Y

Posterior µ Prior belief x Likelihood by observation
lP(Y) = SX P(Y|X) P(X): marginal likelihood



Sunshine and Temperature
n X: weather  Y: temperature

n Temperature is 25 degree. What is the weather?

n Bayes theorem: P(X|Y) = P(Y|X)P(X)/SXP(Y|X)P(X)
lP(s|Y) = P(Y|s)P(s)/{P(Y|s)P(s)+P(Y|c)P(c)+P(Y|r)P(r)}

 = 0.1/(0.1+0.15+0.08) = 0.1/0.33 ≈ 0.3

P(Y|X) <20 degree 20 to 30 
degree >30 degree

Sunny 0.1 0.2 0.7

Cloudy 0.2 0.5 0.3

Rainy 0.5 0.4 0.1

P(X)

0.5

0.3

0.2



Bayesian Brain
Topics from OCNC 2004

l Kenji Doya, Shin Ishii
l Adrianne Fairhall
l Jonathan Pillow
l Barry Richmond
l Karl Friston
l Alex Pouget, Richard Zemel
l Peter Latham
l Tai Sing Lee
l David Knill
l Michael Shadlen
l Rajesh Rao
l Emanuel Todorov
l Konrad Körding

MIT Press, 2006



Dynamic Bayesian Inference
n Bayes rule: P(x|y) = P(y|x) P(x) / P(y)

lsequential observation: y1:t=(y1,…,yt)
lestimate hidden variable: x1:t=(x1,…,xt)
l initial guess P(x1)

n Dynamics model P(x’|x)
lpredictive prior

P(xt+1|y1:t) = ∫P(xt+1|xt)P(xt|y1:t)dxt

n Observation model P(y|x)
lnew posterior

P(xt+1|y1:t+1) = P(yt+1|xt+1)P(xt+1|y1:t) / P(y1:t+1)



Partially Observable Markov Decision Process (POMDP)
n State is not fully observable

lnoise, delay, occlusion

n Update belief state: 
bt=P(st|y1:t,a1:t-1)

n Dynamic Bayesian inference

bt+1 µ P(yt+1|s’) SsP(s’|s,at) bt

Q(b,a) = Ss bt Q(s,a)

environment

reward r

action a

state s

agent

sensor
observation y

belief state 
b



Model-based Neural Analysis
n Record and correlates with:

l input u
loutput y

n internal state x
lchange by learning

n parameter q
ldifferent in each session

n Run a dynamic model
lesqmate the internal variables
lcheck correlaqon with recorded signal

u y

q
x

^
x

q

^



n e.g. Sensory cue integration
lp(X|V,A) ∝ p(V|X)p(A|X)p(X)
lGaussian noise, flat prior:
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The Bayesian brain: the role of
uncertainty in neural coding and
computation
David C. Knill and Alexandre Pouget

Center for Visual Science and the Department of Brain and Cognitive Science, University of Rochester, NY 14627, USA

To use sensory information efficiently tomake judgments
and guide action in the world, the brain must represent
anduse informationaboutuncertainty in itscomputations
for perception and action. Bayesianmethods have proven
successful in building computational theories for percep-
tion and sensorimotor control, and psychophysics is
providing a growing body of evidence that human
perceptual computations are ‘Bayes’ optimal’. This leads
to the ‘Bayesian coding hypothesis’: that the brain
represents sensory information probabilistically, in the
form of probability distributions. Several computational
schemes have recently been proposed for how this might
be achieved in populations of neurons. Neurophysio-
logical data on the hypothesis, however, is almost non-
existent. A major challenge for neuroscientists is to test
these ideas experimentally, and so determine whether
and how neurons code information about sensory
uncertainty.

Humans and other animals operate in a world of sensory
uncertainty. Although introspection tells us that percep-
tion is deterministic and certain, many factors contribute
to limiting the reliability of sensory information about the
world – the mapping of 3D objects into a 2D image, neural
noise introduced in early stages of sensory coding, and
structural constraints on neural representations and
computations (e.g. the density of receptors in the retina).
Our brains must effectively deal with the resulting
uncertainty to generate perceptual representations of
the world and to guide our actions. This leads naturally
to the idea that perception is a process of unconscious,
probabilistic inference [1,2]. Aided by developments in
statistics and artificial intelligence, researchers have begun
to apply the concepts of probability theory rigorously to
problems in biological perception and action [3–20]. One
striking observation from this work is the myriad ways in
which human observers behave as optimal Bayesian
observers. This observation, along with the behavioral
and computational work on which it is based, has
fundamental implications for neuroscience, particularly
in how we conceive of neural computations and the nature
of neural representations of perceptual and motor
variables.

Bayesian inference and the Bayesian coding hypothesis
The fundamental concept behind the Bayesian approach
to perceptual computations is that the information
provided by a set of sensory data about the world is
represented by a conditional probability density function
over the set of unknown variables – the posterior density
function. A Bayesian perceptual system, therefore, would
represent the perceived depth of an object, for example,
not as a single number Z but as a conditional probability
density function p(Z/I), where I is the available image
information (e.g. stereo disparities). Loosely speaking,
p(Z/I) would specify the relative probability that the object
is at different depths Z, given the available sensory
information.

More generally, the component computations that
underlay Bayesian inferences [that give rise to p(Z/I)]
are ideally performed on representations of conditional
probability density functions rather than on unitary
estimates of parameter values. Loosely speaking, a
Bayes’ optimal system maintains, at each stage of local
computation, a representation of all possible values of the
parameters being computed along with associated prob-
abilities. This allows the system to integrate information
efficiently over space and time, to integrate information
from different sensory cues and sensory modalities, and to
propagate information from one stage of processing to
another without committing too early to particular
interpretations. Bayesian statisticians refer to the idea
of representing and propagating information in the form
of conditional density functions as belief propagation, and
this approach has been highly successful in designing
effective artificial vision systems [21–23].

To illustrate the basic structure of Bayesian compu-
tations, consider the problem of integrating multiple
sensory cues about some property of a scene. Figure 1
illustrates the Bayesian formulation of one such problem –
estimating the position of an object X from visual and
auditory cues V and A. The goal of an optimal, Bayesian
observer would be to compute the conditional density
function p(X/V,A). Using Bayes’ rule, this is given by

PðX=V;AÞZpðV ;A=XÞpðXÞ=pðV;AÞ (Equation 1)

where p(V,A/X) specifies the relative likelihood of sensing
the given data for different values ofX and p(X) is the prior
probability of different values of X. Because the noise

Corresponding author: David C. Knill (knill@cvs.rochester.edu).

Opinion TRENDS in Neurosciences Vol.27 No.12 December 2004
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sources in auditory and visual mechanisms are statisti-
cally independent, we can decompose the likelihood
function into the product of likelihood functions associated
with the visual and auditory cues, respectively:

PðV;A=XÞZpðV=XÞpðA=XÞ (Equation 2)

p(V/X) and p(A/X) fully represent the information provided
by the visual and auditory data about the position of the
target. The posterior density function is therefore pro-
portional to the product of three functions: the likelihood
functions associated with each cue and the prior density
function representing the relative probability of the target
being at any given position. An optimal estimator could pick
the peak of the posterior density function, the mean of the
function or any of several other choices, depending on the
cost associated with making different types of errors [24].

For our purposes, the point of the example is that an
optimal integrator must take into account the relative
uncertainty of each cue when deriving an integrated
estimate. When one cue is less certain than another, the
integrated estimate should be biased toward the more

reliable cue. Assuming that a system can accurately
compute and represent likelihood functions, the calcu-
lation embodied in equations 1 and 2 implicitly enforces
this behavior (Figure 1). Although other estimation
schemes can show the same performance as an optimal
Bayesian observer (e.g. a weighted sum of estimates
independently derived from each cue), computing with
likelihood functionsprovides themost directmeansavailable
to account ‘automatically’ for the large range of differences in
cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of
cortical processing will succeed or fail – that the brain
represents information probabilistically, by coding and
computing with probability density functions or approxi-
mations to probability density functions. We will refer to
this as the ‘Bayesian coding hypothesis’. The opposing
view is that neural representations are deterministic and
discrete, which might be intuitive but also misleading.
This intuition might be due to the apparent ‘oneness’ of
our perceptual world and the need to ‘collapse’ perceptual
representations into discrete actions, such as decisions or
motor behaviors. The principle data on the Bayesian
coding hypothesis are behavioral results showing the
many different ways in which humans perform as
Bayesian observers.

Are human observers Bayes’ optimal?
What does it mean to say that an observer is ‘Bayes’
optimal’? Humans are clearly not optimal in the sense that
they achieve the level of performance afforded by the
uncertainty in the physical stimulus. Absolute efficiencies
(a measure of performance relative to a Bayes’ optimal
observer) for performing high-level perceptual tasks are
generally low and vary widely across tasks. In some cases,
this inefficiency is entirely due to uncertainty in the
coding of sensory primitives that serve as inputs to
perceptual computations [6]; in others, it is due to a
combination of sensory, perceptual and cognitive factors
[25]. The real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual
judgments or motor behavior take into account the
uncertainty in the information available at each stage of
processing. Psychophysical work in several areas suggests
that this is the case.

Cue integration
Perhaps the most persuasive evidence for the Bayesian
coding hypothesis comes from work on sensory cue
integration. When the uncertainty associated with each
of a set of cues is approximated by a Gaussian likelihood
function, the average estimate derived from an optimal
Bayesian integrator is a weighted average of the average
estimates that would be derived from each cue alone
(Figure 1). The reliability of different cues changes as a
function of many scene and viewing parameters (e.g. the
reliability of stereo disparity decreases with viewing
distance). When these parameters vary from trial to trial
in a psychophysical experiment, an optimal Bayesian
observer would appear to weight cues differently on
different trials. Studies of human cue integration, both
within modality (e.g. stereo and texture) [26–28] and
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Figure 1. Two examples in which auditory and visual cues provide ‘conflicting’
information about the direction of a target. The conflict is apparent in the difference
in means of the likelihood functions associated with each cue, although the
functions overlap. Such conflicts are always present, owing to noise in the sensory
systems. To integrate visual and auditory information optimally, a multimodal area
must take into account the uncertainty associated with each cue. (a) When the
vision cue is most reliable, the peak of the posterior distribution is shifted toward
the direction suggested by the vision cue. (b) When the reliabilities of the cues are
more similar, for example when the stimulus is in the far periphery, the peak is
shifted toward the direction suggested by the auditory cue. When both likelihood
functions are Gaussian, themost likely direction of the target is given by a weighted
sum of the most likely directions (m) given the visual (V) and auditory (A) cues
individually: mV,AZwVmVCwAmA. The weights (w) are inversely proportional to the
variances of the likelihood functions.
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sources in auditory and visual mechanisms are statisti-
cally independent, we can decompose the likelihood
function into the product of likelihood functions associated
with the visual and auditory cues, respectively:

PðV;A=XÞZpðV=XÞpðA=XÞ (Equation 2)

p(V/X) and p(A/X) fully represent the information provided
by the visual and auditory data about the position of the
target. The posterior density function is therefore pro-
portional to the product of three functions: the likelihood
functions associated with each cue and the prior density
function representing the relative probability of the target
being at any given position. An optimal estimator could pick
the peak of the posterior density function, the mean of the
function or any of several other choices, depending on the
cost associated with making different types of errors [24].

For our purposes, the point of the example is that an
optimal integrator must take into account the relative
uncertainty of each cue when deriving an integrated
estimate. When one cue is less certain than another, the
integrated estimate should be biased toward the more

reliable cue. Assuming that a system can accurately
compute and represent likelihood functions, the calcu-
lation embodied in equations 1 and 2 implicitly enforces
this behavior (Figure 1). Although other estimation
schemes can show the same performance as an optimal
Bayesian observer (e.g. a weighted sum of estimates
independently derived from each cue), computing with
likelihood functionsprovides themost directmeansavailable
to account ‘automatically’ for the large range of differences in
cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of
cortical processing will succeed or fail – that the brain
represents information probabilistically, by coding and
computing with probability density functions or approxi-
mations to probability density functions. We will refer to
this as the ‘Bayesian coding hypothesis’. The opposing
view is that neural representations are deterministic and
discrete, which might be intuitive but also misleading.
This intuition might be due to the apparent ‘oneness’ of
our perceptual world and the need to ‘collapse’ perceptual
representations into discrete actions, such as decisions or
motor behaviors. The principle data on the Bayesian
coding hypothesis are behavioral results showing the
many different ways in which humans perform as
Bayesian observers.

Are human observers Bayes’ optimal?
What does it mean to say that an observer is ‘Bayes’
optimal’? Humans are clearly not optimal in the sense that
they achieve the level of performance afforded by the
uncertainty in the physical stimulus. Absolute efficiencies
(a measure of performance relative to a Bayes’ optimal
observer) for performing high-level perceptual tasks are
generally low and vary widely across tasks. In some cases,
this inefficiency is entirely due to uncertainty in the
coding of sensory primitives that serve as inputs to
perceptual computations [6]; in others, it is due to a
combination of sensory, perceptual and cognitive factors
[25]. The real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual
judgments or motor behavior take into account the
uncertainty in the information available at each stage of
processing. Psychophysical work in several areas suggests
that this is the case.

Cue integration
Perhaps the most persuasive evidence for the Bayesian
coding hypothesis comes from work on sensory cue
integration. When the uncertainty associated with each
of a set of cues is approximated by a Gaussian likelihood
function, the average estimate derived from an optimal
Bayesian integrator is a weighted average of the average
estimates that would be derived from each cue alone
(Figure 1). The reliability of different cues changes as a
function of many scene and viewing parameters (e.g. the
reliability of stereo disparity decreases with viewing
distance). When these parameters vary from trial to trial
in a psychophysical experiment, an optimal Bayesian
observer would appear to weight cues differently on
different trials. Studies of human cue integration, both
within modality (e.g. stereo and texture) [26–28] and
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sources in auditory and visual mechanisms are statisti-
cally independent, we can decompose the likelihood
function into the product of likelihood functions associated
with the visual and auditory cues, respectively:

PðV;A=XÞZpðV=XÞpðA=XÞ (Equation 2)

p(V/X) and p(A/X) fully represent the information provided
by the visual and auditory data about the position of the
target. The posterior density function is therefore pro-
portional to the product of three functions: the likelihood
functions associated with each cue and the prior density
function representing the relative probability of the target
being at any given position. An optimal estimator could pick
the peak of the posterior density function, the mean of the
function or any of several other choices, depending on the
cost associated with making different types of errors [24].

For our purposes, the point of the example is that an
optimal integrator must take into account the relative
uncertainty of each cue when deriving an integrated
estimate. When one cue is less certain than another, the
integrated estimate should be biased toward the more

reliable cue. Assuming that a system can accurately
compute and represent likelihood functions, the calcu-
lation embodied in equations 1 and 2 implicitly enforces
this behavior (Figure 1). Although other estimation
schemes can show the same performance as an optimal
Bayesian observer (e.g. a weighted sum of estimates
independently derived from each cue), computing with
likelihood functionsprovides themost directmeansavailable
to account ‘automatically’ for the large range of differences in
cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of
cortical processing will succeed or fail – that the brain
represents information probabilistically, by coding and
computing with probability density functions or approxi-
mations to probability density functions. We will refer to
this as the ‘Bayesian coding hypothesis’. The opposing
view is that neural representations are deterministic and
discrete, which might be intuitive but also misleading.
This intuition might be due to the apparent ‘oneness’ of
our perceptual world and the need to ‘collapse’ perceptual
representations into discrete actions, such as decisions or
motor behaviors. The principle data on the Bayesian
coding hypothesis are behavioral results showing the
many different ways in which humans perform as
Bayesian observers.

Are human observers Bayes’ optimal?
What does it mean to say that an observer is ‘Bayes’
optimal’? Humans are clearly not optimal in the sense that
they achieve the level of performance afforded by the
uncertainty in the physical stimulus. Absolute efficiencies
(a measure of performance relative to a Bayes’ optimal
observer) for performing high-level perceptual tasks are
generally low and vary widely across tasks. In some cases,
this inefficiency is entirely due to uncertainty in the
coding of sensory primitives that serve as inputs to
perceptual computations [6]; in others, it is due to a
combination of sensory, perceptual and cognitive factors
[25]. The real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual
judgments or motor behavior take into account the
uncertainty in the information available at each stage of
processing. Psychophysical work in several areas suggests
that this is the case.

Cue integration
Perhaps the most persuasive evidence for the Bayesian
coding hypothesis comes from work on sensory cue
integration. When the uncertainty associated with each
of a set of cues is approximated by a Gaussian likelihood
function, the average estimate derived from an optimal
Bayesian integrator is a weighted average of the average
estimates that would be derived from each cue alone
(Figure 1). The reliability of different cues changes as a
function of many scene and viewing parameters (e.g. the
reliability of stereo disparity decreases with viewing
distance). When these parameters vary from trial to trial
in a psychophysical experiment, an optimal Bayesian
observer would appear to weight cues differently on
different trials. Studies of human cue integration, both
within modality (e.g. stereo and texture) [26–28] and
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must take into account the uncertainty associated with each cue. (a) When the
vision cue is most reliable, the peak of the posterior distribution is shifted toward
the direction suggested by the vision cue. (b) When the reliabilities of the cues are
more similar, for example when the stimulus is in the far periphery, the peak is
shifted toward the direction suggested by the auditory cue. When both likelihood
functions are Gaussian, themost likely direction of the target is given by a weighted
sum of the most likely directions (m) given the visual (V) and auditory (A) cues
individually: mV,AZwVmVCwAmA. The weights (w) are inversely proportional to the
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to the viewer was vertical in the cyclopean projection).
The slant of the virtual surfaces was conveyed by some
combination of texture and/or stereo information (see
Fig. 3). Three cue conditions were tested in the experi-
ment:

• Stereo and texture––Stimuli were stereoscopically
rendered views of a surface covered with a texture
composed of Voronoi polygons. The textures were
generated by computing the Voronoi tiling for a set
of randomly positioned points in the plane, and then
shrinking each polygon by 20% around its center of
mass. To increase the regularity of texel spacing, a
stochastic diffusion algorithm was applied to random
initial positions before constructing the Voronoi til-
ing (see Knill, 1998b; Rosenholtz & Malik, 1997).

• Texture-only––Stimuli in the texture-only condition
were identical to the stereo and texture stimuli, except
that only one eye!s view was presented, with the other
eye patched, so that no stereo information was avail-
able.

• Stereo-only––Stimuli were stereoscopic views of a sur-
face densely covered with small randomly positioned
planar dots. The random-dot texture was chosen to
minimize texture information and isolate stereo infor-
mation (see the control experiment below).

Nineteen Voronoi and nineteen random-dot textures
were generated in advance of the experiment. Each trial
used a randomly chosen pair of two different textures
from these pre-generated sets. Prior to mapping a tex-
ture onto a slanted surface, the texture was randomly
oriented in the plane, effectively increasing the number
of test textures. This also counterbalanced the effects of
any global compression that may have been present by
chance in the limited set of sample textures (which could
have created biased slant judgments). Both Voronoi and
dot textures were constructed as wrap-around tex-
tures––for stimuli with high surface slants the textures
were repeated as necessary to fill the field of view. The
periodicity in the textures is not readily apparent, as
can be seen in Fig. 3.

Voronoi textures consisted of 400 elements. These
were scaled prior to mapping them onto a test surface so
that the textures would have a density of 0.25 texels/cm2

and an average polygon diameter of 2.1 cm as measured
on the surface. For a texel at the fixation point, this
diameter corresponds to approximately a 2! visual
angle. For the dot textures, samples consisted of 1600
elements, scaled to have a density of 6.0 texels/cm2 and
dot diameters of 0.11 cm (0.11! visual angle at the fix-
ation point, on average). In the stereo conditions, sub-
jects could theoretically discriminate surface slant based
only on the difference in depth at the top (or bottom) of
a pair of stimuli. Similarly, in the texture-only condition,
subjects could make judgments based on the difference

in texture density at the top (or bottom) of a pair of
stimuli. In order to minimize the effectiveness of these
cues, we randomized the depths of the surfaces displayed
within a trial by ±4 cm around a mean distance of 60 cm
at the point of fixation (at the center of the stimulus).
This randomized the texture density in the image, since
the density was held constant on the surface.

Displays included a small spherical fixation target
(rendered without shading) in the center of the display at
the depth of the test surface in a stimulus. The fixation
point was scaled to have a diameter of 0.2! of visual
angle. The fixation point appeared prior to stimulus
presentation to allow subjects to establish fixation. Be-
cause we randomized the absolute depth of surfaces
within a trial, the fixation target was made visible during
the delay between pairs of stimuli in a trial, positioned at
the depth of the succeeding surface. That is, after the
first stimulus surface disappeared, the fixation mark
moved in depth to the depth of the second stimulus
surface. This facilitated proper fixation prior to the
presentation of each test stimulus. The fixation mark
remained on during the stimulus presentation.

3.1.2. Apparatus
Visual displays were presented in stereo from a com-

puter monitor viewed through a mirror (Fig. 4), using
CrystalEyes shutter glasses to present different stereo
views to the left and right eyes. Circular apertures were
positioned in front of each eye, at a distance of 6–8 cm,
to limit the field of view for each eye to a 15! region
around the fixation point. By placing the occluders near
the eyes, we also eliminated spurious frame effects of

apertures

shutter
glasses

monitor
reflection

mirror

15° field
 of view

monitor

Fig. 4. Schematic of the apparatus used in the experiment.
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differences in the same slant discrimination thresholds
predict individual differences in cue weights.

2. Overview of experimental logic

We ran seven naive subjects in two experiments each
to test for subjective optimality. The first experiment
measured subjects! slant difference thresholds for dis-
criminating surface slant from stimuli containing only
texture cues, only stereo cues or both. We measured
thresholds for test slants ranging from 0! to 70! away
from the fronto-parallel. We used this data to test the
perceptual uncertainty predictions of an optimal inte-
grator model as embodied in Eq. (5).

