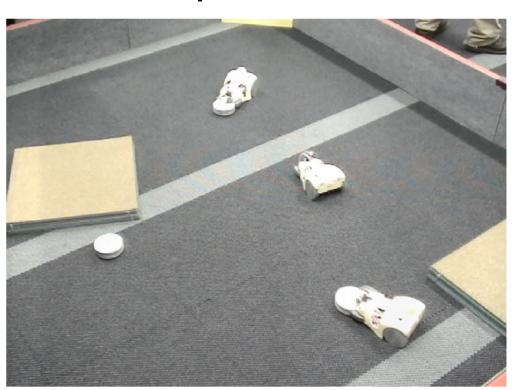


Neural Computation Unit
Okinawa Institute of Science and Technology

OIST Neural Computation Unit

How to build adaptive, autonomous systems

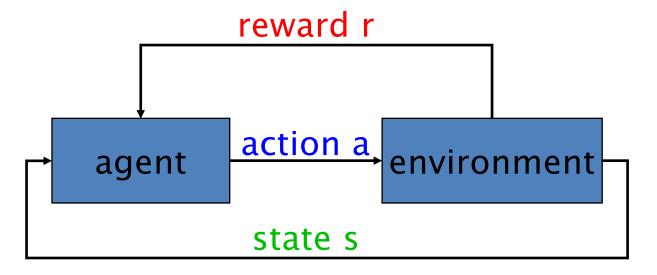
robot experiments



How the brain realizes robust, flexible learning

neurobiology

Reinforcement Learning



Learn action policy: $s \rightarrow a$ to maximize rewards

- Efficient algorithms for artificial agents
- Circuit and molecular mechanisms in the brain

Outline

AI and Brain Science

Reinforcement Learning

Basal Ganglia

Unsupervised Learning

Mental Simulation

Al and Brain Science

To make intelligent machines by electronics, we should not bother biological constraints.

As there's a superb implementation in the brain, we should learn from that.

Al in 20th century: program human expertise Al in 21st century: learn from big data

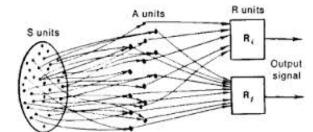
Brain-like implementation like *Deep Learning* gives the best performance.

Coevolution in Pattern Recognition

Brain Science

Artificial Intelligence

Feature detectors (Hubel & Wiesel 1959)



Perceptron (Rosenblatt 1962)

Experience dependence (Blakemore & Cooper 1970)

Multi-layer learning

(Amari, 1967)

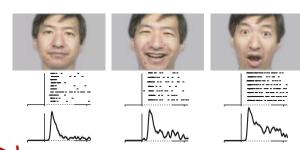
Neocognitron (Fukushima 1980)

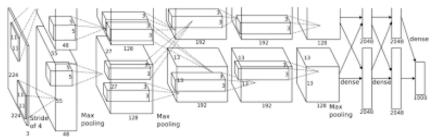
Place cell (O'Keefe 1976)

• Face cell (Bruce, Desimone, Gross 1981)

ConvNet (Krizhevsky, Sutskever, Hinton, 2012)

GoogleBrain (2012)





(Sugase et al. 1999)

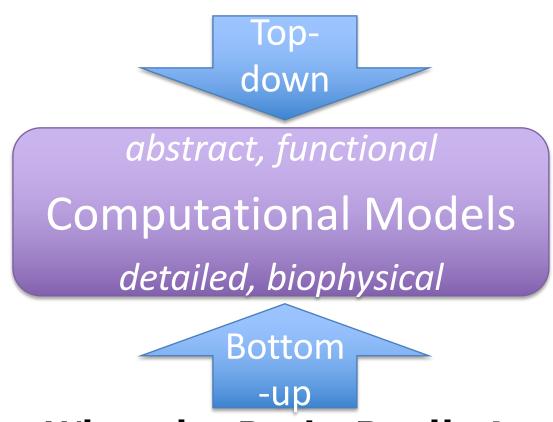
Co-Evolution: Reinforcement Learning

Brain Science *Artificial Intelligence TD learning (Barto et al. 1983) Classic conditioning (Pavlov 1903) Operant conditioning (Thorndike 1898, Skinner 1938) Reward prediction error coding of Reward predicted Dopamine TD learning hypothesis dopamine neurons Reward occurs (Barto et al. 1995, (Schultz et al. 1993, 1997) Montague et al. 1996) Dopamine-dependent synaptic plasticity (Wickens et al. 2000) Different Q, and Same Qn Same Q, and Different Qp 10-50 vs 90-50 50-10 vs 50-90 Value coding in striatum (Samejima et al. 2005)

Deep Q network (Mnih et al. 2015)

Brain Theory Meets Big Data

How the Brain Should Be Working

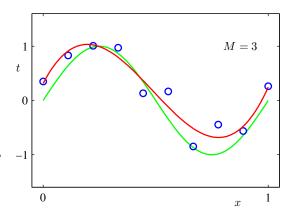


What the Brain Really Is Machine Learning is Essential for Both Directions

Three Classes of Machine Learning

Supervised Learning

- Input-output pairs $\{(x_1,y_1), (x_2,y_2),...\}$
 - \rightarrow input-output model y = f(x) + ε
 - for new input x, predict output y



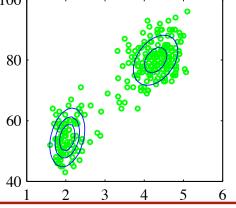
Reinforcement Learning

- state-action-reward triplets $\{(x_1,y_1,r_1), (x_2,y_2,r_2),...\}$
 - \rightarrow action policy y = f(x) to maximize reward

