

OIST Computational Neuroscience Course 2024, June 22

Reinforcement Learning and Bayesian Inference

Kenji Doya <u>doya@oist.jp</u> Okinawa Institute of Science and Technology Graduate University Neural Computation Unit groups.oist.jp/ncu

OIST Neural Computation Unit

Create flexible learning systemsrobot experiments

Reveal brain's learning mechanisms neurobiology

Reinforcement Learning

Learn action policy: $s \rightarrow a$ to maximize rewards

Efficient algorithms for artificial agents

Circuit and molecular mechanisms in the brain

Learning to Walk

(Doya & Nakano, 1985)

Explore actions (cycle of 4 postures)

Learn from performance feedback (speed sensor)

25 50 75 TRIALS

Markov Decision Process (MDP)

- Markov decision process
 - state $s \in S$
 - action $a \in A$
 - oplicy p(a|s)
 - ereward p(r|s,a)
 - dynamics p(s'|s,a)

Optimal policy: maximize cumulative reward

- finite horizon: E[r(1) + r(2) + r(3) + ... + r(T)]
- infinite horizon: E[r(1) + γ r(2) + γ^2 r(3) + ...]

 $0 \le \gamma \le 1$: temporal discount factor

• average reward: E[r(1) + r(2) + ... + r(T)]/T, T $\rightarrow \infty$

Actor-Critic and TD learning

State Vector

Actor learning: $\Delta w \propto \delta(t) \partial \log P(a(t)|s(t);w)/\partial w$

 $\Delta w_j = \alpha_a \delta(t) \{a(t) - \Sigma_j w_j s_j(t)\} s_j(t) \dots$ weighted Hebb

Pendulum Swing-Up

state: angle θ, angular velocity ω
 reward function: potential energy: cos θ

ω

θ Value function

SARSA and Q Learning

Action value function

• Q(s,a) = E[r(t) + γ r(t+1) + γ^2 r(t+2) ... | s(t)=s,a(t)=a]

Action selection

- ε -greedy: a = argmax_a Q(s,a) with prob 1- ε
- Boltzman: $P(a_i | s) = exp[\beta Q(s,a_i)] / \Sigma_j exp[\beta Q(s,a_j)]$

Update by temporal difference (TD) error

• $\Delta Q(s(t),a(t)) = \alpha \delta(t)$

SARSA: on-policy

 $\delta(t) = r(t) + \gamma Q(s(t+1),a(t+1)) - Q(s(t),a(t))$

• Q learning: off-policy

 $\delta(\mathsf{t}) = \mathsf{r}(\mathsf{t}) + \gamma \mathsf{max}_{\mathsf{a}'}\mathsf{Q}(\mathsf{s}(\mathsf{t}+1),\mathsf{a}') - \mathsf{Q}(\mathsf{s}(\mathsf{t}),\mathsf{a}(\mathsf{t}))$

SARSA and Q Learning

Cliff walking task (Sutton & Barto, 1998)

"Pain-Gain" Task

N states, 2 actions

if $r_2 >> r_1$, then better take a_2

Learning to Stand Up

(Morimoto & Doya, 2001)

Learning from reward and punishment

- reward: height of the head
- punishment: bump on the floor

TD Learning and Backprop

Deep Q-Network

(Mnih et al. 2015)

- Experience replay
- Fixing the *target network*
- DNN captures important features
 - human level in 29/49 Atari games

AlphaGo

- Supervised learning from play data
- *Reinforcement learning* by self-play
- *Representation learning* by deep neural networks
- Not too deep, wide tree search

(Silver et al., 2016)

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

 \mathbb{C} Explain reinforcement learning to a 6 year old.

ChatGPT

Step 2

sampled.

to worst.

to train our

Collect comparison data and train a reward model.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

https://openai.com/blog/chatgpt

What is Bayesian Inference?