We then ran the same subjects in a standard cue
perturbation experiment to measure the weights in a
linear model relating the perceived slants as suggested by
stereo and texture cues individually to the perceived
slant of combined cue stimuli. In this experiment, test
stimuli were generated with small conflicts between the
stereo and texture cues. Subjects made slant discrimi-
nation judgments comparing the cue conflict stimuli to
stimuli with consistent cues. Using this data, we esti-
mated the weights in a linear model characterizing the
perceived slant of a stimulus as a weighted sum of the
slants suggested by the texture and stereo cues. This
allowed us to test the prediction embodied in Eq. (8)
relating discrimination thresholds to cue weights.

The biggest problem we faced was to generate stimuli
that isolated stereo cues (for the stereo-only stimulus
condition). Texture-only stimuli were easy to generate––
subjects viewed projections of randomly tiled textures
with one eye patched. Combined stereo-texture stimuli
were similarly generated by having subjects view the
same stimuli, projected in stereo, using both eyes. To
generate stereo-only stimuli, we used large arrays of very
small, randomly positioned dots rendered on a receding
planar surface (see Fig. 3). Technically, these stimuli
contained texture density cues to a surface!s orientation;
however, we reasoned that since humans appear not to
effectively use texture density to judge surface slant
(Buckley, Frisby, & Blake, 1996; Knill, 1998c) and since
the rendered dots were so small as to make the size and
foreshortening cues nearly undetectable, these stimuli
had no subjectively useful texture information. An al-
ternative approach would have been to use textures that
were constrained to have a uniform density in the front-
parallel plane. Such stimuli, however, would not have
eliminated the texture density cue, but rather have
provided a constant, conflicting cue that surfaces were
fronto-parallel. In most experimental conditions, this
would have corresponded to a large, unnatural cue
conflict, raising the possibility that subjects might resort
to unknown non-linear cue integration strategies in the
discrimination task. For this reason, we chose to use

textures that were uniform in the plane of each test
surface, creating cue-consistent conditions. A control
experiment showed that subjects were so much poorer at
discriminating slant from monocular views of the
random-dot textures than they were from binocular
views that the density cue could have only had a mini-
mal effect on measured discrimination thresholds in
the binocular viewing condition, confirming our intu-
ition.

3. Experiment 1: Slant discrimination

3.1. Methods

3.1.1. Stimuli
Stimuli simulated perspective views of planar, tex-

tured surfaces that were slanted relative to the frontal
image plane. Surface slant varied, but tilt direction was
always vertical (i.e. the gradient of surface depth relative

Fig. 3. Example stimuli used in the experiment. Stimuli are projected
at 0!, 30!, 50!, and 70! from top to bottom. Note that the random-dot
stimuli appear to have little if any slant. The blurry borders reflect the
visually blurred boundaries of the occluders, as seen by subjects.
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As noted in the introduction, determining such theo-
retical predictions for stereo disparity information is
more difficult. It requires assumptions about the un-
derlying measures that contribute to slant-from-dispar-
ity judgments (e.g. absolute disparity vs. disparity
gradients) and the levels of internal noise corrupting
those measurements. Assuming constant levels of noise
on horizontal disparity, vertical disparity and vergence
angle, Banks, et al. measured predicted reliability curves
(the inverse of threshold curves) for slant-from-disparity
as a function of slant and distance from the viewer
(Banks et al., 2001). They found very small effects of
slant on their reliability measures, less than those found
here. From their results, we would have expected flatter
threshold functions for slant-from-stereo; however, a
more complete noise model (for example, which ac-
counts for changes in noise levels as a function of ab-
solute disparity) could well change the theoretical
predictions. What the current results suggest, regardless
of the source of uncertainty in slant-from-disparity
judgments, is that humans should give progressively
more weight to texture as the slant of a surface increases.
Many of the subjects tested here would ideally give more
weight to texture information than stereo information at
high slants.

The results are broadly consistent with the hypothesis
that subjects, on average, optimally integrated stereo
and texture cues to surface slant. The one slant condi-
tion that shows some deviation from the prediction is
the 0! slant condition. For six out of seven subjects,
combined cue thresholds for the 0! slant condition were
significantly lower than predicted by the single cue
thresholds under an optimal integration model. Subject

3 in Fig. 5 was the only one of the seven subjects not to
show some super-additivity. Informal subject reports
suggested a potential reason for the apparent super-
additivity. The sign of slant for monocular, textured
stimuli at low slants often appeared ambiguous to sub-
jects––while appearing slanted away from the fronto-
parallel, the surfaces were bistable; they appeared to be
receding either at the top or the bottom of the surface.
Previous studies of slant perception from texture (Knill,
1998a, 1998b) suggest why this bi-modality might occur.
These studies have shown that subjects strongly rely on
a local foreshortening cue in texture patterns––using the
local deviation of textures from isotropy to estimate
slant. Since the local foreshortening of a texture is the
same for local slants of opposite sign (a circle projects to
the same ellipse from slants of 45! and )45!), this cue by
itself does not disambiguate the direction (sign) of slant.
Other gradient-based cues such as scaling are needed to
disambiguate the direction of slant. If these cues are
unreliable, as they are at low slants, the likelihood
function for slant from texture would not be Gaussian
as assumed in the linear integration model (and in the
psychometric model), but rather would be bimodal with
peaks at positive and negative values of slant. Li and
Zaidi, for example, have described examples in which
scaling information in a stimulus is not enough to dis-
ambiguate the sign of surface slant (Li & Zaidi, 2002).
This uncertainty would greatly exaggerate the uncer-
tainty in the absolute magnitude of slant from texture
for small slants. We, therefore, expect that the threshold
measures derived for the monocular texture stimuli are
exaggerated, leading to an underestimate of the pre-
dicted combined cue thresholds at 0!. 2 Since the stereo
cue effectively disambiguates the sign of slant in the
combined-cue stimuli, The combined cue likelihood
function is unimodal and the added uncertainty caused
by the ‘‘phantom’’ mode in the texture likelihood
function disappears (see Knill (2003) for a longer dis-
cussion of this phenomenon).

A more central concern for interpreting the threshold
data is that stimuli in what we have referred to as the
stereo-only condition contained texture information
about surface slant. Looking at the stimuli in Fig. 3
suggests that this information was not perceptually sa-
lient. To insure that this was indeed the case, we ran a
control experiment with two naive subjects to measure
their ability to make slant judgments from monocular
views of these stimuli.
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Fig. 6. Average slant discrimination thresholds for all three cue con-
ditions. The average of the combined cue thresholds predicted from the
single cue thresholds is shown in red. Error bars are the standard error
of the mean computed by averaging subjects! individual thresholds.

2 The proportional error on threshold estimates for the 0! texture-
only condition was significantly higher than for the other slants. It was
typically between 10% and 20% for non-zero slants, but all standard
errors on threshold estimates for the 0! slant condition were greater
than 30%.
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Bayesian integration in
sensorimotor learning
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Bayesian inference with probabilistic population codes
Wei Ji Ma1,3, Jeffrey M Beck1,3, Peter E Latham2 & Alexandre Pouget1

Recent psychophysical experiments indicate that humans perform near-optimal Bayesian inference in a wide variety of tasks,
ranging from cue integration to decision making to motor control. This implies that neurons both represent probability
distributions and combine those distributions according to a close approximation to Bayes’ rule. At first sight, it would seem that
the high variability in the responses of cortical neurons would make it difficult to implement such optimal statistical inference in
cortical circuits. We argue that, in fact, this variability implies that populations of neurons automatically represent probability
distributions over the stimulus, a type of code we call probabilistic population codes. Moreover, we demonstrate that the Poisson-
like variability observed in cortex reduces a broad class of Bayesian inference to simple linear combinations of populations of
neural activity. These results hold for arbitrary probability distributions over the stimulus, for tuning curves of arbitrary shape and
for realistic neuronal variability.

Virtually all computations performed by the nervous system are subject
to uncertainty and taking this into account is critical for making
inferences about the outside world. For instance, imagine hiking in a
forest and having to jump over a stream. To decide whether or not to
jump, you could compute the width of the stream and compare it to
your internal estimate of your jumping ability. If, for example, you can
jump 2 m and the stream is 1.9 m wide, then you might choose to jump.
The problem with this approach, of course, is that you ignored
the uncertainty in the sensory and motor estimates. If you can jump
2 ± 0.4 m and the stream is 1.9 ± 0.5 m wide, jumping over it is very
risky—and even life-threatening if it is filled with, say, piranhas.

Behavioral studies have confirmed that human observers not only
take uncertainty into account in a wide variety of tasks, but do so in a
way that is nearly optimal1–5 (where ‘optimal’ is used in a Bayesian
sense, as defined below). This has two important implications. First,
neural circuits must represent probability distributions. For instance, in
our example, the width of the stream could be represented in the brain
by a Gaussian distribution with mean 1.9 m and s.d. 0.5 m. Second,
neural circuits must be able to combine probability distributions nearly
optimally, a process known as Bayesian inference.

Although it is clear experimentally that human behavior is nearly
Bayes-optimal in a wide variety of tasks, very little is known about the
neural basis of this optimality. In particular, we do not know how
probability distributions are represented in neuronal responses, nor
how neural circuits implement Bayesian inference. At first sight, it
would seem that cortical neurons are not well suited to this task, as their
responses are highly variable: the spike count of cortical neurons in
response to the same sensory variable (such as the direction of motion
of a visual stimulus) or motor command varies greatly from trial to
trial, typically with Poisson-like statistics6. It is critical to realize,
however, that variability and uncertainty go hand in hand: if neuronal

variability did not exist, that is, if neurons were to fire in exactly the
same way every time you saw the same object, then you would always
know with certainty what object was presented. Thus, uncertainty
about the width of the river in the above example is intimately related
to the fact that neurons in the visual cortex do not fire in exactly the
same way every time you see a river that is 2 m wide. This variability is
partly due to internal noise (like stochastic neurotransmitter release7),
but the potentially more important component arises from the fact that
rivers of the same width can look different, and thus give rise to
different neuronal responses, when viewed from different distances or
vantage points.

Neural variability, then, is not incompatible with the notion that
humans can be Bayes-optimal; on the contrary, as we have just seen,
neural variability is expected when subjects experience uncertainty.
What it not clear, however, is exactly how optimal inference is achieved
given the particular type of noise—Poisson-like variability—observed
in the cortex. Here we show that Poisson-like variability makes a broad
class of Bayesian inferences particularly easy. Specifically, this variability
has a unique property: it allows neurons to represent probability
distributions in a format that reduces optimal Bayesian inference to
simple linear combinations of neural activities.

RESULTS
Probabilistic population codes (PPC)
Thinking of neurons as encoders of probability distributions is a
departure from the more standard view, which is to think of them as
encoding the values of variables (like the width of a stream, as in our
previous example). However, as several authors have pointed out8–12,
population activity automatically encodes probability distributions.
This is because of the variability in neuronal responses, which implies
that the population response, r !{ri,y, rN}, to a stimulus, s, is
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e#fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X#1

k
ðs; gkÞf 0kðs; gkÞ ð5Þ
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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Bayesian Model Selection
lBayes rule: P(q|Y) = P(Y|q) P(q) / P(Y)

n Denominator: marginal likelihood

P(Y)=∫P(Y|q)P(q) dq
lMeasure of compaqbility of model and data

n Too simple model
l likelihood P(Y|q) is low

n Too complex model
lpenalized by thin P(q)

n ‘Evidence’ of model

p(D)

DD0

M1

M2

M3



Reinforcement Learning
n Predict reward: value function

lV(s) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s]
lQ(s,a) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s, a(t)=a]

n Select action
lgreedy: a = argmax Q(s,a)
lBoltzmann: P(a|s) µ exp[ b Q(s,a)]

n Update prediction: temporal difference (TD) error
ld(t) = r(t) + gV(s(t+1)) – V(s(t))
lDV(s(t)) = a d(t)
lDQ(s(t),a(t)) = a d(t)

How to implement these steps?

How to tune these parameters?



Basal Ganglia
n Locus of Parkinson’s and Huntington’s diseases

n What is their normal function??

Striatum

Globus Pallidus

Substantia Nigra

Thalamus
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Dopamine Neurons Code TD Error
d(t) = r(t) + gV(s(t+1)) – V(s(t))

unpredicted

predicted

omitted

(Schultz et al. 1997)

W. SCHULTZ4

fails to occur, even in the absence of an immediately preced-
ing stimulus (Fig. 2, bottom) . This is observed when animals
fail to obtain reward because of erroneous behavior, when
liquid flow is stopped by the experimenter despite correct
behavior, or when a valve opens audibly without delivering
liquid (Hollerman and Schultz 1996; Ljungberg et al. 1991;
Schultz et al. 1993). When reward delivery is delayed for
0.5 or 1.0 s, a depression of neuronal activity occurs at the
regular time of the reward, and an activation follows the
reward at the new time (Hollerman and Schultz 1996). Both
responses occur only during a few repetitions until the new
time of reward delivery becomes predicted again. By con-
trast, delivering reward earlier than habitual results in an
activation at the new time of reward but fails to induce a
depression at the habitual time. This suggests that unusually
early reward delivery cancels the reward prediction for the
habitual time. Thus dopamine neurons monitor both the oc-
currence and the time of reward. In the absence of stimuli
immediately preceding the omitted reward, the depressions
do not constitute a simple neuronal response but reflect an
expectation process based on an internal clock tracking the
precise time of predicted reward.

Activation by conditioned, reward-predicting stimuli
About 55–70% of dopamine neurons are activated by

conditioned visual and auditory stimuli in the various classi-
cally or instrumentally conditioned tasks described earlier
(Fig. 2, middle and bottom) (Hollerman and Schultz 1996;
Ljungberg et al. 1991, 1992; Mirenowicz and Schultz 1994;
Schultz 1986; Schultz and Romo 1990; P. Waelti, J. Mire-
nowicz, and W. Schultz, unpublished data) . The first dopa-
mine responses to conditioned light were reported by Miller
et al. (1981) in rats treated with haloperidol, which increased
the incidence and spontaneous activity of dopamine neurons
but resulted in more sustained responses than in undrugged
animals. Although responses occur close to behavioral reac-
tions (Nishino et al. 1987), they are unrelated to arm and
eye movements themselves, as they occur also ipsilateral toFIG. 2. Dopamine neurons report rewards according to an error in re-

ward prediction. Top : drop of liquid occurs although no reward is predicted the moving arm and in trials without arm or eye movements
at this time. Occurrence of reward thus constitutes a positive error in the (Schultz and Romo 1990). Conditioned stimuli are some-
prediction of reward. Dopamine neuron is activated by the unpredicted what less effective than primary rewards in terms of responseoccurrence of the liquid. Middle : conditioned stimulus predicts a reward,

magnitude and fractions of neurons activated. Dopamineand the reward occurs according to the prediction, hence no error in the
prediction of reward. Dopamine neuron fails to be activated by the predicted neurons respond only to the onset of conditioned stimuli and
reward (right) . It also shows an activation after the reward-predicting stim- not to their offset, even if stimulus offset predicts the reward
ulus, which occurs irrespective of an error in the prediction of the later (Schultz and Romo 1990). Dopamine neurons do not distin-reward ( left ) . Bottom : conditioned stimulus predicts a reward, but the re- guish between visual and auditory modalities of conditionedward fails to occur because of lack of reaction by the animal. Activity of

appetitive stimuli. However, they discriminate between ap-the dopamine neuron is depressed exactly at the time when the reward
would have occurred. Note the depression occurring ú1 s after the condi- petitive and neutral or aversive stimuli as long as they are
tioned stimulus without any intervening stimuli, revealing an internal pro- physically sufficiently dissimilar (Ljungberg et al. 1992;
cess of reward expectation. Neuronal activity in the 3 graphs follows the P. Waelti, J. Mirenowicz, and W. Schultz, unpublishedequation: dopamine response (Reward) Å reward occurred 0 reward pre-

data) . Only 11% of dopamine neurons, most of them withdicted. CS, conditioned stimulus; R, primary reward. Reprinted from
Schultz et al. (1997) with permission by American Association for the appetitive responses, show the typical phasic activations also
Advancement of Science. in response to conditioned aversive visual or auditory stimuli

in active avoidance tasks in which animals release a key to
avoid an air puff or a drop of hypertonic saline (Mirenowicztogether, the occurrence of reward, including its time, must
and Schultz 1996), although such avoidance may be viewedbe unpredicted to activate dopamine neurons.
as ‘‘rewarding.’’ These few activations are not sufficiently
strong to induce an average population response. Thus theDepression by omission of predicted reward
phasic responses of dopamine neurons preferentially report
environmental stimuli with appetitive motivational value butDopamine neurons are depressed exactly at the time of

the usual occurrence of reward when a fully predicted reward without discriminating between different sensory modalities.
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Dopamine-dependent Plasticity
n Medium spiny neurons in striatum

lglutamate from cortex
ldopamine from midbrain

n Three-factor learning rule (Wickens et al.)

lcortical input + spike ® LTD
lcortical input + spike + dopamine ® LTP
l input x output x reward

n Time window of plasticity
(Yagishita et al., 2014)

two-photon uncaging. For optogenetic stimu-
lation of dopaminergic fibers, a Cre-dependent
adeno-associated virus (AAV) vector expressing
channelrhodopsin-2 (ChR2) was injected into
the ventral tegmental area (VTA) of DAT-Cremice

expressing Cre specific to dopaminergic neurons
(Fig. 1Aand fig. S1). Thedirectpathway–constituting
MSNs, which mainly express dopamine 1 recep-
tors (D1Rs) (13), were labeled by an AAV vector
with a specific promoter for D1R-MSNs (Fig. 1A

and fig. S1). In acute coronal slices, including
the nucleus accumbens (NAc) core, whole-cell
recordingswere obtained from the identifiedD1R-
MSNs. Dendritic spines were visualized by means
of two-photon microscopy (980 nm) detecting
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Fig. 2. Pharmacology
of spine enlargement
induced by STDP plus
DAopto with a 0.6-s
delay. (A) Time
courses of spine
enlargement induced
by STDP + DAopto with
a 0.6-s delay in the
absence (control, 24
spines, 7 dendrites)
and presence of
NMDAR antagonist
(50 mM D-AP5, 22 spines, 6 dendrites), CaMKII inhibitor (3 mM KN62, 23 spines, 6 dendrites), or protein synthesis inhibitor (5 mM
anisomycin, 25 spines, 6 dendrites). (B) Time courses of spine enlargement in the presence of D1R antagonist (3 mM SCH23390, 23 spines, 6
dendrites), D2R antagonist (10 mM sulpiride, 22 spines, 6 dendrites), or PKA inhibitor (10 mM PKI, in the pipette, 24 spines, 6 dendrites). (C) Time
courses of spine enlargement in the presence of inhibitory (100 mM, in the pipette, 24 spines, 6 dendrites) or control peptide for DARPP-32 (100 mM, in
the pipette, 24 spines, 6 dendrites). (D) Averaged volume changes in the absence and presence of the compounds. Data are presented as mean T

SEM. P = 3.4 × 10−6 with Kruskal-Wallis and *P = 0.023 (AP5), 0.023 (KN62), 0.037 (AIP) (fig. S5A), 0.023 (anisomycin), 0.035 (SCH23390), 0.023 (PKI),
0.037 (KT5720) (fig. S5A), and 0.023 (DARPP-32 inhibitory peptide) with Steel test.

Fig. 1. A temporal profile of dopamine actions on spine enlargement. (A)
Injection of AAV vectors for ChR2 and the D1R-MSN marker (PPTA-mCherry)
in 3-week-old DAT-Cre mice. (B) Selective stimulation of dopaminergic and
glutamatergic inputs by means of blue laser field irradiation to ChR2 and two-
photon uncaging of caged-glutamate at a single spine, respectively, in acute
slices of NAc obtained from 5- to 7-week-old mice. (C) An amperometric
measurement of dopamine (top) by carbon-fiber electrode and whole-cell
recording of glutamate-induced current (bottom, 2pEPSP) in identified
D1R-MSNs. (D) An STDP protocol with dopamine puff application. (E) Im-
ages of the dendritic spine (red arrowhead) that received STDP stimulation
in the presence of dopamine (100 mM). (F and G) Time courses of spine
enlargement in the presence [(F), 13 spines, 4 dendrites] and absence of

dopamine [(G), 58 spines, 14 dendrites]. (H) Amplitudes of spine enlarge-
ments with or without dopamine. **P = 0.0041 by Mann-Whitney U test. (I)
STDP with repetitive activation of dopaminergic fibers containing ChR2 (blue
lines) at 30 Hz, 10 times (DAopto). (J) Images of the dendritic spine (arrow-
head) that received STDP + DAopto with a delay of 1 s. (K to M) Time courses
of spine enlargement induced by STDP + DAopto at 1 s [(K), 48 spines, 14 den-
drites], –1 s [(L), 20 spines, 5 dendrites] and 5 s [(M), 28 spines, 7 dendrites]
after STDP onset. (N) Timings of DAopto application. (O) Increases in spine
volumes by STDP + DAopto plotted versus DAopto delay (fig. S2, A to C). Data are
presented as mean T SEM. P = 4.2 × 10−6 with Kruskal-Wallis and **P = 0.0018
(0.6 s) and 0.0027 (1 s) by Steel test in comparison with STDP in the absence
of DAopto. Scale bars, 1 mm.