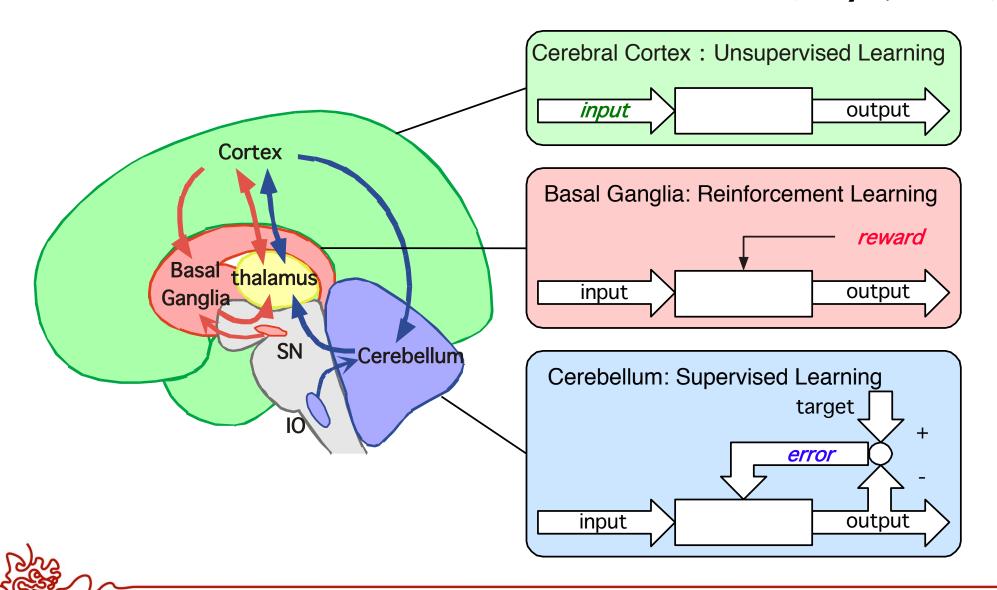
(unsupervised) Representation Learning¹⁰⁰

- Input data $\{x_1, x_2, x_3, ...\}$
 - \rightarrow statistical model of P(x)

discover structure behind data



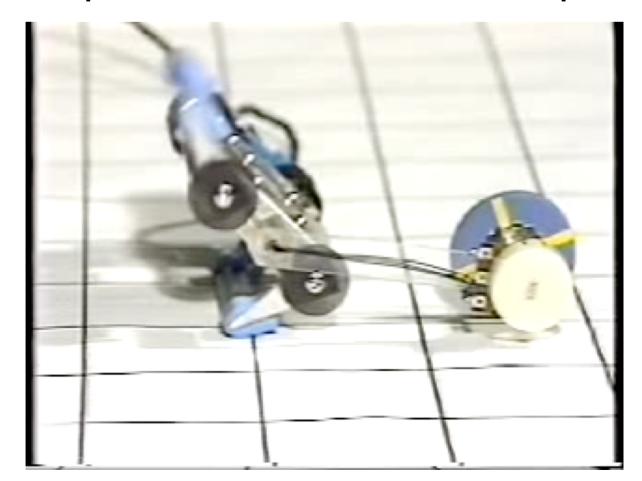
Specialization by Learning Algorithms (Doya, 1999)



Learning to Walk

(Doya & Nakano, 1985)

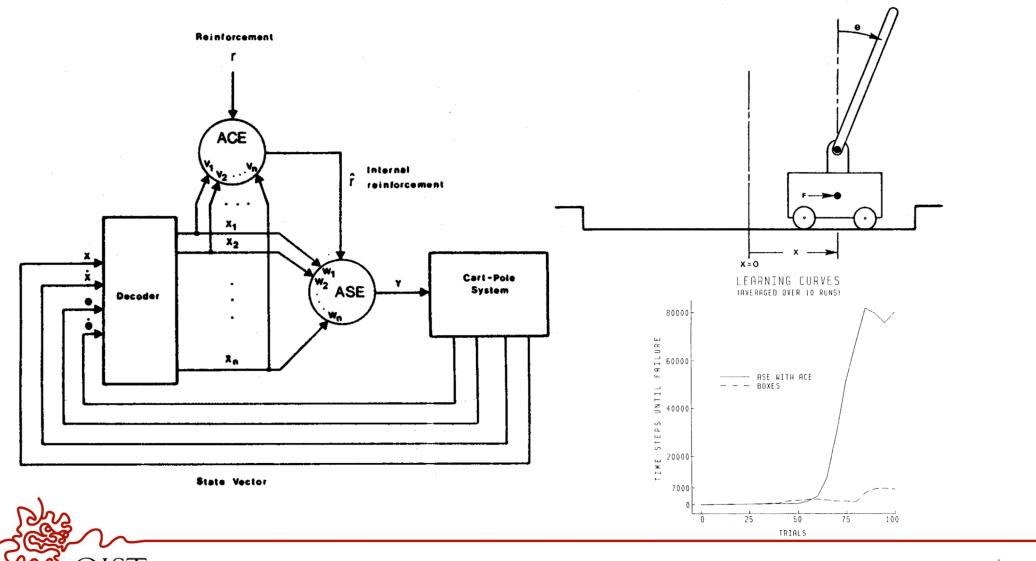
- Explore actions (cycle of 4 postures)
- Learn from performance feedback (speed sensor)



Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems

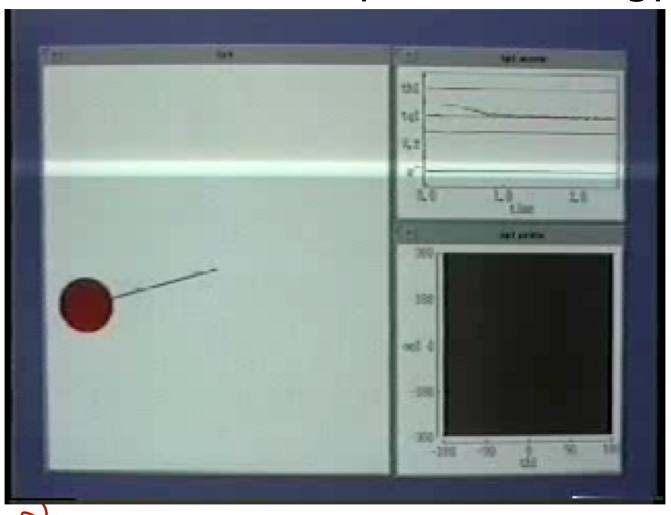
ANDREW G. BARTO, MEMBER, IEEE, RICHARD S. SUTTON, AND CHARLES W. ANDERSON

(1983)