Joint probability: P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X)

Bayes theorem: P(X | Y) = P(Y | X)P(X)/P(Y)

Integrating prior belief and observation

X: unknown variable

Y: observation

- P(X): prior probability of X
- P(Y|X): probability of observing Y if X is true likelihood of X after observing Y
- P(X|Y): posterior probability of X after observing Y

Posterior ∞ Prior belief x Likelihood by observation

• $P(Y) = \Sigma_X P(Y|X) P(X)$: marginal likelihood

Sunshine and Temperature

X: weather Y: temperature

P(Y X)	<20 degree	20 to 30 degree	>30 degree	P(X)
Sunny	0.1	0.2	0.7	0.5
Cloudy	0.2	0.5	0.3	0.3
Rainy	0.5	0.4	0.1	0.2

- Temperature is 25 degree. What is the weather?
- Bayes theorem: $P(X|Y) = P(Y|X)P(X)/\sum_X P(Y|X)P(X)$
 - $P(s|Y) = P(Y|s)P(s)/{P(Y|s)P(s)+P(Y|c)P(c)+P(Y|r)P(r)}$ = 0.1/(0.1+0.15+0.08) = 0.1/0.33 \approx 0.3

Bayesian Brain

Topics from OCNC 2004

- Kenji Doya, Shin Ishii
- Adrianne Fairhall
- Jonathan Pillow
- Barry Richmond
- Karl Friston
- Alex Pouget, Richard Zemel
- Peter Latham
- Tai Sing Lee
- David Knill
- Michael Shadlen
- Rajesh Rao
- Emanuel Todorov
- Konrad Körding

PROBABILISTIC APPROACHES TO NEURAL CODING

edited by KENJI DOYA, SHIN ISHII, ALEXANDRE POUGET, AND RAJESH P. N. RAO

MIT Press, 2006

Dynamic Bayesian Inference

- Bayes rule: P(x|y) = P(y|x) P(x) / P(y)
 - sequential observation: y_{1:t}=(y₁,...,y_t)
 - estimate hidden variable: x_{1:t}=(x₁,...,x_t)
 - initial guess P(x₁)
- Dynamics model P(x'|x)
 - predictive prior
 - $P(x_{t+1} | y_{1:t}) = \int P(x_{t+1} | x_t) P(x_t | y_{1:t}) dx_t$
- Observation model P(y|x)
 - new posterior

 $P(x_{t+1} | y_{1:t+1}) = P(y_{t+1} | x_{t+1})P(x_{t+1} | y_{1:t}) / P(y_{1:t+1})$

Partially Observable Markov Decision Process (POMDP)

- State is not fully observable
 - noise, delay, occlusion

Model-based Neural Analysis

- Record and correlates with:
 - input u
 - output y
- internal state x
 - change by learning
- **p**arameter θ
 - different in each session
- Run a dynamic model
 - estimate the internal variables
 - check correlation with recorded signal

The Bayesian brain: the role of uncertainty in neural coding and computation (a) Fixation

David C. Knill and Alexandre Pouget

Opinion

Vision Audition Vision + audition 0.15 Likelihood e.g. Sensory cue integration 0.10 • $p(X | V, A) \propto p(V | X)p(A | X)p(X)$ 0.05 • Gaussian noise, flat prior: 0.00L -2 0 2 _4 6 Direction (X) $e^{-\frac{(x-\mu)^2}{2\sigma^2}} = e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$ (b) 0 Fixation -√0.20r Vision Audition $\mu = \frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$ $\sigma^{2} = \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$ 0.15 Vision + audition Likelihood 0.10 0.05 0.00 -2 0 2 -6 -4 4 6 Direction (X)

Multi-Sensory Integration

Visual-hapticz

--- 0%

--- 67%

—133%

—200%

S_H

45

55

Normalized comparison height (mm)

65

 S_v

Humans integrate visual and haptic information in a statistically optimal fashion (2002, Nature)

Marc 0. Ernst* & Martin S. Banks

Knill & Saunders, (2003, Vision Research)

difference 10 slant Threshold -20 0 20 40 60 80 Test slant (degrees)

letters to nature (2004)

Bayesian integration in sensorimotor learning

Konrad P. Körding & Daniel M. Wolpert

oility

Bayesian inference with probabilistic population codes

Wei Ji Ma^{1,3}, Jeffrey M Beck^{1,3}, Peter E Latham² & Alexandre Pouget¹ (2006, Nature Neuroscience)

.