RESEARCH | REPORTS

two-photon uncaging. For optogenetic stimu-
lation of dopaminergic fibers, a Cre-dependent
adeno-associated virus (AAV) vector expressing
channelrhodopsin-2 (ChR2) was injected into
the ventral tegmental area (VTA) of DAT-Cremice

expressing Cre specific to dopaminergic neurons
(Fig. 1Aand fig. S1). Thedirectpathway–constituting
MSNs, which mainly express dopamine 1 recep-
tors (D1Rs) (13), were labeled by an AAV vector
with a specific promoter for D1R-MSNs (Fig. 1A

and fig. S1). In acute coronal slices, including
the nucleus accumbens (NAc) core, whole-cell
recordingswere obtained from the identifiedD1R-
MSNs. Dendritic spines were visualized by means
of two-photon microscopy (980 nm) detecting

SCIENCE sciencemag.org 26 SEPTEMBER 2014 • VOL 345 ISSUE 6204 1617

Fig. 2. Pharmacology
of spine enlargement
induced by STDP plus
DAopto with a 0.6-s
delay. (A) Time
courses of spine
enlargement induced
by STDP + DAopto with
a 0.6-s delay in the
absence (control, 24
spines, 7 dendrites)
and presence of
NMDAR antagonist
(50 mM D-AP5, 22 spines, 6 dendrites), CaMKII inhibitor (3 mM KN62, 23 spines, 6 dendrites), or protein synthesis inhibitor (5 mM
anisomycin, 25 spines, 6 dendrites). (B) Time courses of spine enlargement in the presence of D1R antagonist (3 mM SCH23390, 23 spines, 6
dendrites), D2R antagonist (10 mM sulpiride, 22 spines, 6 dendrites), or PKA inhibitor (10 mM PKI, in the pipette, 24 spines, 6 dendrites). (C) Time
courses of spine enlargement in the presence of inhibitory (100 mM, in the pipette, 24 spines, 6 dendrites) or control peptide for DARPP-32 (100 mM, in
the pipette, 24 spines, 6 dendrites). (D) Averaged volume changes in the absence and presence of the compounds. Data are presented as mean T

SEM. P = 3.4 × 10−6 with Kruskal-Wallis and *P = 0.023 (AP5), 0.023 (KN62), 0.037 (AIP) (fig. S5A), 0.023 (anisomycin), 0.035 (SCH23390), 0.023 (PKI),
0.037 (KT5720) (fig. S5A), and 0.023 (DARPP-32 inhibitory peptide) with Steel test.

Fig. 1. A temporal profile of dopamine actions on spine enlargement. (A)
Injection of AAV vectors for ChR2 and the D1R-MSN marker (PPTA-mCherry)
in 3-week-old DAT-Cre mice. (B) Selective stimulation of dopaminergic and
glutamatergic inputs by means of blue laser field irradiation to ChR2 and two-
photon uncaging of caged-glutamate at a single spine, respectively, in acute
slices of NAc obtained from 5- to 7-week-old mice. (C) An amperometric
measurement of dopamine (top) by carbon-fiber electrode and whole-cell
recording of glutamate-induced current (bottom, 2pEPSP) in identified
D1R-MSNs. (D) An STDP protocol with dopamine puff application. (E) Im-
ages of the dendritic spine (red arrowhead) that received STDP stimulation
in the presence of dopamine (100 mM). (F and G) Time courses of spine
enlargement in the presence [(F), 13 spines, 4 dendrites] and absence of

dopamine [(G), 58 spines, 14 dendrites]. (H) Amplitudes of spine enlarge-
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Distinct Neural Representation in the Dorsolateral,
Dorsomedial, and Ventral Parts of the Striatum during
Fixed- and Free-Choice Tasks
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The striatum is a major input site of the basal ganglia, which play an essential role in decision making. Previous studies have suggested
that subareas of the striatum have distinct roles: the dorsolateral striatum (DLS) functions in habitual action, the dorsomedial striatum
(DMS) in goal-directed actions, and the ventral striatum (VS) in motivation. To elucidate distinctive functions of subregions of the
striatum in decision making, we systematically investigated information represented by phasically active neurons in DLS, DMS, and VS.
Rats performed two types of choice tasks: fixed- and free-choice tasks. In both tasks, rats were required to perform nose poking to either
the left or right hole after cue-tone presentation. A food pellet was delivered probabilistically depending on the presented cue and the
selected action. The reward probability was fixed in fixed-choice task and varied in a block-wise manner in free-choice task. We found the
following: (1) when rats began the tasks, a majority of VS neurons increased their firing rates and information regarding task type and
state value was most strongly represented in VS; (2) during action selection, information of action and action values was most strongly
represented in DMS; (3) action-command information (action representation before action selection) was stronger in the fixed-choice
task than in the free-choice task in both DLS and DMS; and (4) action-command information was strongest in DLS, particularly when the
same choice was repeated. We propose a hypothesis of hierarchical reinforcement learning in the basal ganglia to coherently explain these
results.
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Introduction
The basal ganglia are known to play an essential role in decision
making. The striatum, the major input site of the basal ganglia,
has a dorsolateral-ventromedial gradient in its input modality.
That is, the dorsolateral striatum receives sensorimotor-related
information and the ventromedial region receives associative and
motivational information (Voorn et al., 2004; Samejima and
Doya, 2007). This organization suggests different roles for differ-
ent subareas of the striatum in decision making (Balleine et al.,
2007; Wickens et al., 2007).

Lesion studies suggest that the dorsomedial striatum (DMS)
and the dorsolateral striatum (DLS) contribute differently to
goal-directed actions (DMS), and habitual actions (DLS), respec-

tively (Yin et al., 2004, 2005a, b, Yin et al., 2006; Balleine et al.,
2007; Balleine and O’Doherty, 2010). Lesion and recording stud-
ies of the ventral striatum (VS) suggested its role in motivation in
response to reward-predicting cues (Berridge and Robinson,
1998; Cardinal et al., 2002; Nicola, 2010).

Based on reinforcement learning theory (Watkins and Dayan,
1992; Sutton and Barto, 1998), the actor-critic model hypothe-
sizes that the patch compartment, dominant in VS, realizes the
critic that learns reward prediction in the form of a “state value,”
and the matrix compartment, dominant in the dorsal striatum
(DS), implements the actor that learns action selection (Houk et
al., 1995; Joel et al., 2002). A variant of the hypothesis is that
matrix neurons learn “action values” of candidate actions (Doya,
1999, 2000). Theoretical models also suggested that model-based
action selection, which can realize flexible, goal-directed action
selection (Doya, 1999; Daw et al., 2005, 2011) occurs in the net-
work linking the prefrontal cortex and the striatum.

To further clarify different roles of subregions of the striatum,
however, it is essential to record from DLS, DMS, and VS during
choice behaviors. Many previous recording studies have reported
neural representations of state, action, reward, past action, past
reward, reward expectation, action value, and chosen value
within the striatum, but without systematic differences be-
tween the subregions (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Ito and Doya,
2009; Kim et al., 2009; Kimchi and Laubach, 2009; Kimchi et
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Generalized Q-learning Model
 (Ito & Doya, 2009)

n Action selection
P(a(t)=L) = expQL(t)/(expQL(t)+expQR(t))

n Action value update: i∈{L,R}
Qi(t+1) = (1-a1)Qi(t) + a1k1 if a(t)=i, r(t)=1

(1-a1)Qi(t) - a1k2 if a(t)=i, r(t)=0
(1-a2)Qi(t) if a(t)≠i, r(t)=1
(1-a2)Qi(t) if a(t)≠i, r(t)=0

n Parameters
la1: learning rate
la2: forgetting rate
lk1: reward reinforcement
lk2: no-reward aversion
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very sparsely innervated. The dopaminergic A8 and
A10 cell groups project predominantly dorsolaterally and
ventromedially, respectively, whereas the A9 cell group
reaches a broad intermediary striatal zone, with domi-
nance dorsally [31]. This dorsolateral-to-ventromedial
gradient in input pathways is also reflected by the results
of unit recordings in awake animals, showing strong sen-
sorimotor correlates in the dorsolateral sector and a more
direct relationship with reward ventromedially [32,33].

Similar to the inputs, the striatal outputs are arranged
largely in a parallel, dorsolateral-to-ventromedial fashion,
reaching primarily pallidal and nigral structures [20,34].
The arrangement of striatal projections to the substantia
nigra follows an inverted topography: dorsolateral areas
project most ventrolaterally in the substantia nigra pars
reticulata whereas successively more ventromedial stri-
atal areas reach more dorsomedial parts of the nigra [35].
In line with this topography, themost ventromedial part of

Figure 3. Cortical and thalamic inputs to the striatum distribute in dorsomedial-to-ventrolateral zones. The topographical arrangement of striatal afferents originating in
the frontal cortex (upper left), midline and intralaminar thalamic nuclei (upper right), basal amygdaloid complex (lower left) and hippocampal formation (lower right) are
illustrated. All these excitatory striatal afferent projections are strictly topographically organized. Thus, longitudinal striatal zones with a slightly oblique dorsomedial-to-
ventrolateral orientation receive converging inputs from specific cortical areas that are, in turn, mostly interconnected through corticocortical fibers [29]. Frontal cortical
areas and their corresponding striatal projection zones are shown in the same colors. The dorsolateral striatum receives somatotopically organized sensorimotor infor-
mation [68] (green), the most ventromedial part of the striatum collects viscerolimbic cortical afferents (red and pink), and striatal areas between these extremes receive
information from higher associational cortical areas [28,29] (blue and purple). Note that the topographical organization in the corticostriatal projections is the leading
organizational principle, but thalamic and amygdaloid afferents nicely match this functional–anatomical organization. In the figure, the individual midline and intralaminar
nuclei (upper right) are identified with different colors that match those used for the frontal cortical areas and the striatal zones to which they project. Thus, the midline
paraventricular nucleus (red and pink), belonging to a group of viscerolimbic midline thalamic nuclei, projects to the ventromedial striatum [63]. At the other extreme, the
posterior and lateral intralaminar thalamic nuclei (green and blue) are associated with primary motor functions and project to the dorsolateral aspects of the striatum. More
ventrally and medially located intralaminar thalamic nuclei (purple and yellow), probably subserving polymodal sensory and cognitive functions, project onto longitudin-
ally oriented striatal zones intermediate between the two extremes, matching the corticostriatal zones [63]. Similarly, the amygdalostriatal projections exhibit a medio-
lateral organization (color coding at bottom left). Caudal basal amygdaloid nuclei (red and pink), associated with viscerolimbic functions, project most medially, whereas
nuclei of the rostral basal amygdaloid complex (yellow) send their fibers more laterally in the striatum [64]. Thus, amygdaloid fibers reach in a topographical way virtually
the entire striatum, the most dorsolateral sensorimotor part being only very sparsely innervated. Frontal cortical, amygdaloid and midline and intralaminar projections
to the striatum are arranged such that multiple interconnected networks exist between specific frontal cortical areas and distinct amygdaloid and thalamic nuclei that
converge onto the same striatal region [63,69]. Finally, the hippocampal formation (in particular the subiculum and the CA1 region) projects to the most ventral parts of the
striatum, specifically to the medial, ventral and rostral shell, as well as to the immediately adjacent parts of the core. As indicated in the lower right corner, neurons of the
dorsal (yellow and pink) and ventral (pink and red) hippocampus project laterally and medially, respectively [62]. Abbreviations: ac, anterior commissure; ACd, dorsal
anterior cingulate cortex; AId, dorsal agranular insular cortex; AIv, ventral agranular insular cortex; CeM, central medial thalamic nucleus; CL, central lateral thalamic
nucleus; IL, infralimbic cortex; IMD, intermediodorsal thalamic nucleus; MD, mediodorsal thalamic nucleus; PC, paracentral thalamic nucleus; PFC, prefrontal cortex; PLd,
dorsal prelimbic cortex; PLv, ventral prelimbic cortex; PV, paraventricular thalamic nucleus; SMC, sensorimotor cortex.
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Hierarchy in Cortico-Striatal Network
n Dorsolateral striatum: motor

learly action coding
lwhat motor action?

n Dorsomedial striatum: cognitive
lchoice action value
lwhich goal?

n Ventral striatum: motivational?
lstate value
lwhether worth doing?

(Voorn et al., 2004)
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Open Questions
Parallel, mulK-inhibitory pathways (Girard et al. 2020)

(Girard et al. 2020)

TD like response of dopamine neurons

 (Evans et al. 2020)

Amygdala, Hippocampus, Cerebellum,...

2 |   GIRARD ET AL.

1 |  INTRODUCTION

The basal ganglia are a set of subcortical interconnected nu-
clei, which are thought to play a major role in action selection 
(Mink, 1996; Redgrave, Prescott, & Gurney, 1999) and rein-
forcement learning (Houk, Adams, & Barto, 1995; Schultz, 
Dayan, & Montague, 1997) in vertebrates, but whose com-
plex interconnection scheme is still not fully understood. In 
1989, Albin, Young, and Penney (1989) proposed an inter-
pretation of the basal ganglia circuitry aimed at explaining 
various motor disorders, including Parkinson's disease: the 
operation of the basal ganglia would result from the inter-
actions of two segregated and opposing pathways. In this 
scheme, the direct pathway corresponds to focal inhibitory 
projections from the striatum to the output of the circuit. The 
indirect pathway, also originating in the striatum, is made of 
a cascade of inhibitions and excitations that have a net diffuse 
excitatory effect on the output nuclei. These two segregated 

pathways are supposed to stem from two distinct striatal neu-
ron populations: one expressing receptors which are modu-
lated by dopamine in an excitatory manner (D1 receptors) 
for the direct pathway, and the other one expressing receptors 
with an inhibitory modulation (D2 receptors) for the indirect 
pathway. The imbalance between these pathways, caused 
by alterations of the dopaminergic system, would explain 
the motor disorders. Although it neglects a large number of 
documented projections (Figure 1a), this proposal has the ad-
vantage of disentangling the complexity of the circuit and of 
proposing a simple unifying explanation to different motor 
disorders. Since 1989, the basal ganglia have been the subject 
of intense modelling activity, and probably, more than a hun-
dred models have been published in the scientific literature.

A striking fact is that all the basal ganglia computational 
models posterior to Albin et  al.  (1989), from the earliest 
(Berns & Sejnowski, 1996) to the most recent (e.g. Baladron 
and Hamker (2015); Wei, Rubin, and Wang (2015); Mandali, 

K E Y W O R D S
action selection, basal ganglia, centromedian/parafascicular thalamus, computational model, 
monkey

F I G U R E  1  Structure of the basal ganglia model. (a) Wiring diagram: filled circles represent neurons. Each population is composed of 
channels (three shown here), represented by different shades and separated by dashed lines. For the sake of simplicity, the projections of one neuron 
of the first channel in each population are shown. The number of neurons shown here is not precisely to scale: for example, each channel of the 
striatum is simulated with 10,576 neurons and each channel of the GPi with 56 neurons (the exact number of simulated neurons per channel, in 
accordance with their ratio in the primate brain, is documented in Table 1). (b) Illustration of redundancy: for a fixed number of input synapses 
𝜈Y→X

, here equal to 6, redundancy ρ can vary from 1 (each input synapse comes from a different neuron of Y, top) to ν (all synapses come from the 
same neuron of Y, bottom). We use ρ = 3 everywhere (middle). All figure by Girard, Liénard & Delord (20202020); available under a CC-BY4.0 
licence (https://doi.org/10.6084/m9.figsh are.12311564)
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Model-free/Model-based Strategies
Model-free
n No knowledge of the world

n Learn values by experience
lstate–action–reward

n Act and then learn

Simple, but slow learning

Model-based
n Learn prediction model:

lstate, action ® new state
n Internal simulation

lestimate current state
lplan future actions

n Predict and then act

Flexible, but heavy load



Bounce Up and Balance by PILCO
 (Paavo Parmas)

1st try 2nd try 8th try



Mental Simulation
Brain’s process using 

an action-dependent state transition model 
s’=f(s,a) or P(s’|s,a)

n Estimate the present from past state/action
lperception under noise/delay/occlusion

n Predicting the future
lmodel-based decision, action planning

n Imagining in a virtual world
lthinking, language, science,…



Model-free and Model-based Choice
 (Daw et al. 2011)

lchoice after rare transition

computations. Thus, if behavior reflects contributions from each
strategy, then we can make the clear, testable prediction that
neural signals reflecting either valuation should dissociate from
behavior (Kable and Glimcher, 2007). Correlates of reward
prediction have most repeatedly been demonstrated in fMRI in
two areas: the ventromedial prefrontal cortex (vmPFC) and the
ventral striatum (ventral putamen and nucleus accumbens) (Del-
gado et al., 2000; Hare et al., 2008; Knutson et al., 2000, 2007;
Lohrenz et al., 2007; O’Doherty, 2004; Peters and Büchel,
2009; Plassmann et al., 2007; Preuschoff et al., 2006; Tanaka
et al., 2004; Tom et al., 2007). Of these, value-related signals in
mPFC are sensitive to task contingencies, and are thus good
candidates for involvement in model-based evaluation (Hamp-
ton et al., 2006, 2008; Valentin et al., 2007). Conversely, the
ventral striatal signal correlates with an RPE (McClure et al.,
2003a; O’Doherty et al., 2003; Seymour et al., 2004), and on
standard accounts, is presumed to be associated with dopa-
mine and with a model-free TD system. If so, these signals
should reflect ignorance of task structure and instead be driven
by past reinforcement, even though subjects’ behavior, if it is
partly under the control of a separate model-based system,
may be better informed.
Contrary to this hitherto untested prediction, our results

demonstrate that reinforcement-based and model-based value
predictions are combined in both brain areas, and more particu-
larly, that RPEs in ventral striatum do not reflect pure model-free
TD. These results suggest a more integrated computational
account of the neural substrates of valuation.

RESULTS

Behavior
Subjects (n = 17) completed a two-stage Markov decision task
(Figure 1) in which, on each trial, an initial choice between two
options labeled by (semantically irrelevant) Tibetan characters
led probabilistically to either of two, second-stage ‘‘states,’’
represented by different colors. In turn, these both demanded
another two-option choice, each of which was associated
with a different chance of delivering a monetary reward. The
choice of one first-stage option led predominantly (70% of
the time) to an associated one of the two second-stage
states, and this relationship was fixed throughout the experi-
ment. However, to incentivize subjects to continue learning

A B Figure 1. Task Design
(A) Timeline of events in trial. A first-stage choice between

two options (green boxes) leads to a second-stage choice

(here, between two pink options), which is reinforced with

money.

(B) State transition structure. Each first-stage choice is

predominantly associated with one or the other of the

second-stage states, and leads there 70% of the time.

throughout the task, the chances of payoff
associated with the four second-stage options
were changed slowly and independently, ac-
cording to Gaussian random walks. Theory
(Daw et al., 2005; Dickinson, 1985) predicts

that such change should tend to favor the ongoing contribution
of model-based evaluation.
Each subject undertook 201 trials, of which 2 ± 2 (mean ± 1 SD)

trials were not completed due to failure to enter a responsewithin
the 2 s limit. These trials were omitted from analysis.
The logic of the task was that model-based and model-free

strategies for RL predict different patterns by which reward ob-
tained in the second stage should impact first-stage choices
on subsequent trials. For illustration, consider a trial in which
a first-stage choice, uncharacteristically, led to the second-
stage state with which it is not usually associated, and in which
the choice then made at the second stage was rewarded. The
principle of reinforcement would predict that this experience
should increase the probability of repeating the first-stage
choice because it was ultimately rewarded. However, a subject
choosing instead using an internal model of the task’s transition
structure that evaluates actions prospectively would be ex-
pected instead to exhibit a decreased tendency to choose that
same option. This is because any increase in the value of the
rewarded second-stage option will more greatly increase the
expected value of the first-stage option that is more likely to
lead there. This is actually the first-stage option that was not
originally chosen.
Given previous work suggesting the coexistence of multiple

valuation processes in the brain (Balleine et al., 2008; Dickin-
son, 1985), we hypothesized that subjects might exhibit
a mixture of both strategies. First, to see learning effects of
this sort in a relatively theory-neutral manner, we directly as-
sessed the effect of events on the previous trial (trial n) on
the choice on the current trial (trial n+1). The two key events
on trial n are whether or not reward was received, and whether
the second-stage state presented was common or rare, given
the first-stage choice on trial n. We evaluated the impact of
these events on the chance of repeating the same first-stage
choice on trial n+1. For reasons outlined above, a simple rein-
forcement strategy [simulated in Figure 2A using the TD algo-
rithm SARSA(l) for l = 1] predicts only a main effect of reward:
an ultimately rewarded choice is more likely to be repeated,
regardless of whether that reward followed a common or rare
transition. Conversely, a model-based strategy (simulated in
Figure 2B) predicts a crossover interaction between the two
factors, because a rare transition inverts the effect of the
subsequent reward.
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to reduce the correlation between the regressors of interest, and
also because it encompassed the test of the null hypothesis that
RPE signaling in striatum was purely model-free. If so, then the
signal would be accounted for entirely by the model-free
regressor, and the difference time series should not correlate
significantly. If, however, the BOLD signal reflected pure
model-based values, or any combination of both, then it would
be best described by some weighted combination of the two
regressors; that is, the difference regressor would account for
residual BOLD activity in addition to that accounted for by the
model-free RPE. We tested the conjunction of the two regres-
sors to verify whether BOLD activity in a voxel was indeed signif-
icantly correlated with the weighted sum of both (Nichols et al.,
2005).

Figure 3A shows that BOLD activity correlated significantly
with the model-free RPE time series in left and right ventral stria-
tum (both p < 0.001; except where noted, all reported statistics
are corrected at the cluster level for familywise error due to
whole-brain multiple comparisons). Moreover, this activity was
better characterized, on average, as including some model-
based valuation: the model-based difference regressor loaded
significantly (right, p < 0.005, left, p < 0.05; Figure 3B) in the

same area (conjunction; right, p < 0.01, whole-brain corrected;
left, p < 0.01, small-volume corrected within an anatomically
defined mask of the bilateral nucleus accumbens; Figure 3C).
Similar results, though less strong, were also observed in
medial/vmPFC, where both model-free RPE (p < 0.001; Fig-
ure 4A) and the difference regressor indicating model-based
valuation (p < 0.01; Figure 4B) correlated significantly with
BOLD activity. However, although the conjunction between
these two maps showed voxels significant at p < 0.001 uncor-
rected, it survived whole-brain multiple comparison correction
for cluster size (at p < 0.005 corrected; Figure 4C) only when
the threshold on the conjunction map was relaxed to p < 0.005
uncorrected. (Note that cluster size correction is valid indepen-
dent of the threshold on the underlying uncorrected map,
although examining additional thresholds implies additional
multiple comparisons; Friston et al., 1993.)
These results suggested that RPE-related BOLD signals in

ventral striatum, and also in vmPFC, reflected valuations
computed at least in part by model-based methods rather than
pure TD. To investigate this activity further, we compared across
subjects neural and behavioral estimates of the degree of reli-
ance on model-based valuation. The neural and behavioral

A B C

D E F

Figure 3. Neural Correlates of Model-free and Model-Based Valuations in RPE in Striatum
All maps are thresholded at p < 0.001, uncorrected for display.