Pendulum Swing-Up

reward function: potential energy

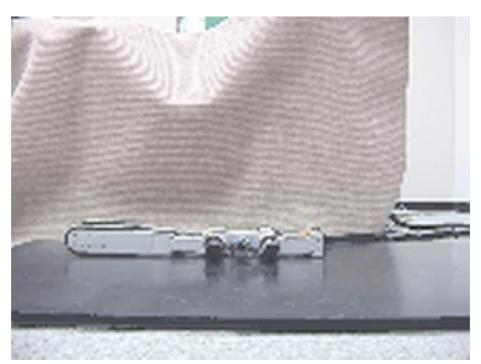


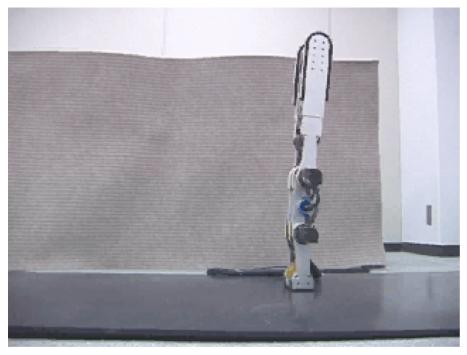
value function V(s)

s =(angle,angular velocity)

Learning to Stand Up

(Morimoto & Doya, 2001)





- Learning from reward and punishment
 - reward: height of the head
 - punishment: bump on the floor

Markov Decision Process (MDP)

Markov decision process

• state s ∈ S

 \circ action $a \in A$

policy p(a|s)

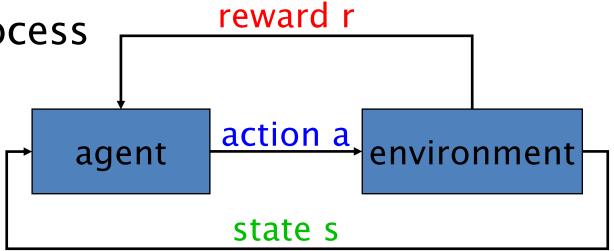
reward p(r|s,a)

dynamics p(s'|s,a)

- finite horizon: E[r(1) + r(2) + r(3) + ... + r(T)]
- infinite horizon: E[$r(1) + \gamma r(2) + \gamma^2 r(3) + ...$]

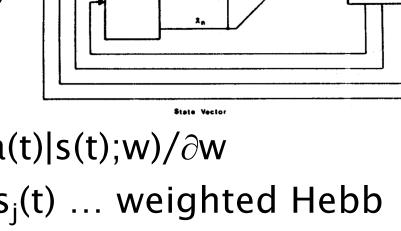
 $0 \le \gamma \le 1$: temporal discount factor

• average reward: E[r(1) + r(2) + ... + r(T)]/T, $T \rightarrow \infty$



Actor-Critic and TD learning

- Actor: policy with parameter w e.g., $a(t) = \Sigma_j w_j s_j(t) + \sigma n(t)$
- Critic: learn state value function
 - $V(s(t)) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + ...]$ e.g., $V(s(t);v) = \Sigma_j v_j s_j(t)$
- Temporal Difference (TD) error:
- Critic learning: $\Delta V(s(t)) \propto \delta(t)$ $\Delta v_j = \alpha \delta(t) s_j(t)$



Cart-Pole

Actor learning: $\Delta w \propto \delta(t) \partial \log P(a(t)|s(t);w)/\partial w$ $\Delta w_i = \alpha_a \delta(t) \{a(t) - \Sigma_i w_i s_i(t)\} s_i(t) \dots \text{ weighted Hebb}$

SARSA and Q Learning

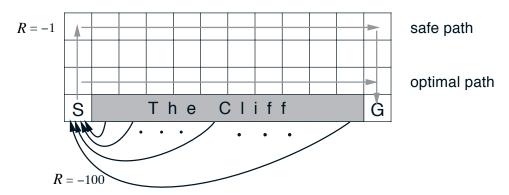
- Action value function
 - $Q(s,a) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2) ... | s(t)=s,a(t)=a]$
- Action selection
 - \circ ε-greedy: $a = argmax_a Q(s,a)$ with prob 1-ε
 - Boltzman: $P(a_i|s) = \exp[\beta Q(s,a_i)] / \Sigma_j \exp[\beta Q(s,a_j)]$
- Update by temporal difference (TD) error

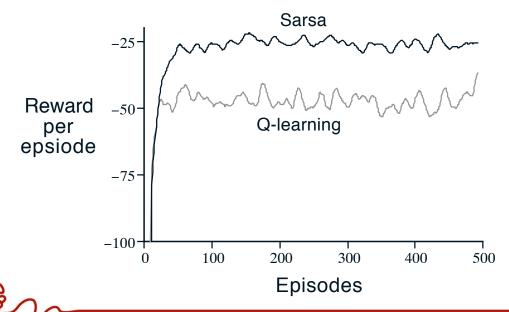
 - SARSA: on-policy $\delta(t) = r(t) + \gamma Q(s(t+1), a(t+1)) Q(s(t), a(t))$
 - Q learning: off-policy

$$\delta(t) = r(t) + \gamma \max_{a'} Q(s(t+1), a') - Q(s(t), a(t))$$

SARSA and Q Learning

Cliff walking task (Sutton & Barto, 1998)