Bayesian Model Selection

- Bayes rule: $P(\theta | Y) = P(Y | \theta) P(\theta) / P(Y)$
- Denominator: marginal likelihood
 - $P(Y)=\int P(Y \mid \theta)P(\theta) \ d\theta$
 - Measure of compatibility of model and data
- Too simple model
 - likelihood $P(Y|\theta)$ is low
- Too complex model
 - penalized by thin $P(\theta)$
- 'Evidence' of model

Reinforcement Learning

Predict reward: value function

• V(s) = E[r(t) + γ r(t+1) + γ^2 r(t+2)... | s(t)=s]

• Q(s,a) = E[r(t) + γ r(t+1) + γ ²r(t+2)...| s(t)=s, a(t)=a]

Select action

How to implement these steps?

- greedy:a = argmax Q(s,a)
- Boltzmann: $P(a|s) \propto exp[\beta Q(s,a)]$

Update prediction: temporal difference (TD) error

$$\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$$

• $\Delta V(s(t)) = \alpha \delta(t)$

• $\Delta Q(s(t),a(t)) = \alpha \delta(t)$

How to tune these parameters?

Basal Ganglia

Locus of Parkinson's and Huntington's diseases

What is their normal function??

Dopamine-dependent Plasticity

Distinct Neural Representation in the Dorsolateral, The Journal of Neuroscience, 2015 Dorsomedial, and Ventral Parts of the Striatum during Fixed- and Free-Choice Tasks Makoto Ito and Kenji Doya

Right Left Center

- QL **Dorsolateral** movements
- Dorsomedial
 - action value
- Ventral
 - state value

Generalized Q-learning Model

(Ito & Doya, 2009)

Action selection $P(a(t)=L) = expQ_{L}(t)/(expQ_{L}(t)+expQ_{R}(t))$ Action value update: i \(\emplock\) L, R\) $Q_{i}(t+1) = (1-\alpha_{1})Q_{i}(t) + \alpha_{1}\kappa_{1} \qquad \text{if } a(t)=i, r(t)=1$ $(1-\alpha_{1})Q_{i}(t) - \alpha_{1}\kappa_{2} \qquad \text{if } a(t)=i, r(t)=0$ $(1-\alpha_{2})Q_{i}(t) \qquad \text{if } a(t)\neq i, r(t)=1$ $(1-\alpha_{2})Q_{i}(t) \qquad \text{if } a(t)\neq i, r(t)=0$

Parameters

- α_1 : learning rate
- α_2 : forgetting rate
- κ_1 : reward reinforcement
- κ_2 : no-reward aversion

Left, no-reward Right, no-reward Right, reward

Model Fitting

Action/State Value Coding Neurons

(Ito & Doya, 2015, JNS)

State valueVS

Hierarchy in Cortico-Striatal Network

⁽Voorn et al., 2004)

- Dorsolateral striatum: motor
 - early action coding
 - what motor action?
- Dorsomedial striatum: cognitive
 - choice action value
 - which goal?
 - Ventral striatum: motivational?
 - state value
 - whether worth doing?

eNeuro (2018) Reward-Predictive Neural Activities in Striatal Striosome Compartments

[©]Tomohiko Yoshizawa,¹ Makoto Ito,^{1,2} and [©]Kenji Doya¹

Imaging striosome neuron activity by endoscope

Open Questions

S Parallel, multi-inhibitory pathways

TD like response of dopamine neurons

(Evans et al. Ž̈́́O2O)

Amygdala, Hippocampus, Cerebellum,...

Model-free/Model-based Strategies

Model-free

- No knowledge of the world
- Learn values by experiencestate-action-reward
- Act and then learn

Simple, but slow learning

Model-based

- Learn prediction model:
 - state, action \rightarrow new state
- Internal simulation
 - estimate current state
 - plan future actions
- Predict and then act

Flexible, but heavy load

Bounce Up and Balance by PILCO

1st try

2nd try

Mental Simulation

Brain's process using an action-dependent state transition model s'=f(s,a) or P(s'|s,a)

Estimate the present from past state/action

- perception under noise/delay/occlusion
- Predicting the future
 - model-based decision, action planning
- Imagining in a virtual world
 - thinking, language, science,...