(A) Correlates of model-free RPE in bilateral striatum (left peak: !12 10 4, right: 10 12 !4).

(B) RPE signaling in ventral striatum is better explained by including some model-based predictions: correlations with the difference between model-based and

model-free RPE signals (left: !10 6 12, right: 12 16 !8).

(C) Conjunction of contrasts from (A) and (B) (left: !12 10 !10, right, 12 16 !6).

(D) Region of right ventral striatum where the weight given to model-based valuations in explaining the BOLD response correlated, across subjects, with that

derived from explaining their choice behavior (14 20 !6).

(E) Conjunction of contrasts from (A) and (D) (14 20 !6).

(F) Scatterplot of the correlation from (D), from average activity over an anatomically defined mask of right ventral striatum. (r2 = 0.28, p = 0.027.)
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estimates should correlate if, though computed using different
observables, they were measuring the same phenomenon, and
if RPE activity in striatum were related to a behaviorally relevant
mixture of model-based and model-free values, rather than to
one or the other. We measured the degree of model-based
valuation in the neural signal by the effect size estimated for
the model-based difference regressor (with a larger weighting
indicating that the net signal represented an RPE more heavily
weighted toward model-based values). Behaviorally, we
assessed the degree of model-based influence on choices by
the fit of the weighting parameter w in the hybrid algorithm.
Significant correlation between these two estimates was indeed
detected in right ventral striatum (p < 0.0,1 small-volume
corrected within an anatomical mask of bilateral nucleus accum-
bens; Figure 3D); and the site of this correlation overlapped
the basic RPE signal there (p < 0.01, small-volume corrected;
Figure 3E). Figure 3F illustrates a scatterplot of the effect, here
independently re-estimated from BOLD activity averaged over
an anatomically defined mask of right nucleus accumbens. The
finding of consistency between both these estimates helps to
rule out unanticipated confounds specific to either analysis.
All together, these results suggested that BOLD activity in

striatum reflected a mixture of model-free and model-based
evaluations, in proportions matching those that determine
choice behavior. Finally, in order to characterize more directly
this activity and to interrogate this conclusion via an analysis
using different data points and weaker theoretical assumptions,
we subjected BOLD activity in ventral striatum to a factorial anal-
ysis of its dependence on the previous trial’s events, analogous
to that used for choice behavior in Figure 2. In particular, the TD
RPEwhen a trial starts reflects the value expected during the trial
(as in the anticipatory activity of Schultz et al., 1997), which can
be quantified as the predicted value of the top-level action
chosen (Morris et al., 2006). For reasons analogous to those dis-
cussed above for choice behavior, learning by reinforcement as
in TD(l) (for l > 0) predicts that this value should reflect the
reward received following the same action on the previous trial.
However, amodel-based valuation strategy instead predicts that
this previous reward effect should interact with whether the
previous choice was followed by a common or rare transition.
We therefore examined BOLD activity at the start of trials in

right ventral striatum (defined anatomically) as a function of the
reward and transition on the previous trial. For reasons
mentioned above, these signals did not form part of the previ-
ously described parametric RPE analyses. In order to isolate
activity specifically related to the same action that had been

learned about on the previous trial, we restricted our assessment
to those trials in which the same actionwas chosen twice in a row
(Morris et al., 2006). As seen in Figure 5A, there was amain effect
of reward (p < 0.005), consistent with TD-like valuation. This, to
our knowledge, is the first time that RPEs in BOLD signal have
been directly shown to exhibit learning through an explicit
dependence on previous-trial outcomes (Bayer and Glimcher,
2005). Across subjects, the interaction with the transition proba-
bility—the marker for model-based evaluation—was not signifi-
cant (p > 0.4), but the size of the interaction per subject (taken
as another neural index of the per-subject model-based effect)
correlated with the behavioral index of model-based valuation
(p < 0.02; Figure 5B). This last result further confirmed that stria-
tal BOLD signal reflected model-based valuation to the extent
that choice behavior did. Indeed, speaking to the consistency
of the results, although the two neural estimates reported here
for the extent of model-based valuation in the striatal BOLD
signal (Figures 3F and 5B) were generated from different analyt-
ical approaches, and based on activity modeled at different time
points within each trial, they significantly correlated with one
another (r2 = 0.37; p < 0.01).

DISCUSSION

We studied human choice behavior and BOLD activity in a two-
stage decision task that allowed us to disambiguate model-
based andmodel-free valuation strategies through their different
claims about the effect of second-stage reinforcement on first-
stage choices and BOLD signals. Here, ongoing adjustments
in the values of second-stage actions extended the one-shot
reward devaluation challenge often used in animal conditioning
studies (Dickinson, 1985) and also the introduction of novel goals
as in latent learning (Gläscher et al., 2010): they continually
tested whether subjects prospectively adjusted their prefer-
ences for actions leading to a subsequent incentive (here, the
second-stage state) when its value changed. Following Daw
et al. (2005), we see such reasoning via sequential task structure
as the defining feature that distinguishes model-based from
model-free approaches to RL (although Hampton et al., 2006,
and Bromberg-Martin et al., 2010 hold a somewhat different
view: they associate model-based computation with learning
nonsequential task structure as well).
We recently used a similar task in a complementary study

(Gläscher et al., 2010) that minimized learning about the rewards
(by reporting them explicitly and keeping them stable) to isolate
learning about the state transition contingencies. Here, in

Figure 4. Neural Correlates of Model-free and
Model-Based Valuations in RPE in mPFC
Maps have been thresholded at p < 0.001 uncorrected

(A and B) or p < 0.005 uncorrected (C) for display. (A)

Correlates of model-free RPE in mPFC (!4 66 14). (B) RPE

signaling in mPFC is better explained by including some

model-based predictions: correlations with the difference

between the two RPE signals (!4 56 14). (C) Conjunction

of contrasts from (A) and (B) (!4 62 12).
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Figure 2C plots the observed choice proportions as a function
of these two factors, in the average across subjects. In order to
study effects that were statistically reliable at the level of the
population, we quantified the effects using hierarchical logistic
regression with all coefficients taken as random effects across
subjects. At the population level, the main effect of reward was
significantly different from zero (p < 1e!8, two-tailed), demon-
strating a reinforcement effect. However, the interaction
between reward and the transition probability was also signifi-
cant (p < 5e!5), rejecting a pure reinforcement account and
suggesting that subjects take the transition model into account
in making their choices. As both theories predict, there was no
significant main effect of transition likelihood (p = 0.5). Finally,
the constant term was significantly positive (p < 5e!12),
suggesting an overall tendency to stick with the same option
from trial to trial, reward notwithstanding (Ito and Doya, 2009;
Kim et al., 2009; Lau and Glimcher, 2005). We also considered
estimates of the effect sizes for each individual within this anal-
ysis (conditional on the group-level parameter estimates); the
effect of rewardwas positive (within the 95%confidence interval)
for 14/17 subjects, and the interaction was positive for 10/17
individuals, including 7 for whom the main effect of reward was
also positive. Together these data suggest that hallmarks of
both strategies are seen significantly at the population level
and within many individuals, but that there may be between-
subject variability in their deployment.

Motivated by these results, we considered the fit of full model-
based and model-free [SARSA(l) TD; Rummery and Niranjan,
1994] RL algorithms to the choice sequences. The former evalu-

ates actions by prospective simulation in a learned model; the
latter uses a generalized principle of reinforcement. The general-
ization, controlled by the reinforcement eligibility parameter l, is
that the estimated value of the second-stage state should act as
the same sort of model-free reinforcer for the first-stage choice
because the final reward actually received after the second-
stage choice. The parameter l governs the relative importance
of these two reinforcers, with l = 1 being the special case of Fig-
ure 2A in which only the final reward is important, and l = 0 being
the purest case of the TD algorithm in which only the second-
stage value plays a role.
We also considered a hybrid theory (Gläscher et al., 2010) in

which subjects could run both algorithms in parallel and make
choices according to the weighted combination of the action
values that they produce (see Experimental Procedures). We
took the relative weight of the two algorithms’ values into
account in determining the choices to be a free parameter, which
we allowed to vary across subjects but assumed to be constant
throughout the experiment. Thus, this algorithm contains both
the model-based and TD algorithms as special cases, where
one or the other gets all weight. We first verified that the model
fit significantly better than chance; it did so, at p < 0.05 for all
17 subjects (likelihood ratio tests).
Weestimated the theory’s freeparameters individually for each

subject by maximum likelihood (Table 1). Such an analysis treats
each subject as occupying a point on a continuum trading off the
two strategies; tests of the parameter estimates across subjects
seek effects that are generalizable to other members of the pop-
ulation (analogous to the random effects level in fMRI; Holmes

A B C

Figure 2. Factorial Analysis of Choice Behavior
(A) Simple reinforcement predicts that a first-stage choice resulting in reward is more likely to be repeated on the subsequent trial, regardless of whether that

reward occurred after a common or rare transition.

(B) Model-based prospective evaluation instead predicts that a rare transition should affect the value of the other first-stage option, leading to a predicted

interaction between the factors of reward and transition probability.

(C) Actual stay proportions, averaged across subjects, display hallmarks of both strategies. Error bars: 1 SEM.

Table 1. Best-Fitting Parameter Estimates, Shown as Median Plus Quartiles across Subjects

b1 b2 a1 a2 l p w !LL p ! r2

25th percentile 2.76 2.69 0.46 0.21 0.41 0.02 0.29 167.74 0.17

Median 5.19 3.69 0.54 0.42 0.57 0.11 0.39 200.55 0.26

75th percentile 7.45 5.16 0.87 0.71 0.94 0.22 0.59 228.22 0.40

Also shown are medians and quartiles for the negative log-likelihood (!LL) of the data at the best fitting parameters, and a pseudo-r2 statistic (p ! r2),

a normalized measure of the degree to which the model explained the choice data.
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the structure of the current task, this amounts to, first, simply deciding which first-stage action maps to 
which second-stage state (since subjects were instructed that this was the structure of the transition 
contingencies), and second, learning immediate reward values for each of the second-stage actions (the 
immediate rewards at the first stage being always zero). 

We characterized transition learning by assuming subjects simply chose between the two possibilities: 
𝑃(𝑠 |𝑠 , 𝑎 ) = 0.7, 𝑃(𝑠 |𝑠 , 𝑎 ) = 0.7, or, vice versa 𝑃(𝑠 |𝑠 , 𝑎 ) = 0.3, 𝑃(𝑠 |𝑠 , 𝑎 ) = 0.3 (with 
𝑃(𝑠 |𝑠 , 𝑎 ) = 1 − 𝑃(𝑠 |𝑠 , 𝑎 ) and 𝑃(𝑠 |𝑠 , 𝑎 ) = 1 − 𝑃(𝑠 |𝑠 , 𝑎 ), according to whether more 
transitions had so far occurred to 𝑠  following 𝑎  plus 𝑠  following 𝑎 , or, vice versa, to 𝑠  following 𝑎  
plus 𝑠  following 𝑎 . (In analyses not reported here, we verified that this scheme, which settles on the 
true transition matrix after the first few trials and is consistent with subjects’ instructions, fit their 
choices better than traditional incremental learning schemes for estimating transition matrices. The 
specific values 0.7/0.3 are chosen without loss of generality; if these are changed, other free parameters 
of the algorithm will rescale to give the same overall choice likelihood.) 

At the second-stage (the only one where immediate rewards were offered), the problem of learning 
immediate rewards is equivalent to that for TD above, since 𝑄 𝑠 , , 𝑎 ,  is just an estimate of the 
immediate reward r2,t; with no further stages to anticipate, the SARSA learning rule reduces to a delta-
rule for predicting the immediate reward. Thus the two approaches coincide at the second stage, and 
we define 𝑄 = 𝑄  at those states. 

Next, using Bellman’s equation, we define the model-based values of the first level actions as 

𝑄 𝑠 , 𝑎 = 𝑃 𝑠 𝑠 , 𝑎 max
∈{ , }

𝑄 (𝑠 , 𝑎) + 𝑃 𝑠 𝑠 , 𝑎 max
∈{ , }

𝑄 (𝑠 , 𝑎) 

and assume these are recomputed at each trial from the current estimates of the transition probabilities 
and rewards. 

Finally, to connect the values to choices, we define net action values at the first stage as the weighted 
sum of model-based and model-free values 𝑄 𝑠 , 𝑎 = 𝑤𝑄 𝑠 , 𝑎 + (1 − 𝑤)𝑄 𝑠 , 𝑎  where 
w is a weighting parameter. At the second stage, 𝑄 =  𝑄 = 𝑄 . We then assume the probability 
of a choice is softmax in 𝑄 :  

𝑃 𝑎 , = 𝑎|𝑠 , =
exp 𝛽 𝑄 𝑠 , , 𝑎 + 𝑝 ⋅ rep(𝑎)

∑ exp 𝛽 𝑄 𝑠 , , 𝑎′ + 𝑝 ⋅ rep(𝑎′)
  [2] 

Here, the free inverse temperature parameters 𝛽  control how deterministic are the choices, and we 
allow 𝛽  and 𝛽  to differ between the stages. (This captures any differences in choice reliability between 
the stages; note that this also renders redundant a time-discount parameter.) The indicator function 
rep(𝑎) is defined as 1 if a is a top-stage action and is the same one as was chosen on the previous trial, 
zero otherwise. Together with the free parameter p, this captures first-order perseveration (p > 0) or 
switching (p< 0) in the first-stage choices (Lau and Glimcher, 2005; also visible in Figure 2c). We do not 
include such autocorrelation for the second-stage choices, simply because (since different second-level 



thalamus

SN

IO

Cortex

Basal
Ganglia

Cerebellum

target

error
+

-

outputinput

Cerebellum: Supervised Learning

reward

outputinput

Basal Ganglia: Reinforcement Learning

Cerebral Cortex：Unsupervised Learning

outputinput

Specialization by Learning Algorithms
 (Doya, 1999)



MulSple Ways of AcSon SelecSon
n Model-free

la = argmaxa Q(s,a)
n Model-based

la = argmaxa [r+V(f(s,a))]
forward model: s’=f(s,a) 

n Memory-based
la = g(s)

sa

Q
s’a

V
ai

f

s

sa

g



1Scientific RepoRts | 6:31378 | DOI: 10.1038/srep31378

www.nature.com/scientificreports

Model-based action planning 
involves cortico-cerebellar and 
basal ganglia networks
Alan S. R. Fermin1,2,3, Takehiko Yoshida1,2, Junichiro Yoshimoto1,2, Makoto Ito2, 
Saori C. Tanaka4 & Kenji Doya1,2,3,4

Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement 
Learning (RL) associates these processes with three major classes of strategies for action selection: 
exploratory RL learns state-action values by exploration, model-based RL uses internal models to 
simulate future states reached by hypothetical actions, and motor-memory RL selects past successful 
state-action mapping. In order to investigate the neural substrates that implement these strategies, 
we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a 
sequential action selection task under conditions that promoted the use of a specific RL strategy. The 
ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; 
the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based 
condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory 
condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network 
implements the model-based RL action selection strategy.

Using exploration and reward feedback, humans and other animals have a remarkable capacity to learn new 
motor behaviors without explicit teaching1. Throughout most of our lives, however, we depend on explicit or 
implicit knowledge, based upon past experiences, such as a map of the area or properties of the musculoskeletal 
system, to enable focused exploration and efficient learning2,3. After repeated practice, a motor behavior becomes 
stereotyped and can be executed with little mental load4. What brain mechanisms enable animals to employ 
different learning strategies and to select or integrate them in a given situation? In this paper, we take a new 
behavioral paradigm that captures different stages of motor learning during a single experimental session5, and 
using fMRI we explore brain structures that are specifically involved in implementing different learning strategies.

The theory of reinforcement learning (RL)6 prescribes three major classes of algorithms for action selection 
and learning: motor-memory, exploratory, and model-based strategies. The motor-memory strategy reinforces 
the sequence of states and actions that led to successful results in past experiences, which is simple, but requires 
many trials before finding an optimal sequence, unless there are clues to minimize exploration. The exploratory 
strategy recursively updates values of states and actions to efficiently utilize experiences resulting from explora-
tory actions, acquired rewards, and state transitions. The model-based strategy employs an internal model that 
enables simulation of the future state reached by a hypothetical action, or multiple actions. Since these strategies 
require different degrees of pre-acquired knowledge and computational loads for real-time execution, it is reason-
able to speculate that humans may utilize them depending on their experience level with a certain context or task.

Computational models of RL and fMRI studies with humans have explored the neural substrates of 
model-based and motor-memory strategies, given their strong resemblance to classical, psychological, dichot-
omous behavior control employing deliberative and automatic processes, respectively. Activity in the dorsolat-
eral prefrontal cortex (DLPFC) has been associated with the use of model-based strategies when an internal 
model of environmental dynamics is available and can be used for forward planning and prediction of an action’s 
future outcomes7,8,9,10. Conversely, activation of the posterior dorsal striatum is observed when actions become 
automatic after extensive practice, and a motor-memory strategy is more likely to control behavior10,11. 
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Neuronal Correlates of Mental Simulation
n T-maze

Johnson & Redish (2007)
n Home-Away task

Pfeifer & Foster (2013)

Nonlocal representations occur at locations of highly variable
orientation of motion
The observation that the choice point of the cued-choice task, the
final choice of the multiple-T task, and at reversals on both tasks
suggests that nonlocal representations may occur generally where
rats pause and re-orient. To test this hypothesis, we calculated
locations where animals paused (total linear velocity !1 cm/s),
locations where animals varied their orientation of motion (total
angular velocity "120°/s), and compared the reconstruction er-
ror distance during these conditions. As can be seen in Figure 13,
the animals tended to show variable orientation of motion at the
feeders, at the final choice point, and at recovery from errors.
When the distribution of reconstruction errors was compared
between these variable orientation of motion positions and the
rest of the task, variable orientation of motion positions in-
cluded more nonlocal reconstructions (Wilcoxon rank-sum test,
p ! 10"10).

Local field potentials
Extrafield firing has been known to occur
during sharp-wave ripple complexes
within LIA episodes (O’Keefe and Nadel,
1978; Kudrimoti et al., 1999; Jensen and
Lisman, 2000; Foster and Wilson, 2006;
Jackson et al., 2006; O’Neill et al., 2006).
Local field potential traces at the choice
point displayed strong theta oscillations
and no apparent sharp-wave ripple activ-
ity (Fig. 14). To determine the hippocam-
pal brain state and identify whether sharp-
wave ripple complexes within theta might
be occurring at the choice point, we exam-
ined the local field potential frequency
composition using frequency-detection
methods capable of detecting even very
rare and transient oscillatory events in
long data series (Masimore et al., 2004). As
shown in Figure 15, the method clearly
identifies both theta and sharp-wave fre-
quency components across complete ses-
sions (left). However, when only data in
which the animal was at the choice point
were considered, no sharp-wave compo-
nents were seen. Instead, the analysis iden-
tified the presence of theta (7 Hz) and
gamma (30 – 80 Hz) frequencies. This
analysis method is sensitive enough to
identify even transient sharp-wave ripple
complexes occurring within theta episodes
(O’Neill et al., 2006). As can be seen in
Figure 15, B and C, there was no power at
sharp-wave ripple frequencies during
pausing behavior at the stem or choice
point. Comparisons between local field
potentials at the choice point, the maze
stem, and the feeders revealed slight differ-
ences between choice point and the stem
local field potentials, but large differences
from those at the feeders. Local field po-
tentials at the feeders displayed dimin-
ished gamma power and increased sharp-
wave ripple activity. In summary, nonlocal
representations were observed at both the
feeders (reactivation, route replay) (Jack-

son et al., 2006; Johnson et al., 2008) and at choice points
(sweeps), but occurred in much different local field potential
“brain states.”

As suggested by Figure 14, these sweep events are occurring dur-
ing hippocampal states including strong theta components. As
shown in Table 2, the mean length of the sweep corresponded closely
to that of a single theta cycle [mean sweep length, 153 # 13 ms, not
significantly different from 7 Hz (140 ms); z test, p$0.86]. However,
some sweeps did last much longer than a single theta cycle (length of
longest sweep, 1.4 s). To analyze the phase relationships between the
sweeps and theta, sweep start and stop times were identified as de-
scribed in Materials and Methods. Whereas sweep start times
showed a nonsignificant trend to primarily occur at phases close to
the peak of theta at the hippocampal fissure (Watson’s circular U2 $
0.12; p $ 0.1), sweep stop times showed a statistically significant
tendency to stop on the rising phase of theta (Watson’s circular U2 $
0.52; p ! 0.0001) (Fig. 16).