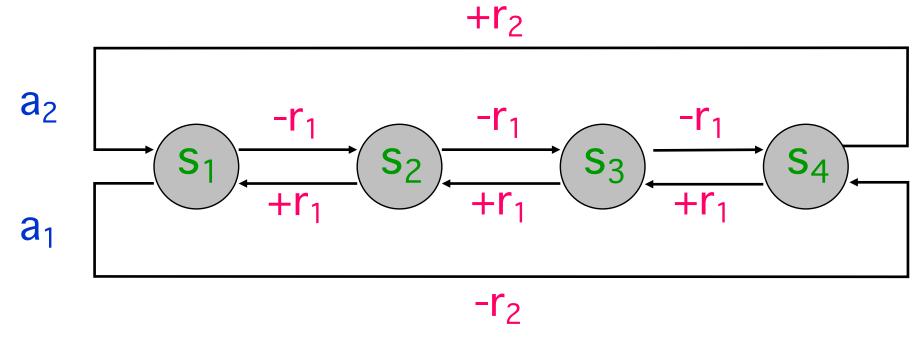




consider exploration optimal greedy policy

"Pain-Gain" Task

N states, 2 actions



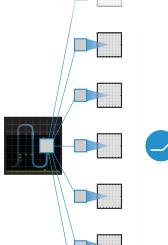
 \square if $r_2 >> r_1$, then better take a_2

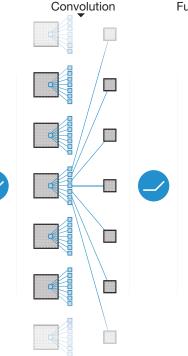
Deep Q-Network

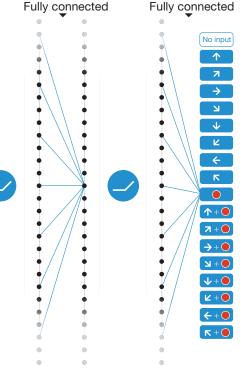
Convolution

(Mnih et al., 2015)

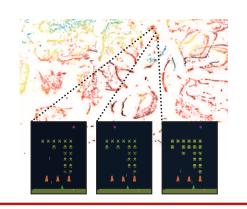
Game screen as input





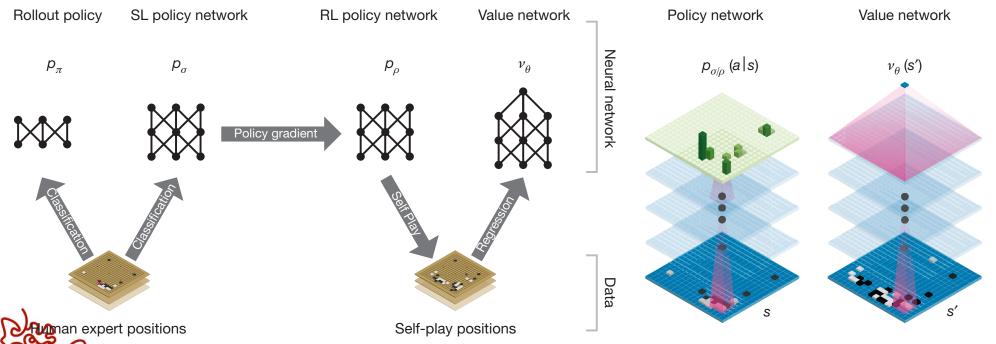


- Fixing the target network
- DNN captures important features
 - human level in 29/49 Atari games



AlphaGo (Silver et al., 2016)

- Supervised learning from play data
- Reinforcement learning by self-play
- Representation learning by deep neural networks
- Shallow, narrow tree search



Model-free/Model-based Strategies

Model-free

- No prior knowledge
- Learn from experience
 - state-action-reward
 - values of states/actions

Simple, but slow learning

Model-based

- Internal model of the world
 - state, action → new state
 - \circ state, action \rightarrow reward
- Mental simulation
 - hidden state estimation cope with noisy observation
 - action planning find the best action sequence

Flexible, but heavy load

Bounce Up and Balance by PILCO

1st try

(Paavo Parmas) 8th try

Reinforcement Learning

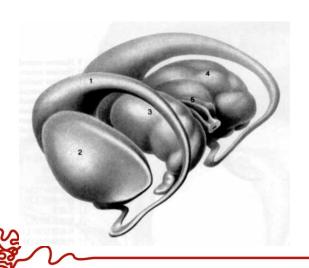
- Predict reward: value function
 - $V(s) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)... | s(t)=s]$
 - $Q(s,a) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)... | s(t)=s, a(t)=a]$
- Select action How to implement these steps?
 - $oldsymbol{o}$ greedy: a = argmax Q(s,a)
 - Boltzmann: $P(a|s) \propto \exp[\beta Q(s,a)]$
- Update prediction: TD error

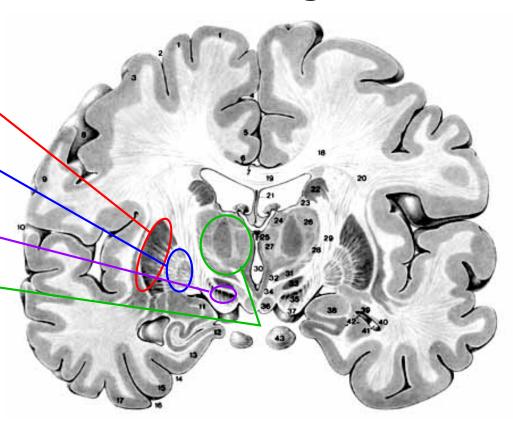
 - $\Delta V(s(t)) = \alpha \delta(t)$ How to tune these parameters?