Model-free and Model-based Choice

(Daw et al. 2011)

choice after rare transition

A prediction error

B model-based

A prediction error

B model-based

 $Q_{net}(s_A, a_j) = w Q_{MB}(s_A, a_j) + (1 - w) Q_{TD}(s_A, a_j)$

Specialization by Learning Algorithms (Doya, 1999)

Multiple Ways of Action Selection

SCIENTIFIC REPORTS

OPEN Model-based action planning involves cortico-cerebellar and basal ganglia networks

Received: 16 February 2016 Accepted: 19 July 2016

⁶ Alan S. R. Fermin^{1,2,3}, Takehiko Yoshida^{1,2}, Junichiro Yoshimoto^{1,2}, Makoto Ito²,
 ⁶ Saori C. Tanaka⁴ & Kenji Doya^{1,2,3,4}

Neuronal Correlates of Mental Simulation T-maze Johnson & Redish (2007) er (2013) Event Future path Past path A - example from Mulitple-T task × 0 ms x position 0 -ev 0.1 160 ms \diamond 0.5 m 205 130 at ends at Home 360 ms 600 ms 120 185

nature neuroscience

60

Neural substrate of dynamic Bayesian inference in the cerebral cortex

Akihiro Funamizu^{1,2}, Bernd Kuhn² & Kenji Doya¹

• Auditory virtual environment

150

100

50

nature neuroscience

Neural substrate of dynamic Bayesian inference in the cerebral cortex

150

100

-1600 -14

Anticipatory Licking Muscimol Mice estimated goal distance in no-sound zone (1ng/1nL, 70 nL)94 sessions, 8 mice 12 sessions, 3 mice **b** 150⋷ 4 Continuous 2 100 Intermittent1 2 Sound zone Lick per trial Trial # □No-sound zone 2 50 4^IIntermittent2 * Sound zone n.s. No-sound zone 134 100 67 33 33 0Goal distance (cm) 33 67 0 67 Goal distance (cm) Goal distance (cm) impaired by muscimol injection in PPC

Decoding the Goal Distance

Decoding the Goal Distance

Neuron *i* activity f_i at distance x

• response model $p(f_i | x)$

Bayesian decoder: $p(x|f_1,...,f_N) \propto \prod_i p(f_i|x)p(x)$

(Ma et al., 2006)

Two-Photon Imaging: Summary

Auditory virtual navigation task for mice

 estimate goal distance during no-sound phase from its own action using an *internal model*

Two-photon imaging from PPC

- goal distance can be decoded from population activity even during no-sound phase
- variance reduced during sound phase
- characteristic of *dynamic Bayesian inference*

Future

 network mechanisms for action-dependent prediction and sensory-based refinement

Duality of Inference and Control

Optimal filtering (Kalman 1960) $\Sigma_{k+1} = S + A\Sigma_k A^{\mathsf{T}} - A\Sigma_k H^{\mathsf{T}} (P + H\Sigma_k H^{\mathsf{T}})^{-1} H\Sigma_k A^{\mathsf{T}}$

Bayesian inference: log posterior

Optimal control (Bellman et al. 1958) $V_k = Q + A^{\mathsf{T}}V_{k+1}A - A^{\mathsf{T}}V_{k+1}B(R + B^{\mathsf{T}}V_{k+1}B)^{-1}B^{\mathsf{T}}V_{k+1}A$

Reinforcement learning: state value

 $r(s_{T-1}, a_{T-1})$ $V(s_T)$
 $r(s_{T-2}, a_{T-2})$ $p(s_T | s_{T-1}, a_{T-1})$
 $V(s_{T-1})$ $V(s_{T-1})$
 $p(s_{T-1} | s_{T-2}, a_{T-2})$
 $V(s_{T-2})$

(Todorov 2007, 08; Toussaint 2009; Levine 2018)

Canonical Cortical Circuits

Prism Lens Imaging during Lever Pull Task Yuzhe Li, Sergey Zobnin

Integrated microscope

Base plate

Light/Heavy Lever Pull Task

Sergey Zobnin

Expected and Actual Trial Type Coding

sk.

e re action is code tion

Population Decoding

time

Peak amplitude after pull

time

150

200

20

20

0

<u>unifiedtheory.jp</u>

lapanese

Development and validation of a unified theory of prediction and action

Reinforcement Learning

Predict reward: value function

• V(s) = E[r(t) + γ r(t+1) + γ^2 r(t+2)... | s(t)=s]

• Q(s,a) = E[r(t) + γ r(t+1) + γ ²r(t+2)...| s(t)=s, a(t)=a]

Select action

How to implement these steps?