Figure 7. Forward-shifted neural representations at the choice point. A, B, The representation closely tracked the rat’s position
through the stem of the final T choice point for both the multiple-T (A) and cued-choice tasks (B). When the rat paused at the final
choice point, the representation moved ahead of the animal and sampled each arm. The representation intensity is shown in
pseudocolor (red, high probability; blue, low probability) and the animal’s position shown as a white open circle. C, Distribution of
distances between reconstructed location and actual location for the choice point (red, top) and for the immediately preceding
duration-matched approach to the choice point (cyan, bottom). The approach contains more local representations whereas the
choice point contains more nonlocal representations. The medians of the two distributions are different (Wilcoxon rank-sum test,
p ! 10 "10).
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well-isolated units (Supplementary Fig. 2)32 were recorded simulta-
neously during behavioural sessions on two consecutive days (212 and
250 units active during exploration from rat 1 on experimental days 1
and 2, respectively; 166 and 193 units from rat 2 on days 1 and 2; 133
and 106 units from rat 3 on days 1 and 2; 103 and 175 units from rat 4
on days 1 and 2). The recorded units demonstrated position-specific
firing patterns (‘place fields’) that were distributed throughout the
environment (Supplementary Figs 3–5), and a memory-less, uniform
prior Bayesian decoding algorithm23 allowed us to estimate the spatial
location of the rat accurately from the recorded spike trains through-
out the experiment (Supplementary Fig. 6 and Supplementary Video 1).
We identified candidate events as brief increases in population spiking
activity during periods of immobility while the rat performed the task
(Fig. 2a) and applied the decoding algorithm to the population spike
trains (Fig. 2b). During many candidate events, decoded position
revealed temporally compressed, two-dimensional trajectories across
the environment (Fig. 2c and Supplementary Video 2). We applied
length, duration and smoothness criteria to the decoded positions of
candidate events to define ‘trajectory events’ (see Methods). We found
between 144 and 373 trajectory events per session (between 25.3% and
43.9% of candidate events) with a mean duration of 103.6 ms, and path
lengths that ranged from 40.0 cm to 199.1 cm (Supplementary Fig. 7
and Supplementary Table 1). We tested the probability that trajectory
events could have occurred by chance, using two separate Monte-Carlo
shuffle methods which varied either cell identity or place field position

(see Methods). Zero (out of 2,028) trajectory events had a P-value
greater than 0.02 under either method, indicating that all trajectory
events were statistically significant events. Spectrogram analysis of
trajectory events strongly matched SWR events identified within the
same experimental sessions (Supplementary Fig. 8a). In addition, an
overwhelming majority of trajectory events were coincident with
SWR events (Supplementary Fig. 8b). Theta power, which is high
during exploration, was significantly decreased immediately before
and after trajectory events (Supplementary Fig. 8c). Collectively, these
data indicate that trajectory events are functionally similar to the SWR-
associated events previously reported on linear tracks as ‘replay’21–26.

Trajectory events over-represent the goal
To examine whether non-local spatial information present in traject-
ory events contributes to or is affected by acquisition or expression of
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arena and room, reward wells (circles), and Home location for days 1 and 2 (D1,
cyan; D2, red). b, Per-trial latency to reach Home or Random well location for
rat 1 (R1) on D1. c, Mean latency and path length to reach Home or Random
well location across all rats for D1 and D2. P-values (Wilcoxon rank-sum test):
latency D1 5.5 3 10219, D2 9.7 3 10214; path D1 2.7 3 10219, D2 5.2 3 10216.
d, Histogram of latencies (5-s bins) and path lengths (50-cm bins) for all trials
(shown to 150 s and 20 m, respectively) P-values (Kolmogorov–Smirnov test):
latency 2.6 3 1022; path 9.1 3 1024.
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well-isolated units (Supplementary Fig. 2)32 were recorded simulta-
neously during behavioural sessions on two consecutive days (212 and
250 units active during exploration from rat 1 on experimental days 1
and 2, respectively; 166 and 193 units from rat 2 on days 1 and 2; 133
and 106 units from rat 3 on days 1 and 2; 103 and 175 units from rat 4
on days 1 and 2). The recorded units demonstrated position-specific
firing patterns (‘place fields’) that were distributed throughout the
environment (Supplementary Figs 3–5), and a memory-less, uniform
prior Bayesian decoding algorithm23 allowed us to estimate the spatial
location of the rat accurately from the recorded spike trains through-
out the experiment (Supplementary Fig. 6 and Supplementary Video 1).
We identified candidate events as brief increases in population spiking
activity during periods of immobility while the rat performed the task
(Fig. 2a) and applied the decoding algorithm to the population spike
trains (Fig. 2b). During many candidate events, decoded position
revealed temporally compressed, two-dimensional trajectories across
the environment (Fig. 2c and Supplementary Video 2). We applied
length, duration and smoothness criteria to the decoded positions of
candidate events to define ‘trajectory events’ (see Methods). We found
between 144 and 373 trajectory events per session (between 25.3% and
43.9% of candidate events) with a mean duration of 103.6 ms, and path
lengths that ranged from 40.0 cm to 199.1 cm (Supplementary Fig. 7
and Supplementary Table 1). We tested the probability that trajectory
events could have occurred by chance, using two separate Monte-Carlo
shuffle methods which varied either cell identity or place field position

(see Methods). Zero (out of 2,028) trajectory events had a P-value
greater than 0.02 under either method, indicating that all trajectory
events were statistically significant events. Spectrogram analysis of
trajectory events strongly matched SWR events identified within the
same experimental sessions (Supplementary Fig. 8a). In addition, an
overwhelming majority of trajectory events were coincident with
SWR events (Supplementary Fig. 8b). Theta power, which is high
during exploration, was significantly decreased immediately before
and after trajectory events (Supplementary Fig. 8c). Collectively, these
data indicate that trajectory events are functionally similar to the SWR-
associated events previously reported on linear tracks as ‘replay’21–26.

Trajectory events over-represent the goal
To examine whether non-local spatial information present in traject-
ory events contributes to or is affected by acquisition or expression of
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rat 1 (R1) on D1. c, Mean latency and path length to reach Home or Random
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(shown to 150 s and 20 m, respectively) P-values (Kolmogorov–Smirnov test):
latency 2.6 3 1022; path 9.1 3 1024.

ARTICLE RESEARCH

2 M A Y 2 0 1 3 | V O L 4 9 7 | N A T U R E | 7 5

Macmillan Publishers Limited. All rights reserved©2013

(Fig. 5g), consistent with the goal-directed nature of Random-to-
Home navigation. We conducted two further analyses of path corres-
pondence, one based on the orientation of the depicted trajectory to a
location occupied 10 s in the future or the past (Supplementary Fig. 18),
and one based on the spatial overlap between smoothed versions of
the trajectory and future or past path (Supplementary Fig. 19), with
matching results. Rats showed no bias to face the direction of their
immediately future path or the Home well location during away-events
(Supplementary Fig. 20a, b). Furthermore, away-events were more
spatially correlated with the rat’s future path than with his current
heading (Supplementary Fig. 20d–g). Thus, the strong reflection of
the rat’s future path in away-events could not be trivially explained
as a representation of paths ‘in front’ of the rat, but rather suggested a
more precise path-finding mechanism.

A flexible planning mechanism
If trajectory events reflect behavioural planning generally, they might
also have depicted future behaviours when the animal did not proceed
immediately to the Home location. Indeed, away-events closely
matched the rat’s future path regardless of whether the rat’s future
path took it to the Home location or elsewhere in the arena (Fig. 6a, c).
For both cases, trajectories matched the future path more than the
past path (Fig. 6b, d). We proposed that if trajectory events reflected
an active process that could switch between goals, then before non-
Home-seeking behaviours, not only would the representation of the
non-Home-seeking path be enhanced, but the representation of
the Home well would be reduced. Indeed, we found reduced Home
representation in non-Home-seeking away-events compared to Home-
seeking away-events (Fig. 6e).

We finally proposed that a flexible planning mechanism should be
able to specify paths of novel importance (a novel combination of start
and end points) over familiar terrain. The animals’ behaviour showed
evidence of this ability over the first 19 trials of each day. We therefore
examined trajectory events during this period of each session. Away-
events during this novel period also bore a strong match to the rat’s
future path (Fig. 6f and Supplementary Videos 3–7), and were closer
to the rat’s future path than its past path (Fig. 6g).

H
-F

P
 

A
-F

P
 45

1 

0 1,
57

7 

π/2 *** 25 

0 

Past path 

Angular displacement 
0 

y 
po

si
tio

n 

a b 
Event 
Future path 
Past path 

0 
0 

2 

2 0 
0 

2 

2 

A
-P

P
 

A
-F

P
 

*** 

1,
57

7 

π/2 

π

π–π

π–ππ–π

π–π

0 1,
57

7 

25 

0 

Past path 

Angular displacement 
0 

C
ro

ss
in

gs
 (%

) 

Angular displacement 

25 

0 
0 

Future pathc 

H
-P

P
 

H
-F

P
 

*** 

45
1 

0 45
1 

25 

0 

Future path 

Angular displacement 
0 

C
ro

ss
in

gs
 (%

) 

d 
Rat 1 
Rat 2 
Rat 3 
Rat 4 
All Rats 

Away-events 

Home-events 

x position x position

A
bs

. d
is

pl
ac

em
en

t 
A

bs
. d

is
pl

ac
em

en
t 

e f g 

Event 
Future path 
Past path 

Figure 5 | Correspondence to past or future path. a, b, Representative event
from R1,D1, demonstrating trajectory event vector (black), immediate future
(green) and past (magenta) path (up to 10 s or 50 cm, whichever is greater), and
angular displacement along the minor arc between event and future (a) or past
(b) path at each crossing. c, Per cent of crossings across all events as a function
of angular displacement for all away-events compared to future (left) or past
(right) path. Dashed line indicates chance based upon 2,000 shuffled events.
d, Mean absolute angular displacement for away-events compared to future
(A-FP) or past (A-PP) path. Abs., absolute. e, f, As c, d, for home-events.
g, Mean absolute angular displacement for future path for all away-events
(A-FP) or home-events (H-FP). P-values (Wilcoxon rank-sum test):
8.60 3 10231 (d); 3.54 3 10217 (f); 7.25 3 10216 (g).

Perpendicular to Home  

Perpendicular to prev. Random 

Away-events rotated/scaled to Home well location
b 

Perpendicular to Home  

Rat location 

Home 

Sum Trajectories 

Home-events rotated/scaled to
previous Random well location

a 

Perpendicular to prev. Random 

Rat location 

Prev. Random 
Sum Trajectories 

Rat location 

Home  

Rat location   

Prev. Random 
0 0.05 

Rat location 
Next Random 

0 

0.25 

Day 1 Day 2 
24

0 

21
1 

Day 2 Day 1 
Rat location 

Home 

0 

0.10 
84

5 

73
2 

Rat location 
Prev. Random 

0 

0.25 
c 

24
0 

21
1 

R
ep

re
se

nt
at

io
n 

(p
ro

b.
) 

Day 1 Day 2 

d e f 
0.8 

0 

W
el

l/r
at

 ra
tio

 

Day 1 

N
ex

t R
an

do
m

P
re

v.
 R

an
do

m
H

om
e 

N
ex

t R
an

do
m

P
re

v.
 R

an
do

m
H

om
e 

** 

*** 

Day 2 

0 0.05 

To
w

ar
ds

 
H

om
e 

A
w

ay
 fr

om
 

H
om

e 
To

w
ar

ds
 

R
an

do
m

 
A

w
ay

 fr
om

  
R

an
do

m
 

Figure 4 | Representation of relevant vs. irrelevant locations. a, Vectorized
trajectories (left) and average posterior probability sum (right) of all home-
events for R1,D1, centred by the rat’s physical location at time of event and
rotated and scaled according to direction and distance to the previously
rewarded Random location. White circles, quantified regions. Prev., previous.
b, As a, for Home. c–e, Across all rats, mean representation of quantified
regions as in a, b. Event number displayed on bar. f, Normalized ratio of well/rat
representation for c–e. P-values (Wilcoxon rank-sum test): D1 Home vs prev.
Random 4.4 3 10216, Home vs next Random 9.9 3 1023; D2 Home vs prev.
Random 3.1 3 10220, Home vs next Random 1.3 3 10213.

ARTICLE RESEARCH

2 M A Y 2 0 1 3 | V O L 4 9 7 | N A T U R E | 7 7

Macmillan Publishers Limited. All rights reserved©2013



l Auditory virtual environment

©
20

16
N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 1

A R T I C L E S

Animals have to act despite limited sensory information because of 
factors such as interfering background noise or occluded vision. Thus, 
the ability to estimate the current state of the outside world from a 
sequence of sensory observations and their own actions is essential. 
This process is optimally realized by dynamic Bayesian inference, 
such as a Kalman filter1, which predicts the state with an internal state 
transition model and updates the prediction with new sensory inputs. 
For example, when a mouse navigates in darkness, it must keep track 
of the location of its destination based on both its movement (predic-
tion) and sensory signals such as calls from its nest mate (updating). 
We hypothesized that dynamic Bayesian inference is implemented in 
cerebral neocortex and investigated the plausibility of this idea using 
two-photon microscopy2.

Most areas of the cerebral neocortex receive ascending sensory 
inputs (feedforward streams) and descending inputs (feedback 
streams) from the thalamus and other cortical areas3. Previous stud-
ies have shown that feedback streams are essential for self-motion  
perception, consciousness and attention4,5, suggesting that the neo-
cortex integrates internal state prediction on the basis of its own 
actions and ascending sensory signals. In addition, there have been 
proposals of cortical implementation of Bayesian inference using 
probabilistic population code6. A recent proposal further advocated 
implementation of dynamic Bayesian inference by spiking population 
codes7. In the ‘canonical microcircuit’ of the neocortex3,8, feedforward 
signals project mainly to layer 4 and are then forwarded to layers 
2/3 and 5. Pyramidal neurons in layers 2/3 and 5 receive feedback  
signals from their apical dendrites in layer 1 and feedforward and 
feedback signals merge in these neurons. Feedback signals (for exam-
ple, motor activity) are stronger in deeper layers of sensory corti-
ces9,10. These anatomical connections and their activity lead to the  

hypothesis that dynamic Bayesian inference is implemented in pyram-
idal neurons of layers 2, 3 and 5, with increasing action dependence 
in deeper layers.

To test this hypothesis, we trained mice to perform an auditory 
virtual navigation task and imaged neuronal activity in layers 2, 3 
and 5 of the PPC and the PM located posterior to PPC11–13. The task 
required mice to approach a water reward site (goal) by estimating 
the distance on the basis of sound cues and their own locomotion. 
PPC is involved in spatial navigation by representing route maps, 
head directions, turning locations and locomotory accelerations with 
egocentric and allocentric representations14–17. PPC lesions disrupt 
navigation on the basis of self-motion information (path integra-
tion)18,19. PM also represents egocentric and allocentric reference 
frames20. Both PPC and PM receive inputs from auditory cortex 
and secondary motor cortex (M2)21,22, but PM receives fewer feed-
back projections from M2 than PPC13,23,24. If feedback signals are 
important for internal state prediction based on an animal’s own 
actions, association cortex (PPC) should show a more reliable neu-
ral implementation of dynamic Bayesian inference than the sensory 
cortex (PM).

We found that mice increased anticipatory licking as they 
approached the goal, even when sound cues were omitted, indicating 
that they were performing action-dependent state estimation, and that 
silencing of PPC by muscimol disturbed this behavior. Using proba-
bilistic population decoding, we observed that neurons in all layers 
in PPC, and slightly less in PM, implemented the two fundamental 
features of dynamic Bayesian inference: prediction and updating. 
Population activity predicted the goal distance even without sounds 
(prediction). The uncertainty of prediction decreased with sound 
inputs (updating).

1Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. 2Optical  
Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. Correspondence should be 
addressed to K.D. (doya@oist.jp).
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Neural substrate of dynamic Bayesian inference in the 
cerebral cortex
Akihiro Funamizu1,2, Bernd Kuhn2 & Kenji Doya1

Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. 
Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented 
the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model 
and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 
2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when 
sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that 
neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and 
prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental 
simulation using an action-dependent dynamic model. 
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A R T I C L E S

Animals have to act despite limited sensory information because of 
factors such as interfering background noise or occluded vision. Thus, 
the ability to estimate the current state of the outside world from a 
sequence of sensory observations and their own actions is essential. 
This process is optimally realized by dynamic Bayesian inference, 
such as a Kalman filter1, which predicts the state with an internal state 
transition model and updates the prediction with new sensory inputs. 
For example, when a mouse navigates in darkness, it must keep track 
of the location of its destination based on both its movement (predic-
tion) and sensory signals such as calls from its nest mate (updating). 
We hypothesized that dynamic Bayesian inference is implemented in 
cerebral neocortex and investigated the plausibility of this idea using 
two-photon microscopy2.

Most areas of the cerebral neocortex receive ascending sensory 
inputs (feedforward streams) and descending inputs (feedback 
streams) from the thalamus and other cortical areas3. Previous stud-
ies have shown that feedback streams are essential for self-motion  
perception, consciousness and attention4,5, suggesting that the neo-
cortex integrates internal state prediction on the basis of its own 
actions and ascending sensory signals. In addition, there have been 
proposals of cortical implementation of Bayesian inference using 
probabilistic population code6. A recent proposal further advocated 
implementation of dynamic Bayesian inference by spiking population 
codes7. In the ‘canonical microcircuit’ of the neocortex3,8, feedforward 
signals project mainly to layer 4 and are then forwarded to layers 
2/3 and 5. Pyramidal neurons in layers 2/3 and 5 receive feedback  
signals from their apical dendrites in layer 1 and feedforward and 
feedback signals merge in these neurons. Feedback signals (for exam-
ple, motor activity) are stronger in deeper layers of sensory corti-
ces9,10. These anatomical connections and their activity lead to the  

hypothesis that dynamic Bayesian inference is implemented in pyram-
idal neurons of layers 2, 3 and 5, with increasing action dependence 
in deeper layers.

To test this hypothesis, we trained mice to perform an auditory 
virtual navigation task and imaged neuronal activity in layers 2, 3 
and 5 of the PPC and the PM located posterior to PPC11–13. The task 
required mice to approach a water reward site (goal) by estimating 
the distance on the basis of sound cues and their own locomotion. 
PPC is involved in spatial navigation by representing route maps, 
head directions, turning locations and locomotory accelerations with 
egocentric and allocentric representations14–17. PPC lesions disrupt 
navigation on the basis of self-motion information (path integra-
tion)18,19. PM also represents egocentric and allocentric reference 
frames20. Both PPC and PM receive inputs from auditory cortex 
and secondary motor cortex (M2)21,22, but PM receives fewer feed-
back projections from M2 than PPC13,23,24. If feedback signals are 
important for internal state prediction based on an animal’s own 
actions, association cortex (PPC) should show a more reliable neu-
ral implementation of dynamic Bayesian inference than the sensory 
cortex (PM).

We found that mice increased anticipatory licking as they 
approached the goal, even when sound cues were omitted, indicating 
that they were performing action-dependent state estimation, and that 
silencing of PPC by muscimol disturbed this behavior. Using proba-
bilistic population decoding, we observed that neurons in all layers 
in PPC, and slightly less in PM, implemented the two fundamental 
features of dynamic Bayesian inference: prediction and updating. 
Population activity predicted the goal distance even without sounds 
(prediction). The uncertainty of prediction decreased with sound 
inputs (updating).
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Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. 
Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented 
the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model 
and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 
2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when 
sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that 
neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and 
prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental 
simulation using an action-dependent dynamic model. 
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Investigate the neural implementation 
of dynamic Bayesian inference 

Two-photon microscopy: 
- Calcium imaging with GCaMP6f expressed 
by adeno-associated virus (AAV). 

Objective 

Auditory virtual navigation task: 
- Mouse estimates the goal distance based on 
auditory cues and an internal model of locomotion. 

Conclusions 

- When mouse passed a sound source and licked a spout, it got a water reward. Start position of each trial was randomized.  
- Anticipatory licking increased when mice approached the goal. 
- Licking increased even during no-sound zones (* p < 1E-7 in Wilcoxon signed-rank test). 
- Inactivation of posterior parietal cortex (PPC) with muscimol disrupted the increase of licking during no-sound zones (p < 0.01) 

- Neurons increased the activity during mouse 
approached sound source.  
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Akihiro Funamizu, Bernd Kuhn, Kenji Doya 

Neural substrate of Bayesian dynamic filter 
in posterior parietal cortex 

OIST Graduate University 
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Sound: Harmonic sound (2,4,8,16,32 kHz, 100 dB SPL from 25 cm, every 80 ms) Reward: Sucrose water (4 µl: 2 x 2 µl) 

- PPC had more after-reaching neurons than PM. 
- Neurons in layers 3 and 5 represented distances near the goal compared to those in layer 2. 

(* p < 0.01 in Mann-Whitney U-test) 

(i) start, (ii) goal-distance, (iii) reward and (iv) lick neurons 
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- PPC and PM neurons represented the goal distance rather than the time to reach goal. 

Regression analysis  ~ detect correlations between neuronal activity and variables ~ 

Activity of one neuron Locomotion speed 

- In auditory virtual navigation task, mice increased anticipatory licking even when the sounds 
were omitted, indicating that they predicted the goal distance based on their own actions. 

PPC implements prediction and updating of dynamic Bayesian inference 

- Neurons in the PPC and posteromedial cortex (PM) represented the goal distance. 
- PPC neurons showed ramping activity toward the goal with and without sounds. 

- Uncertainty of distance prediction reduced only with sounds, i.e., updating by auditory inputs. 

- PPC and PM neurons decreased the estimated distances with and without sounds,  
   i.e., prediction with an internal model of locomotion. 

- PPC neurons had better estimated distance and  lower uncertainty than PM neurons. 

P(x|nall,t) ∝ P(nall,t|x)P(x) P(nall,t|x) = Πi
all P(ni,t|x) 

x: Goal distance (x was discretized for every 0.84 cm) 
ni,t: Calcium fluorescence of goal-distance neuron i at frame t 

- Probability distribution (posterior) of goal-distance estimation 
was analyzed based on distance tuning curves of neurons.  