Basal Ganglia

Locus of Parkinson's and Huntington's diseases

Striatum Globus Pallidus Substantia Nigra Thalamus

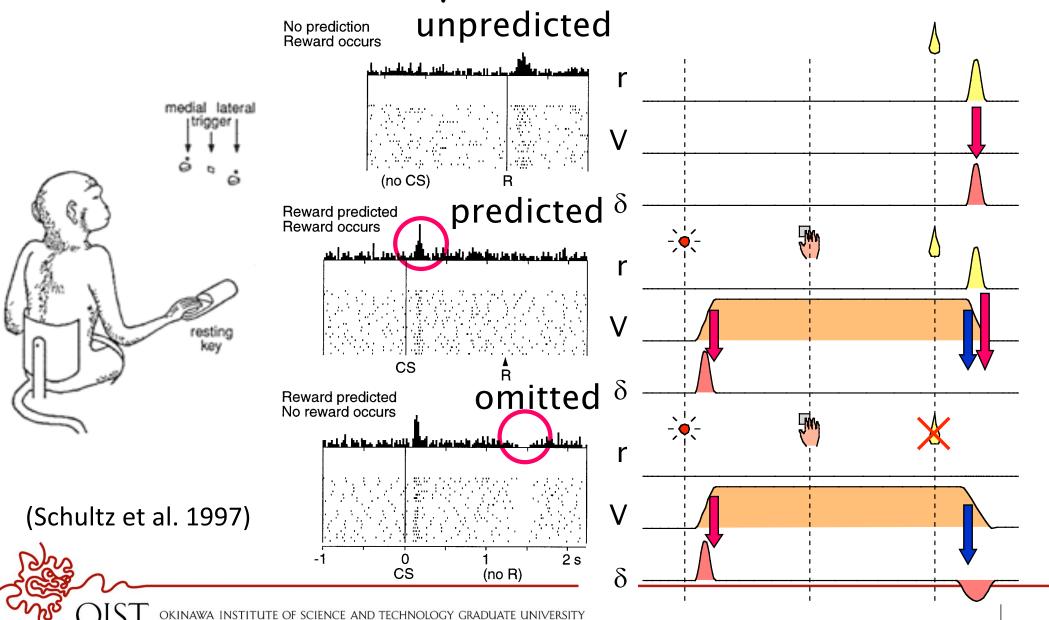




■What is their normal function??

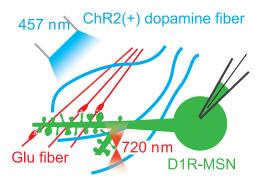
Dopamine Neurons Code TD Error

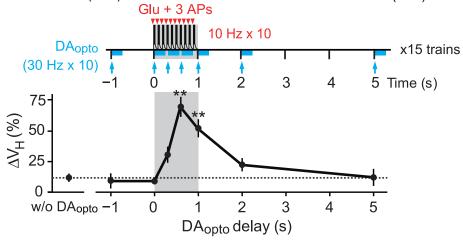
$$\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$$



Dopamine-dependent Plasticity

- Medium spiny neurons in striatum
 - glutamate from cortex
 - dopamine from midbrain
- Three-factor learning rule (Wickens et al.)
 - o cortical input + spike → LTD
 - o cortical input + spike + dopamine → LTP
 - input x output x reward
- Time window of plasticity (Yagishita et al., 2014)





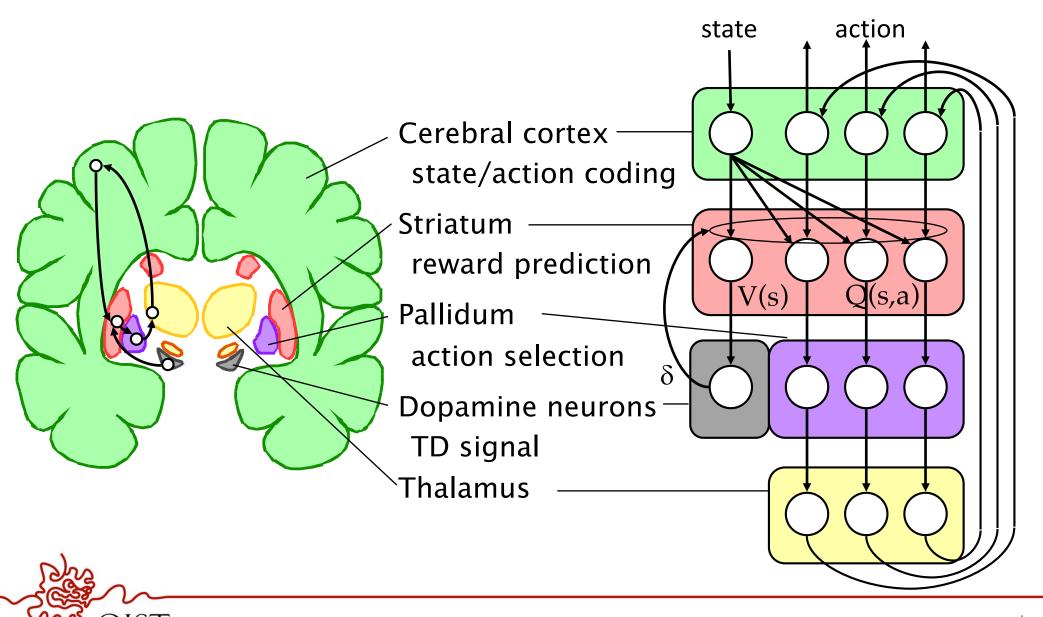
Cortex

Substantia nigra

Cortex

Basal Ganglia for Reinforcement Learning?