- greedy:a = argmax Q(s,a)
- Boltzmann: $P(a|s) \propto exp[\beta Q(s,a)]$

Update prediction: *temporal difference* (*TD*) *error*

• $\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$

• $\Delta V(s(t)) = \alpha \delta(t)$

How to tune these parameters?

• $\Delta Q(s(t),a(t)) = \alpha \delta(t)$

Temporal Discount Factor **y**

Large γ
 reach for far reward

Small γ

• only to near reward

Temporal Discount Factor γ

■ V(t) = E[r(t) + γ r(t+1) + γ ²r(t+2) + γ ³r(t+3) +...] • controls the 'character' of an agent

Neuromodulators for Metalearning

(Doya, 2002)

Metaparameter tuning is critical in RL

• How does the brain tune them?

Dopamine: TD error δ Acetylcholine: learning rate α Noradrenaline: exploration β Serotonin: temporal discount γ

Chemical Measurement/Control

Microdialysis measurement

delayed reward task

Serotonin neuron blockade

(Kayoko Miyazaki et al., 2011, 2012)

5HT1A agonist in dorsal

Dorsal Raphe Neuron Recording (Miyazaki et al. 2011 JNS)

Keep firing while waiting

20 trial 10			
0_1	15 −10 −5 0 5 food	10 15 s site entry	
	Stop firing	before	giving up
	0-8 -6 -4 -2 0 2 4 ↑ water site	4 6 8 10 s exit	

Optogenetic Stimulation of Serotonin Neurons

■ Reward Delay Task (3, 6, 9, ∞ sec)

3 sec: success
omission: 12.1 s
omission: 20.8 s

(Miyazaki et al., 2014, Current Biology)

Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience Katsuhiko Miyazaki⁰¹, Kayoko W. Miyazaki¹, Akihiro Yamanaka², Tomoki Tokuda³, Kenji F. Tanaka⁴ & Kenji Doya¹

Serotonin-stimulation facilitates waiting when...

Serotonin for Model-based RL?

Two-step task for mice (Akam et al. 2020)

2

0

8

6

 β_{mf}

Masakazu Taira
Serotonin Signals Available Time and Resources?

Serotonergic modulation of cognitive computations

Kenji Doya, Kayoko W Miyazaki and Katsuhiko Miyazaki (2021)

Behavioral Sciences

https://sites.google.com/riken-cbs.org/bm2

Brain/MINDS 2.0

Japanese page(日本語)

HOME

Link

Research

Multidisciplinary Frontier Brain and Neuroscience Discoveries

Brain/MINDS 2.0

The Brain/MINDS 2.0 program was launched on March 5, 2024.

Until the official website opens, get updated information about the program here!

Go to the Japanese page.

Topics

2024/2/21 : The Brain/MINDS 2.0 is a large-scale national research program in the field of brain science in Japan. <u>The Japan Agency for Medical Research</u> and <u>Development (AMED) selected the "Core Organization" of Brain/MINDS 2.0.</u>

Principal Research Institution: RIKEN

Subsidiary Research Institution: The University of Tokyo, Kyoto University, QST, NCNP, NIPS, ATR, and OIST

2024/5 : Overview of the Brain/MINDS 2.0 Core Organization has opened.

Brain/MINDS 2.0: Digital Brain Development

What is a Digital Brain? Goals Integration of anatomical/physiological/behavioral data into a Open software for building digital brains mathematical model to reproduce brain dynamics and functions Online platform for model building and simulation Reproduce brain functions in perception, motion, cognition,... **Targets of Applications** • Networks for reinforcement learning/Bayesian inference Contribution to neuroscience and brain-inspired AI Prediction of pathogenic protein propagation Predict the effects of changes in brain areas, cells, molecules,... Therapy planning by psychiatric disorder model Contribution to pathology and diagnosis/therapy/prevention. **Open software for building digital brains** Structural Data **Activity Data** Brain areas fMRI-ECoG Simulation of **Multi-species** brain functions data umptions Optimizer and pahology integration desired behaviors Simulator prior models **Optical** imaging Model Builder simulation Genes, Proteins **Cross-species** codes ature data Model fitting by data search model activity data -off GCaMP expres description experimental data Data-driven Behavior analysis model building Connectome **Online data integrtaion platform**

Cyber Rodent Project (Doya & Uchibe, 2005)

What is the origin of rewards?