𝑃𝑃 𝑛𝑛𝑖𝑖,𝑡𝑡 𝑥𝑥 = 1
𝑛𝑛𝑖𝑖,𝑡𝑡𝜎𝜎𝑖𝑖,𝑥𝑥 2𝜋𝜋

exp −
ln(𝑛𝑛𝑖𝑖,𝑡𝑡) − 𝜇𝜇𝑖𝑖,𝑥𝑥

2

2𝜎𝜎𝑖𝑖,𝑥𝑥2
 

μi,x and σi,x were analyzed from the distance tuning curve of neuron i 

- Data of continuous condition were used for the training. 

- Goal-distance neurons were employed for the decoder. 

- Estimated distances decreased even during sound 
omissions (* p < 0.01 in Wilcoxon-signed rank test).   
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- PPC and PM neurons decoded the goal distance under no-sound zone. 

- PPC had better estimation and lower uncertainty of distance decoding 
than PM (* p < 0.01 in Mann-Whitney U-test). 

Dynamic Bayesian inference in PPC and PM 

- Uncertainty of prediction reduced 
only during sound presentations. 
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Injection: 1.5 – 2.5 mm posterior, 
1.6 mm lateral of bregma 
- Sampling rate: 30.9 Hz 
- 400 x 400 µm (512 x 512 pixels) 

Licking behaviors in one session 94 sessions, 8 mice 

- Locomotion speed varied in each trial.  
- Neurons representing the time to goal 
and the goal distance were separable. 

- Example neuron represented 
the goal distance. 

- y(t): Calcium fluorescence at frame t 
- x(t): Distance or time to reach goal 
- β:    Regression coefficient 
- µ:    Pre-determined in each variable 
- s:     Free parameter 

𝑦𝑦 𝑡𝑡 = 𝛽𝛽1𝜑𝜑1(𝑥𝑥 𝑡𝑡 ) + 𝛽𝛽2𝜑𝜑2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 ) +
              𝛽𝛽3𝜑𝜑3(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 )+𝛽𝛽0 

𝜑𝜑𝑖𝑖 𝑥𝑥 = exp{− (𝑥𝑥 − 𝜇𝜇𝑖𝑖)2
2𝑠𝑠𝑖𝑖2

} 

Best fitting variables were determined with 
Bayesian information criteria (BIC) 

Goal distance 
but not time 

- PM neurons required sounds 
for the increase. 

- Neural activity of after-reaching 
neurons was shown. 

- PPC neurons increased the activity 
with and without sound inputs. 

(* p < 0.01 in two-sided paired t-test) 

Action-
dependent 
distance 
encoding in 
PPC 

~ decoding of goal distance ~ 

Auditory virtual navigation task 

Posterior parietal and posteromedial cortices (PPC and PM) 
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- Posterior parietal cortex (PPC) was necessity for the action-dependent distance estimation. 



Two-Photon Neural Imaging
n GCaMP6f expression by AAV

l posterior parietal cortex (PPC)
l auditory-visual cortex (area PM)

Akihiro Funamizu, Bernd Kuhn, Kenji Doya 

Investigation of action-dependent state prediction in 
the mouse parietal cortex with two-photon microscopy 

OIST Graduate University 

Investigate the neural correlates of model-based decision 
making in posterior parietal cortex (PPC) in mouse 

Two-photon microscopy: 

- Calcium imaging was conducted with a 
behaving mouse during the task 

- Adeno-associated virus (AAV) delivering the 
gene of GCamp6f was injected into PPC 

Objective 

Virtual sound navigation task: 
- Mouse estimates the distance between him 
and a sound source based on an internal model 
of locomotion 

- Mouse was head restrained under the two-photon microscope 

Speaker 

Spout 

- Locomotion of mouse was captured by an USB mouse 

Two-photon microscopy 
- Sampling rate:  
   30.9 Hz 
- 400 x 400 Pm  
   field of view 
- 512 x 512 pixels 

AAV injection: 
1.5 – 2.5 mm 
posterior,  
1.4 mm right of 
bregma 

Virtual sound navigation task 

Sound: Harmonic sound  
(2,4,8,16,32 kHz, 100 dB SPL from 25 cm, 
every 80 ms) 

Intermittent2 
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Conclusions 

Virtual Real 

- The virtual position of mouse was updated 
by the mouse’s own locomotion 

- When a mouse passed a sound source and licked a spout, he got a reward 

- In a virtual sound navigation task, mice increased the lickings even when the sound was omitted, suggesting 
that they updated the prediction of sound source position without auditory inputs 

The cortico-cortical circuit from V2 to parietal cortex not only reduces the 
overall uncertainty of state prediction, but also improves the action-dependent  
model-based prediction 

- The sound-generating speakers and sound 
intensity depended on the virtual position of 
mouse 

Reward: Two drops of water  
(4 Pl: 2 x 2 Pl) 
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- Neural 
activities of 
parietal and 
V2 cortices in 
layer 2, 3 and 
5 were 
recorded  

Licking behavior 
- The licking increased even 
when the sound was omitted 
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y(t) = b0 + b1exp{-(x(t)-P)2/2V2}+6bnVariables(t) 
- y(t):  Calcium fluorescence at frame (t) 
- b:      Regression coefficient 
- P, V: Free parameters 

- x(t): 

Significant variables were 
detected with BIC  
(two-sided t-test, p < 0.01) 

Licking frequency 
Locomotion speed 
Sound intensity 
Before or after 
first lick 

- Variables: 

Regression analysis 

(One of four variables were applied) 

Lick (Hz) Locomotion 
speed 

Sound 
intensity 

Before or 
after first lick 
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Parietal V2 Parietal V2 Parietal V2 Parietal V2 

- Neurons mainly encoded 
the time from trial start and 
the distance to sound source 
- Locomotion speed was 
encoded in the parietal cortex 

Regression + Anova 
Neurons encoding the distance or time to sound source were extracted 
(Example: Parietal cortex, layer2) 
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- Parietal neurons tended to increase the 
activities in the intermittent conditions, 
while V2 neurons had the opposite tendency - Neurons in the parietal and secondary visual (V2) cortices mainly represented the time from trial start 

and the distance to sound source 
- For encoding the sound-source distance, neurons in the parietal cortex tended to increase the activities during the 
intermittent conditions. Also, they represented the locomotion speed which was important for the action-dependent 
state prediction 
- Bayesian decoding showed that, from V2 to parietal cortex, (i) the prediction accuracy in the intermittent1 
condition improved and (ii) the prediction uncertainty significantly reduced 

Distance decoding:  
Bayesian method 
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Differences between the estimated and actual distances 
were compared between the parietal and V2 cortices  
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- From V2 to parietal cortex, the decoding 
uncertainty significantly reduced 
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- At the zero to sound source, V2 cortex had the 
significantly worse prediction of sound-source 
distance in the intermittent1 and 2 conditions 

MAP: Task conditions 
p-value: ANOVA 

Intermittent1 
Intermittent2 

: No-sounded distance in intermittent1 

Continuous 

- x: Distance to sound source 
- n: Neural activities 
- i:  Number of neuron 

P(xt|nall,t) ҃ P(nall,t|xt)P(x) 

P(nall|x) = 3i P(ni|x) 
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Decode the distance to sound source 
from population neural activities 

Leave-one-out cross validation Training data 
Continuous 

Example: (2013-10-11-mouse11) 

0 Posterior 0.4 
Intermittent1 Intermittent2 

0 Posterior 0.4 

134 67 100 33 0 
134 

67 

100 

33 

0 

Es
tim

at
ed

 d
is

ta
nc

e 
(c

m
) 

0 Posterior 0.4 

- Even at the no-sound periods in the intermittent 
conditions, the neurons successfully decoded the 
distance to sound source 

- The prediction in intermittent1 condition 
improved in the parietal cortex 

: No-sounded distance in intermittent2 

MAP: Parietal vs. V2 

Uncertainty: Parietal vs. V2 

p-value: ANOVA 

- The prediction accuracy was improved in 
the parietal cortex compared to V2 

The standard deviations in decoding were compared 
between the parietal and V2 cortices  (*: p < 0.01) 

- x was discretized for every 4.19 cm  

- Training data: Continuous condition 

- n was normalized and discretized 
to 3 bins: [-inf, -1.96, 1.96, inf] 

Recorded from 8 mice: 

Parietal cortex 
layer 2: 8 sites (n = 4155) 
  519±16 per site 
layer 3: 9 sites (n = 4530) 
  500±19 per site 
layer 5: 8 sites (n = 2895) 
  361±23 per site  

V2 cortex 
layer 2: 9 sites (n = 4577) 
  509±19 per site 
layer 3: 8 sites (n = 3832) 
  479±21 per site 
layer 5: 8 sites (n = 2693) 
  336±23 per site  

Parietal cortex, layer 2 -0.2 0.5 'f/f 
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- The neurons mainly encoded the start of trial and 
reward presentation 

One session, single neuron 
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to reach sound source 
- Representative neuron encoded the distance to sound source, rather than the time 

Two-photon microscopy 
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Detect correlations between a neuronal activity and variables 

Parietal cortex 
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: No-sounded distance 
p-value: ANOVA 

(MAP: Maximum 
a posteriori) 

100 Pm 

0.03 

Average MAP for each neuron 

0.038 

P2- 
226 

Akihiro Funamizu, Bernd Kuhn, Kenji Doya 

Investigation of action-dependent state prediction in 
the mouse parietal cortex with two-photon microscopy 

OIST Graduate University 

Investigate the neural correlates of model-based decision 
making in posterior parietal cortex (PPC) in mouse 

Two-photon microscopy: 

- Calcium imaging was conducted with a 
behaving mouse during the task 

- Adeno-associated virus (AAV) delivering the 
gene of GCamp6f was injected into PPC 

Objective 

Virtual sound navigation task: 
- Mouse estimates the distance between him 
and a sound source based on an internal model 
of locomotion 

- Mouse was head restrained under the two-photon microscope 

Speaker 

Spout 

- Locomotion of mouse was captured by an USB mouse 

Two-photon microscopy 
- Sampling rate:  
   30.9 Hz 
- 400 x 400 Pm  
   field of view 
- 512 x 512 pixels 

AAV injection: 
1.5 – 2.5 mm 
posterior,  
1.4 mm right of 
bregma 

Virtual sound navigation task 

Sound: Harmonic sound  
(2,4,8,16,32 kHz, 100 dB SPL from 25 cm, 
every 80 ms) 

Intermittent2 
condition 

(15%) 

Continuous 
condition 

(70% of trials) 

: Sounded 
position 

Intermittent1 
condition 

(15%) 

17cm 

33cm 

17cm 
25 cm 

67 –  
134  
cm 

Sound 
source 

Start 
position 

Conclusions 

Virtual Real 

- The virtual position of mouse was updated 
by the mouse’s own locomotion 

- When a mouse passed a sound source and licked a spout, he got a reward 

- In a virtual sound navigation task, mice increased the lickings even when the sound was omitted, suggesting 
that they updated the prediction of sound source position without auditory inputs 

The cortico-cortical circuit from V2 to parietal cortex not only reduces the 
overall uncertainty of state prediction, but also improves the action-dependent  
model-based prediction 

- The sound-generating speakers and sound 
intensity depended on the virtual position of 
mouse 

Reward: Two drops of water  
(4 Pl: 2 x 2 Pl) 

Histology 

Site 1 

Site 2 

Site 3 

500 Pm 

A 

L 

Site 3: 

Layer 1 

Layer 2 

Layer 3 
Layer 4 

Layer 5 
100 Pm 

AP -1.66 mm 

-2.16 mm 

-3.56 mm 

Parietal 
cortex 
Secondary 
visual 
(V2)  
cortex 

- Neural 
activities of 
parietal and 
V2 cortices in 
layer 2, 3 and 
5 were 
recorded  

Licking behavior 
- The licking increased even 
when the sound was omitted 
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- From the start position, the 
distance to first-lick and that 
to sound-source were 
correlated (r = 0.237 – 0.731, 
p = 0.0037 – 2.75E-26), 
suggesting that mice listened 
to the sound for decisions 
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2013-10-11-mouse11 (186 Pm from surface) 
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Distance from start position 
Time from start position 
Distance to sound source 
Time to reach sound source 

y(t) = b0 + b1exp{-(x(t)-P)2/2V2}+6bnVariables(t) 
- y(t):  Calcium fluorescence at frame (t) 
- b:      Regression coefficient 
- P, V: Free parameters 

- x(t): 

Significant variables were 
detected with BIC  
(two-sided t-test, p < 0.01) 

Licking frequency 
Locomotion speed 
Sound intensity 
Before or after 
first lick 

- Variables: 

Regression analysis 

(One of four variables were applied) 

Lick (Hz) Locomotion 
speed 

Sound 
intensity 

Before or 
after first lick 

2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 

Parietal V2 Parietal V2 Parietal V2 Parietal V2 

- Neurons mainly encoded 
the time from trial start and 
the distance to sound source 
- Locomotion speed was 
encoded in the parietal cortex 

Regression + Anova 
Neurons encoding the distance or time to sound source were extracted 
(Example: Parietal cortex, layer2) 
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- Parietal neurons tended to increase the 
activities in the intermittent conditions, 
while V2 neurons had the opposite tendency - Neurons in the parietal and secondary visual (V2) cortices mainly represented the time from trial start 

and the distance to sound source 
- For encoding the sound-source distance, neurons in the parietal cortex tended to increase the activities during the 
intermittent conditions. Also, they represented the locomotion speed which was important for the action-dependent 
state prediction 
- Bayesian decoding showed that, from V2 to parietal cortex, (i) the prediction accuracy in the intermittent1 
condition improved and (ii) the prediction uncertainty significantly reduced 

Distance decoding:  
Bayesian method 

Continuous 

: No-sounded 
distance 

Parietal cortex 
V2 cortex 

Differences between the estimated and actual distances 
were compared between the parietal and V2 cortices  

: No-sounded distance 
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p = 0.509 0.0152 0.0182 

0.810 0.00122 0.483 

5.39E-8 3.22E-4 0.0118 

- From V2 to parietal cortex, the decoding 
uncertainty significantly reduced 
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- At the zero to sound source, V2 cortex had the 
significantly worse prediction of sound-source 
distance in the intermittent1 and 2 conditions 

MAP: Task conditions 
p-value: ANOVA 

Intermittent1 
Intermittent2 

: No-sounded distance in intermittent1 

Continuous 

- x: Distance to sound source 
- n: Neural activities 
- i:  Number of neuron 

P(xt|nall,t) ҃ P(nall,t|xt)P(x) 

P(nall|x) = 3i P(ni|x) 
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Decode the distance to sound source 
from population neural activities 

Leave-one-out cross validation Training data 
Continuous 

Example: (2013-10-11-mouse11) 

0 Posterior 0.4 
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- Even at the no-sound periods in the intermittent 
conditions, the neurons successfully decoded the 
distance to sound source 

- The prediction in intermittent1 condition 
improved in the parietal cortex 

: No-sounded distance in intermittent2 

MAP: Parietal vs. V2 

Uncertainty: Parietal vs. V2 

p-value: ANOVA 

- The prediction accuracy was improved in 
the parietal cortex compared to V2 

The standard deviations in decoding were compared 
between the parietal and V2 cortices  (*: p < 0.01) 

- x was discretized for every 4.19 cm  

- Training data: Continuous condition 

- n was normalized and discretized 
to 3 bins: [-inf, -1.96, 1.96, inf] 

Recorded from 8 mice: 

Parietal cortex 
layer 2: 8 sites (n = 4155) 
  519±16 per site 
layer 3: 9 sites (n = 4530) 
  500±19 per site 
layer 5: 8 sites (n = 2895) 
  361±23 per site  

V2 cortex 
layer 2: 9 sites (n = 4577) 
  509±19 per site 
layer 3: 8 sites (n = 3832) 
  479±21 per site 
layer 5: 8 sites (n = 2693) 
  336±23 per site  

Parietal cortex, layer 2 -0.2 0.5 'f/f 

Time from start (sec) Time to reach sound source (sec) 
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- The neurons mainly encoded the start of trial and 
reward presentation 

One session, single neuron 
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to reach sound source 
- Representative neuron encoded the distance to sound source, rather than the time 

Two-photon microscopy 

2 3 5 

Detect correlations between a neuronal activity and variables 

Parietal cortex 
V2 cortex 

: No-sounded distance 
p-value: ANOVA 

(MAP: Maximum 
a posteriori) 

100 Pm 

0.03 

Average MAP for each neuron 

0.038 
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Decoding the Goal Distance
n Neuron i acqvity fi at distance x

lresponse model p(fi|x) 
n Bayesian decoder: p(x|f1,…,fN) ∝ ∏ip(fi|x)p(x)

(Ma et al., 2006)

lgoal distance updated under sound omission
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Hypothetical cortical algorithm of model-based state prediction 
with Bayesian inference 

Probabilistic population code in PPC 
0327-mouse23: PPC Layer2 0416-mouse23: PM Layer2 

Decoding_Bayes_160324_17_detail 
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Decoding the Goal Distance
n Neuron i activity fi at distance x

lresponse model p(fi|x) 
n Bayesian decoder: p(x|f1,…,fN) ∝ ∏ip(fi|x)p(x)

(Ma et al., 2006)
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Two-Photon Imaging: Summary
Auditory virtual navigation task for mice

lestimate goal distance during no-sound phase from its own action 
using an internal model

Two-photon imaging from PPC
lgoal distance can be decoded from population activity even during 

no-sound phase
lvariance reduced during sound phase
lcharacteristic of dynamic Bayesian inference

Future
lnetwork mechanisms for action-dependent prediction and 

sensory-based refinement



Duality of Inference and Control
n Optimal filtering  (Kalman 1960)

n Bayesian inference: log posterior

n Optimal control  (Bellman et al. 1958)

n Reinforcement learning: state value

(Todorov 2007, 08; Toussaint 2009; Levine 2018)

x(t) = ¦
�

�f 

1t

r
 Φ(t; r + 1)u(r). 

Therefore if t t s we have 

Ex(t)x'(s) = ¦
�

�f 

1s

r
 Φ(t; r + 1)Q(r) Φ'(s; r + 1). 

Thus if we assume a linear dynamic model and know the 
statistical properties of the gaussian random excitation, it is easy 
to find the corresponding statistical properties of the gaussian 
random process {x(t)}.  

In real life, however, the situation is usually reversed. One is 
given the covariance matrix Ex(t)x'(s) (or rather, one attempts to 
estimate the matrix from limited statistical data) and the problem 
is to get (15) and the statistical properties of u(t). This is a subtle 
and presently largely unsolved problem in experimentation and 
data reduction. As in the vast majority of the engineering 
literature on the Wiener problem, we shall find it convenient to 
start with the model (15) and regard the problem of obtaining the 
model itself as a separate question. To be sure, the two problems 
should be optimized jointly if possible; the author is not aware, 
however, of any study of the joint optimization problem.  

In summary, the following assumptions are made about random 
processes:  

Physical random phenomena may be thought of as due to 
primary random sources exciting dynamic systems. The primary 
sources are assumed to be independent gaussian random 
processes with zero mean; the dynamic systems will be linear. The 
random processes are therefore described by models such as (15). 
The question of how the numbers specifying the model are 
obtained from experimental data will not be considered. 
 
Solution of the Wiener problem 

Let us now define the principal problem of the paper. 
Problem I. Consider the dynamic model 

 
x(t + 1) = Φ(t + 1; t)x(t) + u(t)                   (16) 

 
y(t) = M(t)x(t)                                (17) 

 
where u(t) is an independent gaussian random process of n- 
vectors with zero mean, x(t) is an n-vector, y(t) is a p-vector (p d 
n), Φ(t + 1; t), M(t) are n × n, resp. p × n, matrices whose 
elements are nonrandom functions of time.  

Given the observed values of y(t0), ..., y(t) find an estimate 
x*(t1_t) of x(t1) which minimizes the expected loss. (See Fig. 2, 
where ∆(t) = I.)  

This problem includes as a special case the problems of filter- 
ing, prediction, and data smoothing mentioned earlier. It in- 
cludes also the problem of reconstructing all the state variables of 
a linear dynamic system from noisy observations of some of the 
state variables (p < n!).  

From Theorem 2-a we know that the solution of Problem I is 
simply the orthogonal projection of x(t1) on the linear manifold 
_(t) generated by the observed random variables. As remarked in 
the Introduction, this is to be accomplished by means of a linear 
(not necessarily stationary!) dynamic system of the general form 
(14). With this in mind, we proceed as follows.  

Assume that y(t0), ..., y(t – 1) have been measured, i.e., that _(t 
– 1) is known. Next, at time t, the random variable y(t) is 
measured. As before let y~ (t_t – 1) be the component of y(t) 
orthogonal to _(t – 1). If y~ (t_t – 1) { 0, which means that the 
values of all components of this random vector are zero for almost 
every possible event, then _(t) is obviously the same as _(t – 1) 
and therefore the measurement of y(t) does not convey any addi-
tional information. This is not likely to happen in a physically 
meaningful situation. In any case, y~ (t_t – 1) generates a linear 

manifold (possibly 0) which we denote by `(t). By definition, 
_(t – 1) and `(t) taken together are the same manifold as _(t), 
and every vector in `(t) is orthogonal to every vector in _(t – 1).  

Assuming by induction that x*(t1 – 1_t – 1) is known, we can 
write:  

x*(t1_t)    = Ê [x(t1)__(t)] = Ê [x(t1)__(t – 1)] + Ê [x(t1)_`(t)] 
    =  Φ(t + 1; t) x*(t1 – 1_t – 1) + Ê [u(t1 – 1)__(t – 1)] 

+ Ê [x(t1)_`(t)]    (18) 
 
where the last line is obtained using (16).  

Let t1 = t + s, where s is any integer. If s t 0, then u(tl – 1) is 
independent of _(t – 1). This is because u(tl – 1) = u(t + s – 1) is 
then independent of u(t – 2), u(t – 3), ... and therefore by (16–
17), independent of y(t0), ..., y(t – 1), hence independent of _(t – 
1). Since, for all t, u(t0) has zero mean by assumption, it follows 
that u(tl – 1) (s t 0) is orthogonal to _(t – 1). Thus if s t 0, the 
second term on the right-hand side of (18) vanishes; if s < 0, 
considerable complications result in evaluating this term. We 
shall consider only the case tl t t. Furthermore, it will suffice to 
consider in detail only the case tl = t + 1 since the other cases can 
be easily reduced to this one.  