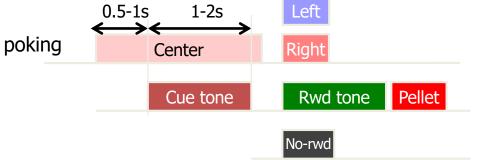
(Doya 2000, 2007)



Fixed and Free Choice Task

(Ito & Doya, 2015, J Neuroscience)

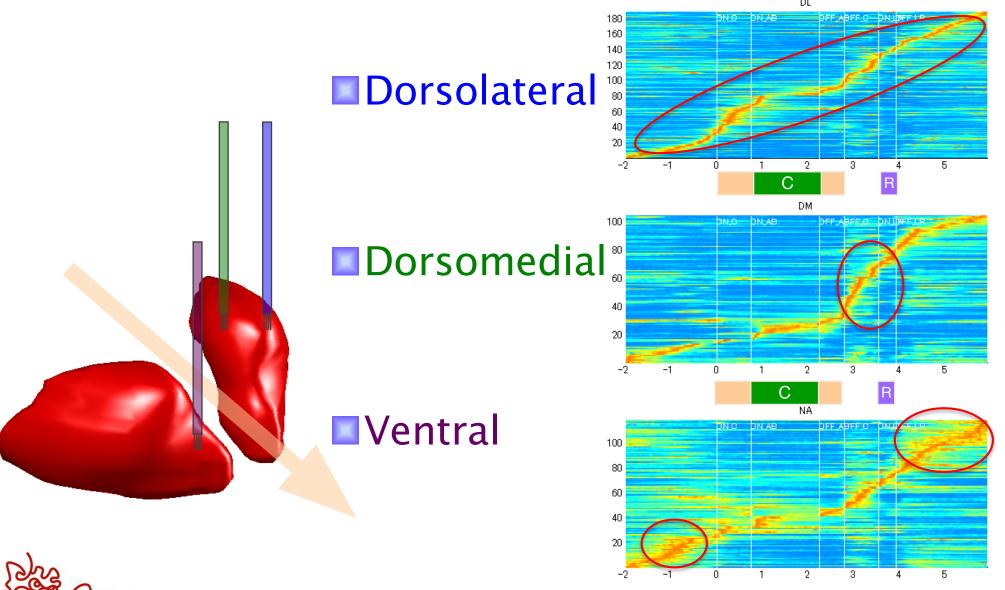
Left Center Right



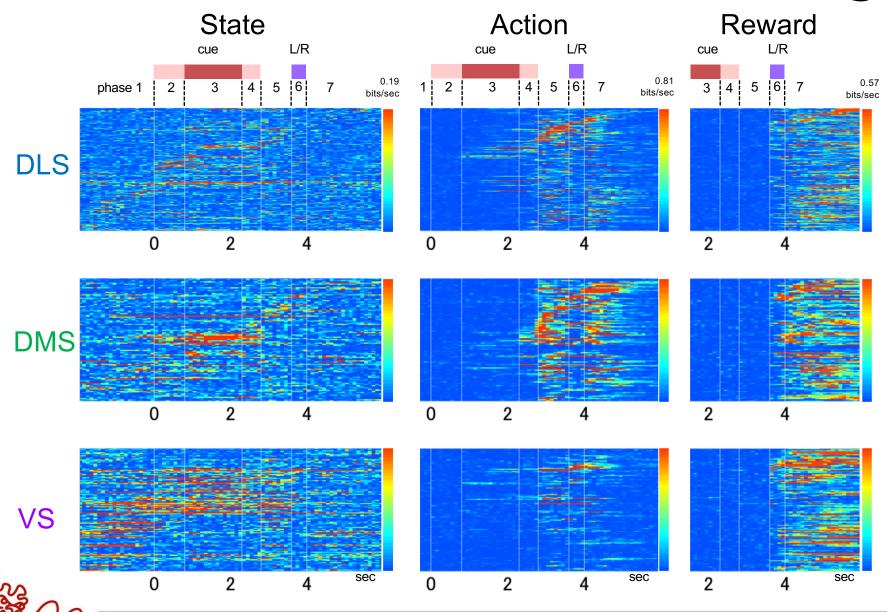
Cue tone	Reward prob. (L, R)
Left tone	Fixed
(900Hz)	(50%,0%)
Right tone	Fixed
(6500Hz)	(0%, 50%)
	Varied
Free-choice tone	(90%, 50%)
(White noise)	(50%, 90%)
	(50%, 10%)
	(10%, 50%)

Neural Activity in the Striatum

(Ito & Doya, 2015)



State/Action/Reward Coding



Generalized Q-learning Model

(Ito & Doya, 2009)

Action selection

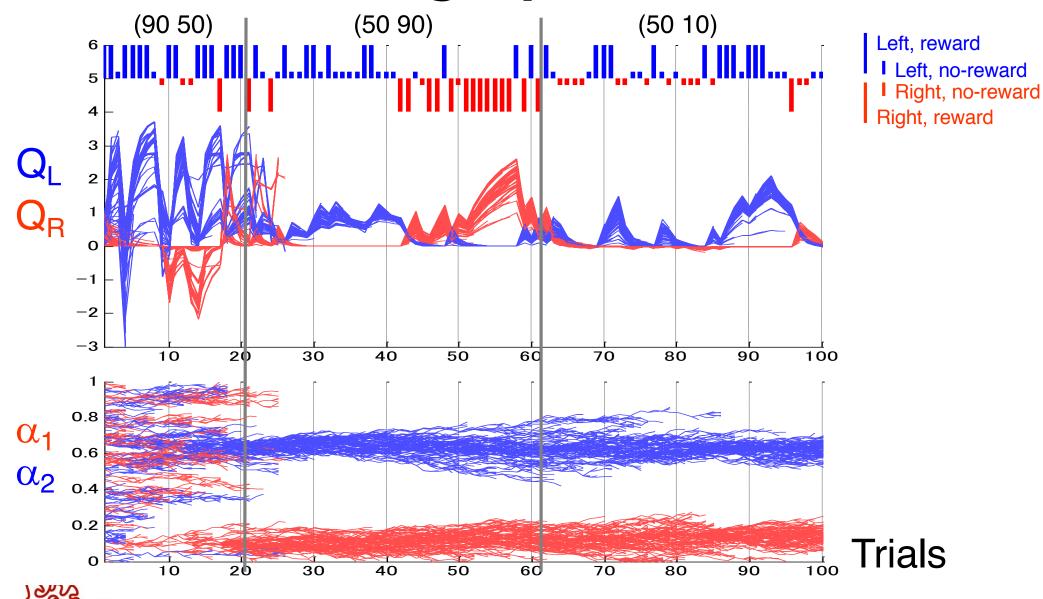
$$P(a(t)=L) = \exp Q_L(t) / (\exp Q_L(t) + \exp Q_R(t))$$