Robots with same constraint as biological agents

Self-preservation

 capture batteries

 Self-reproduction

 exchange programs through IR ports

Learning to Survive and Reproduce

Catch battery packssurvival

Copy 'genes' by IR ports
 reproduction, evolution

(Doya & Uchibe, 2005)

Embodied Evolution (Elfwing et al., 2011)

Evolution of Meta-Parameters

Learning rate α
 Exploration temperature τ

- Temporal discount factor γ
- Eligibility trace decay factor λ

Evolution of Shaping Rewards

Vision of battery

Vision of face

(Elfwing et al., 2011)

Evolution of Primary Rewards

0.8 Survival 0.6

0.4 0.2 0.0

40

(Yuji Kanagawa, ALIFE 2024)

Learning by Reward Function

$$r = r_{\text{agent}} + r_{\text{food}} + r_{\text{wall}} + r_{\text{action}}$$

Evolution of Reward Function

Comparison of Evolved Rewards (Last 5000 individuals)

Smartphone Robot Project

Motor control

Survival

Reproduction

- Learning models of world and others
- Meta-learning
- Evolution of rewards and curiosity

• ...

Danger of Autonomous AI?

Al agents can find new goals and try them out

Creating novel science, technology, culture, industry...

Assessment and control of dangers

- Overruns, side effects
- Exploitation by individuals/groups with ambition/hatred

Learn from human societies

- Humans are the most dangerous species on earth
- Democracy: don't give unlimited power to a person/group
 - election, term limit, separation of powers
 - antimonopoly, right to strike, information disclosure

Peer reviewing among open-sourced, explainable AI agents

IEEE WCCI 2024

Acknowledgements

- Striatum recording
- Makoto Ito (Progress Technology)
- Tomohiko Yoshizawa (Tamagawa U)
- Charles Gerfen (NIH)
- Kazuyuki Samejima (Tamagawa U)
- Minoru Kimura (Tamagawa U)
- Human fMRI/behavior
- Alan Fermin (Tamagawa U)
- Takehiko Yoshida (NAIST)
- Saori Tanaka (ATR)
- Nicolas Schweighofer (USC)
- Jun Yoshimoto (NAIST)
- Yu Shimizu
- Tomoki Tokuda (ATR)
- Shoko Ota
- Serotonin recording/manipulation/modeling
- Kayoko W Miyazaki
- Katsuhiko Miyazaki
- Gaston Sivori
- Masakazu Taira (U Sydney)
- Thomas Akam (Oxford U)
- Mark Walton (Oxford U)
- Kenji Tanaka (Keio U)
- Akihiro Yamanaka (Nagoya U)

Scientific Research in Transformative Areas Scientific Research on Innovative Areas

- Cortical imaging
 - Akihiro Funamizu (U Tokyo)
 - Bernd Kuhn
- Yuzhe Li
- Sergey Zobnin
- Naohiro Yamauchi
- Marmoset data analysis
 - Carlos Gutierrez (Softbank)
 - Hiromichi Tsukada (Chubu U)
 - Junichi Hata, Henrik Skibbe, Alex Woodward (RIKEN)
- Ken Nakae, (NINS)
- Basal ganglia model
 - Benoit Girard, Daphne Heraiz (Sorbonne)
- Jean Lienard
- Robotics
 - Jun Morimoto (ATR)
 - Eiji Uchibe (ATR)
 - Stefan Elfwing (ATR)
 - Jiexin Wang (ATR)
 - Paavo Parmas (Kyoto U)
 - Kristine Roque
 - Yuji Kanagawa
 - Tojoarisoa Rakotoaritina
 - Christopher Buckley

Strategic Research Program for Brain Sciences Brain/MINDS Project Fugaku Supercomputing Program