The last term in (18) must be a linear operation on the random 
variable y~ (t _t – 1): 
 

Ê [x(t + 1)_`(t)] = ∆*(t) y~ (t_t – 1)                   (19) 
 
where ∆*(t) is an n × p matrix, and the star refers to “optimal 
filtering”.  

The component of y(t) lying in _(t – 1) is y (t_t – 1) = 
M(t)x*(t_t – 1). Hence 
 
y~ (t_t – 1) = y(t) – y (t_t – 1) = y(t) – M(t)x*(t_t – 1).                (20) 
 
Combining (18-20) (see Fig. 3) we obtain 
 

x*(t + 1_t)  = Φ*(t + 1; t)x*(t_t – 1) + ∆*(t)y(t)           (21) 
 

where 
 

 Φ*(t + 1; t) = Φ(t + 1; t) – ∆*(t)M(t)                  (22) 
 

Thus optimal estimation is performed by a linear dynamic 
system of the same form as (14). The state of the estimator is the 
previous estimate, the input is the last measured value of the 
observable random variable y(t) , the transition matrix is given by 
(22). Notice that physical realization of the optimal filter requires 
only (i) the model of the random process (ii) the operator ∆*(t). 

The estimation error is also governed by a linear dynamic 
system. In fact,  
 
x~ (t + 1_t)  = x(t + 1) – x*(t + 1_t) 
   = Φ(t + 1; t)x(t) + u(t) – Φ*(t + 1; t)x*(t_t – 1) 
  – ∆*(t)M(t)x(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3   Matrix block diagram of optimal filter 
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tool turns out to be the duality theorem mentioned briefly in the 
next section. See [29]. 

(j) By letting the sampling period (equal to one so far) ap- 
proach zero, the method can be used to obtain the specification of 
a differential equation for the optimal filter. To do this, i.e., to 
pass from equation (14) to equation (12), requires computing the 
logarithm F* of the matrix Φ*. But this can be done only if Φ* is 
nonsingular—which is easily seen not to be the case. This is 
because it is sufficient for the optimal filter to have n – p state 
variables, rather than n, as the formalism of equation (22) would 
seem to imply. By appropriate modifications, therefore, equation 
(22) can be reduced to an equivalent set of only n – p equations 
whose transition matrix is nonsingular. Details of this type will be 
covered in later publications. 

(k) The dynamic system (21) is, in general, nonstationary. This 
is due to two things: (1) The time dependence of Φ(t + 1; t) and 
M(t); (2) the fact that the estimation starts at t = t0 and improves as 
more data are accumulated. If Φ, M are constants, it can be shown 
that (21) becomes a stationary dynamic system in the limit t o�f. 
This is the case treated by the classical Wiener theory. 

(l) It is noteworthy that the derivations given are not affected 
by the nonstationarity of the model for x(t) or the finiteness of 
available data. In fact, as far as the author is aware, the only 
explicit recursion relations given before for the growing-memory 
filter are due to Blum [12]. However, his results are much more 
complicated than ours. 

(m) By inspection of Fig. 3 we see that the optimal filter is a 
feedback system, and that the signal after the first summer is 
white noise since y~ (t_t – 1) is obviously an orthogonal random 
process. This corresponds to some well-known results in Wiener 
filtering, see, e.g., Smith [28], Chapter 6, Fig. 6–4. However, this 
is apparently the first rigorous proof that every Wiener filter is 
realizable by means of a feedback system. Moreover, it will be 
shown in another paper that such a filter is always stable, under 
very mild assumptions on the model (16–17). See [29]. 
 
The Dual Problem 

Let us now consider another problem which is conceptually 
very different from optimal estimation, namely, the noise-free 
regulator problem. In the simplest cases, this is: 

Problem II.  Consider the dynamic system 
x(t + 1) = Φ̂ (t + 1; t)x(t) + M̂ (t)u(t)  (33) 

where x(t) is an n-vector, u(t) is an m-vector (m d n), Φ̂ , M̂  are 
n × n resp. n × m matrices whose elements are nonrandom func- 
tions of time. Given any state x(t) at time t, we are to find a 
sequence u(t), ..., u(T) of control vectors which minimizes the 
performance index 

V[x(t)] = ¦
�

 W

1T

t
x'(W)Q(W)x(W) 

Where Q̂ (t) is a positive definite matrix whose elements are 
nonrandom functions of time. See Fig. 2, where ∆ = M̂  and M = I.  

Probabilistic considerations play no part in Problem II; it is 
implicitly assumed that every state variable can be measured 
exactly at each instant t, t + 1, ..., T. It is customary to call T t t 
the terminal time (it may be infinity).  

The first general solution of the noise-free regulator problem is 
due to the author [18]. The main result is that the optimal control 
vectors u*(t) are nonstationary linear functions of x(t). After a 
change in notation, the formulas of the Appendix, Reference [18] 
(see also Reference [23]) are as follows: 

u*(t)  =  – ∆̂ *(t)x(t)  (34)  
Under optimal control as given by (34), the “closed-loop” equa-
tions for the system are (see Fig. 4)  

x(t + 1) = Φ̂ *(t + 1; t)x(t)   
and the minimum performance index at time t is given by   

V*[x(t)] = x'(t)P*(t – 1)x(t)  
The matrices ∆̂ *(t), Φ̂ *(t + 1; t), P̂ *(t) are determined by 

the recursion relations: 
 

 
 
 
 
Initially we must set P̂ *(T) = Q̂ (T + 1).  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   Matrix block diagram of optimal controller  
Comparing equations (35–37) with (28–30) and Fig. 3 with 

Fig. 4 we notice some interesting things which are expressed 
precisely by 

Theorem 4. (Duality Theorem) Problem I and Problem II are 
duals of each other in the following sense: 

Let W�t 0. Replace every matrix X(t) = X(t0 + W) in (28–30) by 
X̂ '(t) = X̂ '(T – W). Then One has (35–37). Conversely, replace 
every matrix X̂ (T – W) in (35–37) by X'(t0 + W). Then one has 
(28–30). 

Proof. Carry out the substitutions. For ease of reference, the 
dualities between the two problems are given in detail in Table 1.  

Table 1 
                Problem I Problem II 
1 x(t) (unobservable) state 

variables of random proc-
ess. 

x(t) (observable) state varia-
bles of plant to be 
regulated. 

2 y(t) observed random varia-
bles. 

u(t) control variables 

3 t0 first observation. T last control action. 
4 Φ(t0 + W +1; t0 + W) transition 

matrix. Φ̂ (T – W + 1; T – W)    transi- 
 tion matrix. 

5 P*(t0 + W) covariance of 
optimized estimation error.� P̂ *(T – W)  matrix  of  quad- 

ratic form for performance 
index under optimal regu- 
lation. 

6 ∆*(t0 + W) weighting of ob- 
servation for optimal esti- 
mation. 

∆̂ *(T – W)    weighting     of 
 state for optimal control. 

7 Φ*(t0 + W + 1; t0 + W) transi- 
tion matrix for optimal es- 
timation error. 

Φ̂ *(T – W + 1; T – W)  transi- 
tion matrix under optimal 
regulation. 

8 M(t0 + W) effect of state on 
observation. M̂ (T – W)   effect  of  control 

vectors on state. 
9 Q(t0 + W) covariance of ran- 

dom excitation. Q̂ (T – W)        matrix         of  
quadratic form defining 
error criterion. 

 
Remarks.  (n) The mathematical significance of the duality be- 

tween Problem I and Problem II is that both problems reduce to 
the solution of the Wiener-Hopf-like equation (32). 

(o) The physical significance of the duality is intriguing. Why 
are observations and control dual quantities? 
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∆̂ *(t) = M̂[ '(t) P̂ *(t) M̂ (t)]–1 M̂ '(t) P̂ *(t) Φ̂ (t + 1; t)
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12.4 Linear-Quadratic-Gaussian Control: Riccati Equations 285

Functions V, a satisfying equation (12.25) can obviously be found by initializing
V (tf ) = Qf , a (tf ) = 0 and integrating the ODE (12.25) backward in time.
Thus equation (12.23) is the optimal value function with V, a given by equation
(12.25), and equation (12.24) is the optimal control law (which in this case is
unique).

The first line of equation (12.25) is called a continuous-time Riccati equation.
Note that it does not depend on the noise covariance S. Consequently the
optimal control law given by equation (12.24) is also independent of S. The
only effect of S is on the total cost. As a corollary, the optimal control law
remains the same in the deterministic case – called the linear-quadratic regulator
(LQR).

12.4.2 Derivation via the Bellman Equations

In practice one usually works with discrete-time systems. To obtain an optimal
control law for the discrete-time case one could use an Euler approximation to
equation (12.25), but the resulting equation is missing terms quadratic in the
time step ∆, as we will see below. Instead we apply dynamic programming
directly, and obtain an exact solution to the discrete-time LQR problem. Drop-
ping the (irrelevant) noise and discretizing the problem, we obtain

dynamics: xk+1 = Axk + Buk

cost rate: 1
2u

T
kRuk + 1

2x
T
kQxk

final cost: 1
2x

T
nQfxn

where n = tf/∆ and the correspondence to the continuous-time problem is

xk ← x (k∆) , A ← (I + ∆A) , B ← ∆B, R ← ∆R, Q ← ∆Q (12.26)

The guess for the optimal value function is again quadratic

v (x, k) = 1
2x

TVkx

with boundary condition Vn = Qf . The Bellman equation (12.2) is

1
2x

TVkx = min
u

{
1
2u

TRu + 1
2x

TQx + 1
2 (Ax + Bu)T Vk+1 (Ax + Bu)

}
.

As in the continuous-time case the Hamiltonian can be minimized analytically.
The resulting optimal control law is

u = −
(
R + BTVk+1B

)−1
BTVk+1Ax.

Substituting this u in the Bellman equation, we obtain

Vk = Q + ATVk+1A − ATVk+1B
(
R + BTVk+1B

)−1
BTVk+1A. (12.27)
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covariance given the prior p̂k are easily computed:

E

[
xk+1

yk

]
=

[
Ax̂k

Hx̂k

]
, Cov

[
xk+1

yk

]
=

[
S + AΣkAT AΣkHT

HΣkAT P + HΣkHT

]

Now we need to compute the probability of xk+1 conditional on the new obser-
vation yk. This is done using an important property of multivariate Gaussians
summarized in the following lemma:

Let p and q be jointly Gaussian, with means p and q and covariances
Σpp, Σqq and Σpq = ΣT

qp. Then the conditional distribution of p given q
is Gaussian, with mean and covariance

E [p|q] = p + ΣpqΣ−1
qq (q − q)

Cov [p|q] = Σpp − ΣpqΣ−1
qqΣqp

Applying the lemma to our problem, we see that p̂k+1 is Gaussian with mean

x̂k+1 = Ax̂k + AΣkHT
(
P + HΣkHT

)−1
(yk − Hx̂k) (12.30)

and covariance matrix

Σk+1 = S + AΣkAT − AΣkHT
(
P + HΣkHT

)−1
HΣkAT. (12.31)

This completes the induction proof. Equation (12.31) is a Riccati equation.
Equation (12.30) is usually written as

x̂k+1 = Ax̂k + Kk (yk − Hx̂k)

where Kk = AΣkHT
(
P + HΣkHT

)−1
.

The time-varying matrix Kk is called the filter gain. It does not depend on
the observation sequence and therefore can be computed offline. The quantity
yk − Hx̂k is called the innovation. It is the mismatch between the observed
and the expected measurement. The covariance Σk of the posterior probability
distribution p (xk|yk−1 · · ·y0) is the estimation error covariance. The estimation
error is xk − x̂k.

The above derivation corresponds to the discrete-time Kalman filter. A sim-
ilar result holds in continuous time, and is called the Kalman-Bucy filter. It is
possible to write down the Kalman filter in equivalent forms which have nu-
merical advantages. One such approach is to propagate the matrix square root
of Σ. This is called a square-root filter, and involves Riccati-like equations which
are more stable because the dynamic range of the elements of Σ is reduced.
Another approach is to propagate the inverse covariance Σ−1. This is called
an information filter, and again involves Riccati-like equations. The informa-
tion filter can represent numerically very large covariances (and even infinite
covariances – which are useful for specifying "noninformative" priors).

p(st)
p(st+1|st)

p(ot+1|st+1)
p(st+1)

p(st+2|st+1)

p(ot+2|st+2) p(st+2) V(sT)

p(sT|sT-1, aT-1)
r(sT-1, aT-1)

V(sT-1)
p(sT-1|sT-2, aT-2)

r(sT-2, aT-2)

V(sT-2)
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(2021)

computed by subtracting the state value from the action
value, so that action may be selected in layer 5 or 6 and
sent to lower cortical and subcortical areas. Note that the
above is just one hypothetical realization and many other
mappings of different roles to neurons and connections
are conceivable.

There are many interesting open questions about the
cortical implementation of the dual computations for
Bayesian inference and optimal control. First, how the
backward computation is realized in real time? In the
visual cortex, evidence suggests that the alpha rhythm
around 10 Hz carries top-down feedback information [33]

and underlies multi-modal sensory arbitration [34]. In the
motor cortex, the beta rhythm around 20 Hz shows
responses before execution or during imagination of
movements [35,36]. These might be the correlates of
periodic execution of backward computation.

Another important question is how the state transition
model pðstþ1jst ; atÞ and the sensory observation model
pðot jstÞ are learned, together with the internal representa-
tions of state s and action a. The roles of the cerebellar and
the basal ganglia inputs through the thalamus to the
motor cortex in learning is also an interesting question
[37,38].

Canonical circuits for inference and control Doya 165

Table 3

Correspondences of dynamic Bayesian inference and optimal control, and their possible implementation in the canonical
cortical circuit

Inference Cortex Control

Top-down signal zt L1 input Top-down activation signal
Bottom-up signal pðotjstÞ L2/3 output Action value Qðs; aÞ
Predictive model pðst jst$1Þ L2/3 connection Predictive model pðstþ1jst; atÞ

Bottom-up signal ot L4 input Optimality signal Ot

Likelihood pðot jsÞ L4 output Reward function rðs; aÞ
Posterior pðstjo1; . . . ; otÞ L5 output State value VðsÞ

Top-down signal st L6 output Action pðat jstÞ

Figure 3

Current Opinion in Behavioral Sciences 

Canonical cortical circuits in sensory and motor cortices and a hypothetical realization of dynamic Bayesian inference and optimal control. (a)
Possible realization of dynamic Bayesian inference in the sensory cortex. (b) Possible realization of optimal control in the motor cortex.
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Prism Lens Imaging during Lever Pull Task
 Yuzhe Li, Sergey Zobnin
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Figure 4. Simplified schematics of the neural recordings during the experiment. The 
mouse controls the lever and receives tactile feedback from it (black arrows). This tactile 
signal is combined with the top-down action-dependent prior (red arrow) within sensory areas 
to infer sensory variables. To investigate this computation, we will implant a prism 
endoscope with the diameter 1 mm to image GCaMP labeled neurons in a vertical plane 
across all cortical layers simultaneously. During the task, we will modify the tactile feedback 
from the active lever and, optionally, axonal projections from motor to sensory areas by 
optogenetics. 

2.2. Subproject 1. Identifying the neural populations involved in the tactile-dependent 
behavioral experiment 

I will train mice to push or pull the lever depending on the tactile stimuli. The reward 
will be provided upon correct task performance. During the task I will be recording neuronal 
activity from all the cortical layers in somatosensory cortex simultaneously. For imaging the 
neural activity, I will inject recombinant adeno-associated virus vector to express calcium 
indicator protein GCaMP into the cortex. To investigate implementation of the inference 
about environmental variables, I am going to target the primary somatosensory cortex S1. S2 
cortical area was shown to contain more information about decision-making and motor output 
(Kwon et al. 2016). Before implanting the endoscopic lenses, I will verify the area encoding 
task-related variables by imaging intrinsic signal of blood oxygenation or calcium activity in 
the superficial layers through the skull. 

I will look into the correlations between activity in different layers and the task-
related variables. The task-related variables include the sensory stimulus produced by the 
lever, the motor commands reflected in the behavior, and the animal’s expectations about 



Light/Heavy Lever Pull Task
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Chapter III. Results

3.2 Neural data analysis

3.2.1 Calcium imaging of cortical layers

I imaged neuronal activity across cortical layers of somatosensory forelimb area

(S1FL) using genetically encoded calcium indicator GCaMP6f. The resulted field of view of

the imaged tissue was around 1188 ✕ 750 µm with the long side oriented parallel to

dorsal-ventral axis. Collectively, using PCA-ICA analysis on the calcium signal recordings, I

extracted 3107 and 1085 components corresponding to deep and superficial individual

neurons, respectively (Figure 3.4). The imaged cells were sorted into deep and superficial in

coronal slices immunostained with DAPI by visually estimating the relevant position of the

unlabeled layer 4 and the track of the lens implant (Figure 3.5). Immunostaining and layer

identification for one mouse (#8) could not be performed due to premature death and I

excluded this mouse from the analysis that required comparison between layers.

Figure 3.4. Results of PCA-ICA calcium imaging analysis. Data from 8 mice are shown (scale bar-
200 μm). From each mouse, except one, from 150 to 550 neurons were extracted (highlighted with
white contour). For mice where both superficial and deep layers could be observed, the yellow dashed
line indicates the boundary between layers.
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Figure 3.5. Estimation of the imaged layers. Location of the layer 4 unlabeled with GCaMP6f

(green color) can be visually identified. The brain slices were made coronally, perpendicular to the

plane of the recorded calcium signal videos in Figure 3.4. Blue color- DAPI. The data from 6 different

mice are shown. The white rectangle depicts the estimated location of the focal plane of the prism

lens and its ventral-dorsal midpoint. Scale bar - 200 microns. Mice #3, #4, and #7 have both

superficial and deep layers within the focal view. Mice #1, and #5- only deep layers. Mouse #2- only

superficial layer.

3.2.2 Neural response to the task

To examine if the neurons respond to the lever-pulling task, I aligned the calcium

activity traces by the pull initiation moment (applied force > 5 mN). I found robust neuronal

responses to the lever-pulling task in all mice. Activities of multiple cells were correlated

with the applied force (Figure 3.6, Table 1).

For the overall response,

Figure 3.7, 3.8A, 3.8B and Appendix 1 visualize the activities of the neurons in four

different conditions (Heavy/Light Expected Heavy/Light Trials). In both deep and superficial

layers, there was an increased number of neurons that were active within proximity to the

time of pull. In addition, the cells tended to maintain their peak time across different days and

the experiment conditions. Cells that were more active before pull onset tended to have a
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HE-HT LE-HT HE-LT LE-LT

Time, s Time, s Time, s Time, s

Figure 3.7. Pull-relevant neural activity in deep neurons. Activity traces of neurons are shown,
aligned by the time of pull onset (at t=0 s). Each panel represents a single experiment condition,
across which the data was time aligned, trial averaged, time-averaged with a moving window of 200
ms, and normalized. Each horizontal line corresponds to a single cell. Within all panels, cells are
sorted by the time of their peak activity during heavy trials in heavy sessions (left panel). The cells
roughly maintained their time tuning to the lever-pulling task across light and heavy trials (LT, HT) and
light and heavy sessions (LE, HE). Deep neurons of mouse #3 during probabilistic sessions are
shown.

HE-HT LE-HT HE-LT LE-LT

Time, s Time, s Time, s Time, s

Figure 3.8A. Pull-relevant neural activity during probabilistic session. Same as Figure 3.7 for

mouse #7 with both deep cells (bottom) and superficial cells (top).
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Expected and Actual Trial Type Coding
superficial

deep

Encoding analysis

n More deep neurons code 
expected trial type before action

n More superficial neurons code 
actual trial type after action

HE-HT LE-HT HE-LT LE-LT

Figure 2. Tuning of the superficial (top) and deep (bottom) cells to lever-pulling task.
Each horizontal bar across all panels corresponds to the same cell, all of which are sorted by
the peak time within HE-HT trials (heavy expected - heavy actual trial). One example mouse
is shown; the neurons of all mice and all layers roughly maintained their tuning to the
lever-pulling task.

Figure 3. Layer-specific neuronal response to the lever-pulling task. Averaged activity
traces across all neurons are shown. Superficial cells (GREEN) were more active than deep
cells (BLUE) after pull initiation. In addition, superficial cells were less active before pull
initiation when expecting heavy trial.

HE-HT LE-HT HE-LT LE-LT

Figure 2. Tuning of the superficial (top) and deep (bottom) cells to lever-pulling task.
Each horizontal bar across all panels corresponds to the same cell, all of which are sorted by
the peak time within HE-HT trials (heavy expected - heavy actual trial). One example mouse
is shown; the neurons of all mice and all layers roughly maintained their tuning to the
lever-pulling task.

Figure 3. Layer-specific neuronal response to the lever-pulling task. Averaged activity
traces across all neurons are shown. Superficial cells (GREEN) were more active than deep
cells (BLUE) after pull initiation. In addition, superficial cells were less active before pull
initiation when expecting heavy trial.

Expected trial type Actual trial type

Figure 4. The size of task-variable encoding ensembles during lever-pulling task. The
proportion of cells per layer responding to the expected (left) and the actual trial type (right)
are shown. Green- superficial layers, blue- deep layers. Each cell trace was split into 0.5 s
periods that were checked for the influence from expected and actual trial type (two-way
ANOVA, p<0.05). Superficial cells had an increased response to the actual trial type after
pull initiation with the largest number at around 1.25 s, while deep cells did not. There were
more deep cells tuned to expected than actual trial type and their number increased after
pull initiation. Superficial cells also responded to the expected trial type.