■Action value update: i∈{L,R}

$$\begin{aligned} Q_{i}(t+1) &= (1-\alpha_{1})Q_{i}(t) + \alpha_{1}\kappa_{1} & \text{if } a(t)=i, \ r(t)=1 \\ & (1-\alpha_{1})Q_{i}(t) - \alpha_{1}\kappa_{2} & \text{if } a(t)=i, \ r(t)=0 \\ & (1-\alpha_{2})Q_{i}(t) & \text{if } a(t)\neq i, \ r(t)=1 \\ & (1-\alpha_{2})Q_{i}(t) & \text{if } a(t)\neq i, \ r(t)=0 \end{aligned}$$

- Parameters
 - \circ α_1 : learning rate
 - \circ α_2 : forgetting rate
 - \circ κ_1 : reward reinforcement
 - κ₂: no-reward aversion

Model Fitting by Particle Filter

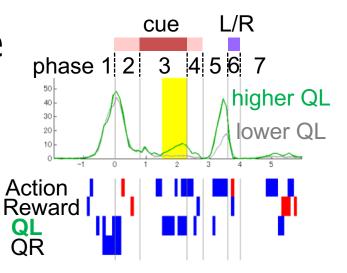


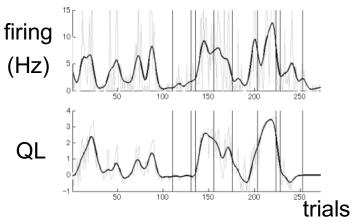
Action/State Values in Striatum

(Ito & Doya, 2015)

Action value

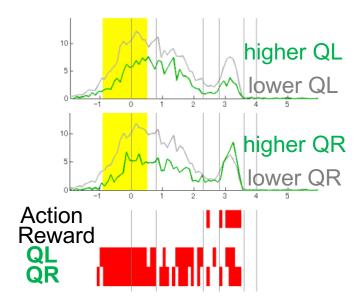
- DLS
- DMS

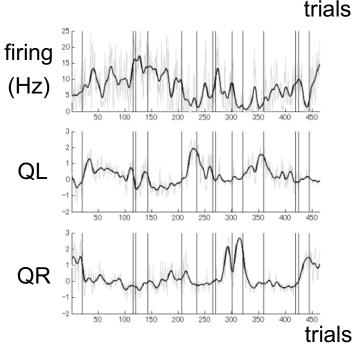




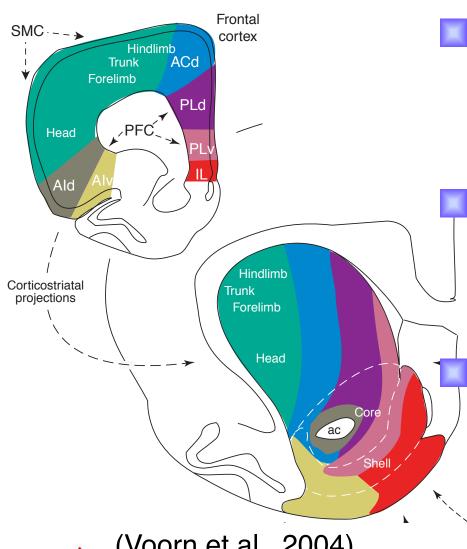
State value

VS





Hierarchy in Cortico-Striatal Network



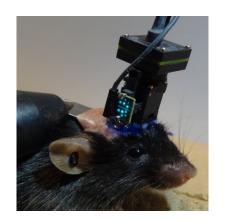
- Dorsolateral striatum: motor
 - early action coding
 - what motor action?
- Dorsomedial striatum: cognitive
 - choice action value
 - which goal?
 - Ventral striatum: motivational?
 - state value
 - whether worth doing?

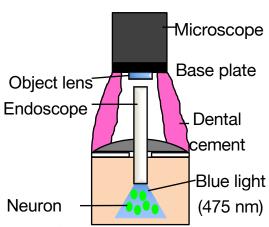
(Voorn et al., 2004)

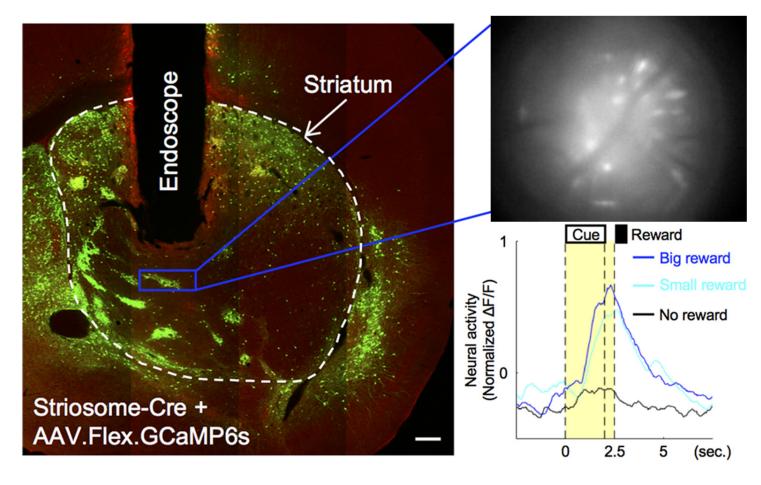
eNeuro (2018)