Population Decoding
At different time points Peak amplitude after pull

n Better decoding of expected 
trial type from deep neurons

Figure 5. Decoders’ performances at predicting expected and actual trial type.
Deep decoders performed best after pull initiation while predicting the expected trial type
better than the actual trial type (see red colors extending to smaller ensembles). Superficial
cells predicted expected type better than actual trial type.

Figure 6. Predicting expected and actual trial types with layer-specific models.
Per ensemble size, the after-pull peak amplitude of the deep neurons predicted expected
trial better than actual trial and predicted it better than did superficial layers. Green-
superficial layers, blue- deep layers.

Figure 5. Decoders’ performances at predicting expected and actual trial type.
Deep decoders performed best after pull initiation while predicting the expected trial type
better than the actual trial type (see red colors extending to smaller ensembles). Superficial
cells predicted expected type better than actual trial type.

Figure 6. Predicting expected and actual trial types with layer-specific models.
Per ensemble size, the after-pull peak amplitude of the deep neurons predicted expected
trial better than actual trial and predicted it better than did superficial layers. Green-
superficial layers, blue- deep layers.
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Reinforcement Learning
n Predict reward: value function

lV(s) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s]
lQ(s,a) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s, a(t)=a]

n Select action
lgreedy: a = argmax Q(s,a)
lBoltzmann: P(a|s) µ exp[ b Q(s,a)]

n Update prediction: temporal difference (TD) error
ld(t) = r(t) + gV(s(t+1)) - V(s(t))
lDV(s(t)) = a d(t)
lDQ(s(t),a(t)) = a d(t)

How to implement these steps?

How to tune these parameters?



Temporal Discount Factor g
n Large g

lreach for far reward

n Small g
lonly to near reward



Temporal Discount Factor g
n V(t) = E[ r(t) + gr(t+1) + g2r(t+2) + g3r(t+3) +…]

lcontrols the ‘character’ of an agent

1 2 3 4 step
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g large g small

can’t resist temptation

no pain, no gain!

stay away from danger

better stay idle

V =18.7 

V = -22.9

V =-25.1 

V = 47.3

Depression?

Impulsivity?

Serotonin?



Neuromodulators for Metalearning
 (Doya, 2002)

nMetaparameter tuning is criqcal in RL
l How does the brain tune them?

Dopamine: TD error d

Acetylcholine: learning rate a

Noradrenaline: exploration b

Serotonin: temporal discount g



Chemical Measurement/Control
 (Kayoko Miyazaki et al., 2011, 2012)

Microdialysis measurement

nSerotonin release increased in 
delayed reward task

Serotonin neuron blockade
l5HT1A agonist in dorsal 

raphe

n Waiting error increased in 
long-delayed reward trials

2 
m
m



Dorsal Raphe Neuron Recording
 (Miyazaki et al. 2011 JNS)

n Keep firing while waiqng

n Stop firing before giving up

Food Water
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Optogenetic Stimulation of Serotonin Neurons
(Miyazaki et al., 2014, Current Biology)

n Reward Delay Task (3, 6, 9, ∞ sec)

l3 sec: success
lomission: 12.1 s
lomission: 20.8 s
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Recent experiments have shown that optogenetic activation of serotonin neurons in the

dorsal raphe nucleus (DRN) in mice enhances patience in waiting for future rewards. Here,

we show that serotonin effect in promoting waiting is maximized by both high probability and

high timing uncertainty of reward. Optogenetic activation of serotonergic neurons prolongs

waiting time in no-reward trials in a task with 75% food reward probability, but not with 50 or

25% reward probabilities. Serotonin effect in promoting waiting increases when the timing of

reward presentation becomes unpredictable. To coherently explain the experimental data, we

propose a Bayesian decision model of waiting that assumes that serotonin neuron activation

increases the prior probability or subjective confidence of reward delivery. The present data

and modeling point to the possibility of a generalized role of serotonin in resolving trade-offs,

not only between immediate and delayed rewards, but also between sensory evidence and

subjective confidence.
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depending on the RP and timing uncertainty are difficult to
explain in terms of a simple temporal discounting paradigm.

Thus, we considered a Bayesian model in which serotonin
neuron stimulation affects the prior probability for the present
trial to be a reward trial. Our simulation results (Fig. 7) repro-
duced the critical features of the shifts in waiting time distribution

depending on RP and timing uncertainty. The present model is
based on several arbitrary assumptions, namely, the internal
model of reward timing distribution is Gaussian while the
experimental setting is multi-modal, serotonin neuron stimula-
tion causes overestimation of RP especially when the RP is high,
and the choice of some free parameters. Nevertheless, this model
is consistent with the effect of serotonin on emotional bias toward
positive outcomes33 and a recent report that serotonergic neuron
activity keeps track of average reward rate26, and further points to
the possibility of a generalized role of serotonin in arbitrating the
trade-off between (negative) sensory evidence and (positive)
subjective belief.

Selective serotonin reuptake inhibitors (SSRIs) are widely used
to treat psychiatric disorders, especially depression, by increasing
the serotonergic tone in the whole brain34,35. However, remission
rate is 36.8% for citalopram treatment alone36. Psychological
treatment, such as cognitive behavioral therapy combined with
antidepressant therapy, is associated with a higher improvement
rate than drug treatment alone37. Our finding that activation of
serotonin neurons alone is not enough and that it requires a
subject’s confidence in a positive outcome (i.e., high probability
for a future reward) to promote a goal-directed behavior, may
explain the combined effect of SSRI treatment and cognitive
therapies, which often removes patients’ negative biases in future
outcomes. The effect of cognitive behavioral therapy is gradual,
such that subjects cannot predict a specific time till recovery. Our
results in experiment 2 suggest that augmentation of serotonergic
tone by SSRI treatment is most effective for enhancing patience
for a gradual recovery, and could prevent patients from dropping
out. Therefore, SSRI treatment and cognitive behavioral therapy
may produce mutually positive effects to realize synergistic
therapy.

A recent study showed that inactivation of the orbitofrontal
cortex (OFC) disrupts waiting-based confidence reports without
affecting decision accuracy38. Previous recording studies have
also revealed that OFC neurons encode predictions of reward
outcomes39,40. Optogenetic serotonin activation modulates
reward anticipatory responses of OFC neurons41. These results
suggest that the OFC may produce causal signals for waiting with
serotonin neural activation42. Optogenetic stimulation of the
terminal sites to which DRN serotonin neurons project will
clarify the sites where serotonin contributes to enhance
patience43. Recent rabies virus tracing strategies have yielded a

Fig. 7 A Bayesian decision making model for waiting reproduces features of
effects of reward probability and timing uncertainty on promotion of
patience by serotonin. a Top panel: the model assumes that the subject has
a probabilistic model of reward delivery timing (magenta line), which is
assumed to be Gaussian with μ= 3 s and σ= 2 s in this example. As the
time passes without reward delivery, the likelihood of a reward trial
diminishes according to the cumulative density function (green line). Middle
panel: the posterior probability for a reward trial goes down along with the
likelihood, but persists longer if the prior probability for a reward trial is
higher. Bottom panel: the timing of quitting is shifted later with a higher prior
probability (Methods). b We assume that dorsal raphe serotonin neuron
stimulation causes an overestimation of the prior probability when the
reward probability is higher (p′= p+ p2− p3 in this example). The yellow
and blue lines show the time of quitting without and with increased prior
probability, respectively. The effect of serotonin neuron stimulation is largest
with a reward probability p= 0.75 (top panel; μ= 3 s and σ= 2 s). c With a
larger uncertainty σ of reward timing, the waiting time distribution shifts
later and the effect of serotonin neuron stimulation (increase of prior
probability from 0.75 to 0.95 in this example) increases. A shift in the
average reward timing (bottom panel; μ= 10 s and σ= 3 s) does not cause a
large increase in waiting time with serotonin neuron stimulation
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n Serotonin stimulation facilitates waiting when...
lreward delivery is certain

n Reproduced by assuming 5-HT enhances prior probability of reward.

lreward timing is uncertain



Serotonin for Model-based RL?
 Masakazu Taira

Two-step task for mice (Akam et al. 2020)

n Tph2-ArchT mice

n Hybrid model
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Serotonin Signals Available Time and Resources?
Serotonergic modulation of cognitive computations
Kenji Doya, Kayoko W Miyazaki and Katsuhiko Miyazaki

Serotonin is a neuromodulator that is implicated in awake-

sleep cycle, motor behaviors, reward, motivation, and mood.

Recent molecular tools for cell-type-specific activity recording

and manipulation with fine temporal and spatial resolutions are

providing unprecedentedly detailed data about serotonergic

neuromodulation. These newly gained information show

substantial differences in the signaling and effect of

serotonergic neuromodulation depending on the projection

targets. To find the common denominator for this diversity, we

conjecture that the evolution of serotonergic neuromodulation

originates from signaling the time and resource available for

action, learning, and development.
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Introduction
Neuromodulators1 are a subset of neurotransmitters that
release diffusely and produce various effects not limited
to excitation or inhibition in various time scales [1,2].
Among the four major neuromodulators (dopamine, sero-
tonin, noradrenaline, and acetylcholine), serotonin
remains the most enigmatic. While many psychiatric
drugs act on serotonin signaling and metabolism,
serotonin’s exact role in cognitive functions has been
unclear. This is a clear contrast with dopamine, which
has been shown to signal reward prediction errors [3,4].

Serotonin (5-hydroxytryptamine; 5-HT) is considered
one of the most ancient signaling molecules in the history
of life [5]. Serotonin is synthesized from the essential

amino acid tryptophan and the majority is used outside of
the brain for regulating blood pressure and gut move-
ment. There are seven major types of serotonin receptors
and all except 5-HT3 type are G-protein-coupled recep-
tors that affect intracellular signaling pathways. The
major source of serotonergic projections in the brain
are the raphe nuclei located on the midline of the brain
stem, although those nuclei also include GABAergic,
glutamatergic, and dopaminergic neurons. Different
raphe nuclei project to different targets: downward to
the spinal cord and upward to the entire forebrain
(Figure 1). The wide-spread projection and the variety
of receptors pose major hurdles in clarifying serotonergic
functions via conventional methods like pharmacological
or genetic manipulations. Recently, however, the devel-
opment of molecular tools for cell-type-specific optoge-
netic manipulation [6] and activity recording [7] has
enabled fine-grained analysis of serotonergic functions
(Figure 2). Here we review such recent advances and
sketch out a new picture of what serotonin does for our
cognition and behaviors.

Recent discoveries by control and
measurement of serotonin signaling
Optogenetics
Optogenetics are methods to activate or inhibit a partic-
ular type of cells by expressing light-sensitive molecules,
such as channel rhodopsin (ChR) for activation and
halorhodopsin (NpHR) or archaerhodopsin (Arch) for
inhibition, in transgenic animals or by virus infection
[6]. Optogenetics allow cell-type-specific manipulation
of neurons in a local circuit with high temporal specificity
[6] (Figure 2a, b), which is difficult to do via conventional
methods like electric stimulation or pharmacological
manipulation. For selective manipulation of serotonin
neurons, promoters like Pet1, Tph2, and SERT are
commonly used. Here we review different behavioral
effects of serotonin manipulation by optogenetics.

Reward and punishment
Classically, serotonin has been implicated in punishment,
negative mood, and behavioral inhibition [8,9]. Consis-
tent with this view, optogenetic stimulation of serotonin
neurons in the median raphe nucleus (MRN) enhanced
anxiety-like behavior in the elevated-plus maze and the
effect was expressed via the dorsal hippocampus [10,11].

In contrast, Liu et al. reported that optogenetic activation
of serotonin neurons in the dorsal raphe nucleus (DRN)
using the Pet1-Cre mice induced place preference [12].
With Pet1 as promoter, ChR2 was expressed not only in
serotonergic neurons but also in glutamatergic neurons in

1 Quite confusingly, the word ‘neuromodulation’ is recently used also
for engineering approaches to affect neural functions, such as electric
stimulation, in some research communities, for example, https://www.
neuromodulation.com/.
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As a common denominator of the diverse effects of
serotonin, we propose a hypothesis that serotonin signals
the availability of time and resources. Table 1 sum-
marizes the expected modulation of behavioral parame-
ters by serotonin. For both development and metabolism,
serotonin is known to have facilitatory effects. In the
reinforcement learning paradigm, availability of time
enables gradual learning, more exploration, and long-term
prediction. Little available time may promote quick
actions and risky choices. In the model-based paradigm,
more time for computation favors model-based strategy,
with wider and deeper search, and more time spent for
collecting evidence. This view is in general agreement
with a recent proposal that serotonin signals
‘beneficialness’ of the current state [54].

Conclusion
The study of serotonin is often likened to ‘blind men
touching an elephant’ [69]. Recent molecular tools for
cell-type-specific activity recording and manipulation
with fine temporal and spatial resolutions are providing
unprecedentedly detailed data about serotonergic neuro-
modulation. Serotonin neurons in different nuclei or even
within the same nucleus carry different information [48].
Is it a bad idea then to try to attribute a unified message or
function for serotonergic neuromodulation?

Here we proposed a conjecture that the evolutionary
origin of serotonergic neuromodulation is signaling the
time and resource available for action, learning, and
development. The necessity of different responses to
this signal by different subsystems of the nervous system
may be the reason why so many different receptors and

intracellular signaling mechanisms came into being. As
projection topography evolved to cover widespread tar-
gets, different subgroups of serotonin neurons would have
fine-tuned their messages to better cater to their own
recipients.

The functions and references summarized in Table 1
cover just a subset of the vast studies on serotonin and
there are many observations that are not consistent with
this view. Further studies focusing on time and resource
availability are needed to test this conjecture. Construc-
tive approaches by simulated or robotic agents with
resource constraints would also be helpful for assessing
the behavioral needs for neuromodulation [70,71].
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Table 1

A variety of ways for how an agent should respond to the
amount of time available and their possible relationships with
serotonergic modulation

Less time More time References

Development stay grow [55]
Energy metabolism utilize save [56,57]
Action vigor spurt relax [58]
Risk taking gamble safe [59]
Threat response freeze, panic cope, avoid [36!!,60]
Social decision selfish cooperative [36!!,61]
Learning rate a fast slow [62]
Exploration b exploit explore [35,62]
Temporal discounting
g

steep slow [18,21,63]

Eligibility trace l short long [64]
TD error component d immediate predictive [35,65]
Decision strategy model-free model-based [66]
Search narrow,

shallow
wide, deep [50]

Sensory perception biased to prior more
evidence

[67,68]

Confidence in reward low high [25,26!!]

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 38:116–123
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Multidisciplinary Frontier Brain and Neuroscience
Discoveries
Brain/MINDS 2.0

The Brain/MINDS 2.0 program was launched on March 5, 2024.

Until the official website opens, get updated information about the program here!

Go to the Japanese page.

Topics

2024/2/21：The Brain/MINDS 2.0 is a large-scale national research program in the field of brain science in Japan. The Japan Agency for Medical Research
and Development (AMED) selected the "Core Organization" of Brain/MINDS 2.0.

Principal Research Institution: RIKEN 

Subsidiary Research Institution: The University of Tokyo, Kyoto University, QST, NCNP, NIPS, ATR, and OIST

　2024/5：Overview of the Brain/MINDS 2.0 Core Organization has opened.

HOME

Research

Link

Japanese page（日本語）

Brain/MINDS
2.0

hkps://sites.google.com/riken-cbs.org/bm2go
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Open software for building digital brains

Online data integrtaion platform

Brain/MINDS 2.0: Digital Brain Development

What is a Digital Brain?
Integration of anatomical/physiological/behavioral data into a 
mathematical model to reproduce brain dynamics and functions
Reproduce brain functions in perception, motion, cognition,...
Ø Contribution to neuroscience and brain-inspired AI
Predict the effects of changes in brain areas, cells, molecules,...
Ø Contribution to pathology and diagnosis/therapy/prevention.

Structural Data
Brain areas

Genes, Proteins

Connectome

Activity Data
fMRI・ECoG

Optical imaging

Behavior analysis

Goals
Open software for building digital brains 
Online platform for model building and simulation

Targets of Applications
• Networks for reinforcement learning/Bayesian inference
• Prediction of pathogenic protein propagation
• Therapy planning by psychiatric disorder model

Model fitting by 
activity data

Simula<on of 
brain func<ons 
and pahology

Multi-species 
data 

integration

Cross-species 
data search

Data-driven 
model building



Cyber Rodent Project (Doya & Uchibe, 2005)

What is the origin of rewards?

Robots with same constraint as biological agents

n Self-preservation
lcapture batteries

n Self-reproduction
lexchange programs

 through IR ports



Learning to Survive and Reproduce
n Catch battery packs

lsurvival
n Copy ‘genes’ by IR ports

lreproduc:on, evolu:on

(Doya & Uchibe, 2005)



Robots

Virtual agents
15-25

Population

w1, w2, …, wn

Genes

Embodied Evolution    (Elfwing et al., 2011)

Weights for top layer NN

Weights shaping rewards

Meta-parameters

v1, v2, …, vn

αγλτkτ 0
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(a)

(b)

Figure 1. Two physical robots with six energy sources and the neural network controller.

(a) The Cyber Rodent robots used in the experiments were equipped infrared communication for the
exchange of genotypes and cameras for visual detection of energy sources (blue), tail-lamps of other
robots (green), and faces of other robots (red). (b) The control architecture consisted of a linear
artificial neural network. The output of the network was the weighted sum (

P
i wixi) of the five

network inputs (xi) and the five evolutionarily tuned neural network weights (wi). In each time step, if
the output was less or equal to zero then the foraging module was selected, otherwise the mating
module was selected. The basic behaviors were learned from by reinforcement learning with the aid of
evolutionarily tuned additional reward signals and meta-parameters. The foraging module learned a
foraging behavior for capturing energy sources. The mating module learned both a mating behavior for
the exchange of genotypes, when a face of another robot was visible, and a waiting behavior, when no
face was visible.



Evolution of Meta-Parameters
n Learning rate a
n Exploration temperature t

n Temporal discount factor g
n Eligibility trace decay factor l
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Evolution of Shaping Rewards
n Vision of baAery n Vision of face

(Elfwing et al., 2011)



Polymorphism within Colony
 (Elfwing et al. 2014)

n Foragers and Trackers n Evolutional stability
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p < 0.0001

Figure 2. The Correlation between the average mating learning performance and the

average fitness in the final 20 generations in all experiments. The learning performance was
estimated as the number of time steps the mating behavior was selected divided with number of mating
events. The seven types of markers indicate the number of energy sources in the environment for each
simulation.

(a) (b)

Figure 3. Example trajectories of the learned behaviors for the roamer strategy and the

stayer strategy. (a) The roamer ignores the tail-lamp of the mating partner and executes the learned
foraging behavior to capture the energy source. (b) The stayer executes the learned waiting behavior
and adjusts its position according to the trajectory of the mating partner.

Forager Tracker

15

−0.5 0 0.5 1

1.6

2

2.4

2.8

w1

w 5

 

 

Roamers
Stayers

(a)

0 0.2 0.4 0.6 0.8 1
0%

4%

8%

12%

Ēm
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Figure 4. Difference in genotype, phenotype, and behavior between the roamer (green)

and stayer (red) subpopulations for all individuals (1600) in the final 20 generations. (a)
The distribution of values of the bias weights (x1) and the face distance weights (x5). (b) The
histogram of average waiting threshold values, Ēm. (c) The mean percentages of the lifetimes, with
standard deviation, the individuals spent executing the three basic behaviors.
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Figure 5. Average number of number of mating events, average proportion of mating

events with stayer mating partners, average energy level at the mating events, and average

fitness, as functions of the stayer proportion in the population, for the roamer (green solid

lines with circles) and stayer (red solid lines with circles) subpopulations. (a) The dotted
lines show the best linear fit for the two subpopulations and the black line shows average values for the
population as a whole. (b) The dotted lines show the best linear fit for the two subpopulations and the
black line shows average ratio of the number of roamer mating events to the number of stayer mating
events. (c) The dotted lines show the constant approximations as the average values over all phenotype
proportions. (d) The dotted lines show the estimated fitness values using Equations 6 and 8.
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Evolution of Primary Rewards
 (Yuji Kanagawa, ALIFE 2024)

Reproduction Model
lage t
lenergy e

n Death rate h(t,e)
n Birth rate b(e)

Learning by Reward Function

Evolution of Reward Function

Wfood

W
ac
tio

n



Smartphone Robot Project
n Motor control

n Survival

n Reproduction

lLearning models of world and others
lMeta-learning
lEvolution of rewards and curiosity
l…



Danger of Autonomous AI?
AI agents can find new goals and try them out
n Creating novel science, technology, culture, industry..
Assessment and control of dangers
n Overruns, side effects
n Exploitation by individuals/groups with ambition/hatred
Learn from human societies
n Humans are the most dangerous species on earth
n Democracy: don’t give unlimited power to a person/group

lelection, term limit, separation of powers
lantimonopoly, right to strike, information disclosure

Peer reviewing among open-sourced, explainable AI agents



World Congress on Computational Intelligence (WCCI) 2024

AIガバナンス公開フォーラム
Open Forum on AI Governance

image by DALL-E
2024年6⽉30⽇（⽇）9:20 – 18:00 パシフィコ横浜

6⽉30⽇から横浜で開催される計算知能国際会議 (WCCI 2024)は⼈⼯知能 (AI) に
関する今年アジアで最⼤規模の学会です。AIのもたらす危険性が議論され規制が
進む中、AIの開発者、利⽤者、政策⽴案者を集めた公開フォーラムを開催します。

招待講演者

ヨシュア・ベンジオ 村上明⼦ スチュアート・ラッセル バネッサ・ニューロック他

無料の事前登録により会場またはオンラインでご参加いただけます。発表は英語で⽇本
語のAI翻訳を提供する予定です。幅広く市⺠、学⽣の皆さんの参加をお待ちしています。
詳細はwebサイト https://groups.oist.jp/ja/ncu/event/wcci-forum をご参照ください

主催：IEEE、国際神経回路学会、⽇本神経回路学会、他
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