Reward-Predictive Neural Activities in Striatal Striosome Compartments

Imaging striosome neuron activity by endoscope





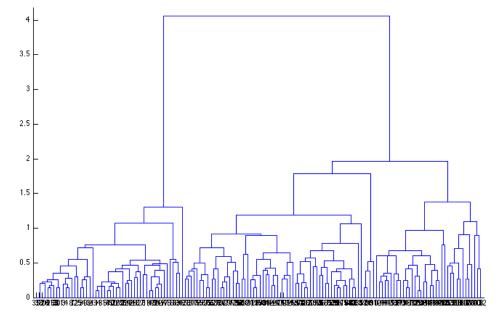


Unsupervised Learning

- ■input $\{\mathbf{x}_1,...,\mathbf{x}_N\}$ → output $\{\mathbf{y}_1,...,\mathbf{y}_N\}$
 - no target output
 - finding structures in distribution of x
- Dividing into subgroups
 - clustering
 - mixtures of Gaussians
 - self-organizing maps (SOM)
- Decomposing into components
 - principal component analysis (PCA)
 - independent component analysis (ICA)

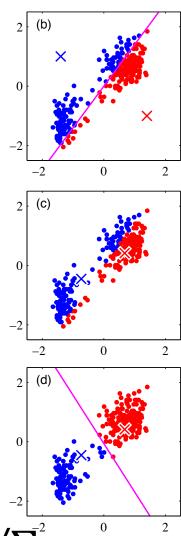
Hierarchical Clustering

- Bottom up clustering
 - start with each data point as a cluster
 - check distance: nearest/average/furthest
 - merge closest clusters
- Dendrogram
- Python
 - scipy.cluster.hierarchy
 - sklearn.cluster.AgglomerativeClustering



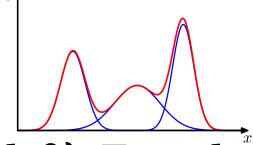
K-means Clustering

- Data set $\{x_1,...,x_N\} \rightarrow K$ clusters
 - no target labels!
- Distortion measure $J = \sum_{n} \sum_{k} r_{nk} ||\mathbf{x}_{n} \mu_{k}||^{2}$
 - prototypes μ_k (k=1,...,K)
 - indicator variable $r_{nk} \in \{1,0\}, \sum_{k} r_{nk} = 1$
- Fix μ_k and minimize with r_{nk}
 - for each \mathbf{x}_n , find nearest μ_k , set $r_{nk} = 1$
- Fix r_{nk} and minimize with μ_k
 - mean of data in the cluster $\mu_k = \sum_n r_{nk} \mathbf{x}_n / \sum_n^2 r_{nk}$
- \blacksquare Repeat \rightarrow converge to a local minimum

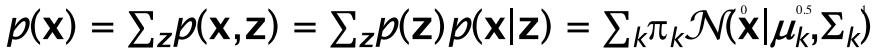


Mixtures of Gaussians

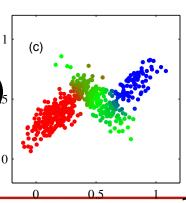
Gaussian mixture distribution $p(\mathbf{x}) = \sum_{k} \pi_{k} \mathcal{N}(\mathbf{x} | \mu_{k}, \Sigma_{k})$



- Latent variable $\mathbf{z} = (z_1, \dots, z_k)$: $z_k \in \{1, 0\}, \sum_k z_k = 1$
 - marginal distribution $p(\mathbf{z}) = \prod_{k} \pi_k^{z_k}$
 - conditional $p(\mathbf{x}|\mathbf{z}) = \prod_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)^{z_k}$
 - marginal of x is Gaussian mixture



- Posterior of **z** given **x**: responsibility $p(z_k=1|\mathbf{x}) = \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k) / \sum_j \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)$
 - π_k as the prior of $z_k=1$



39

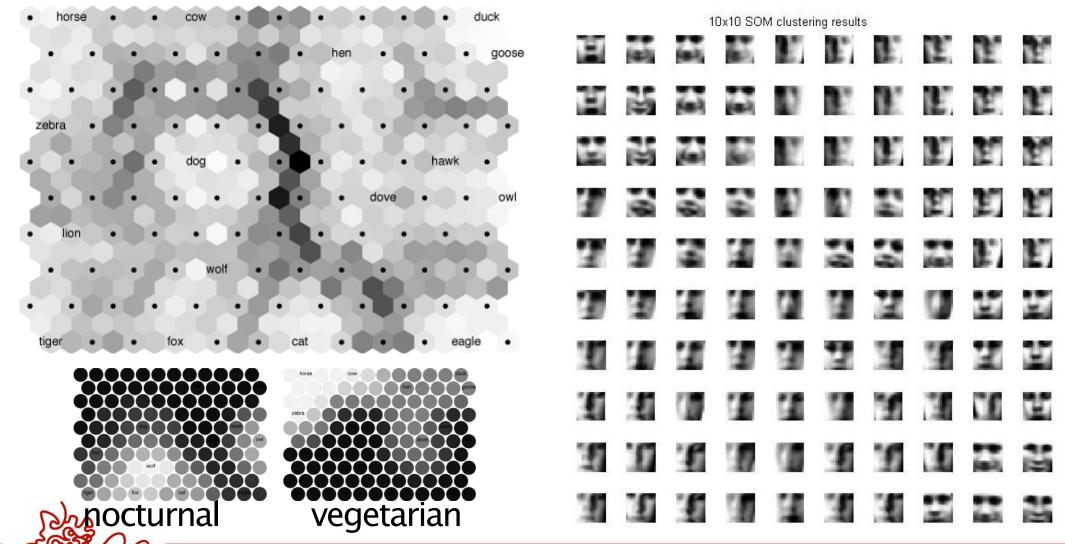
Self-Organizing Map

- Data set $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
 - \rightarrow grid of prototypes $\{\mu_1, \dots, \mu_K\}$

- Stepwise recursive SOM
 - find best match: $c(n) = \operatorname{argmin}_k ||\mathbf{x}_n \mu_k||$
 - update neighbors: $\mu_k(t+1) = \mu_k(t) + \alpha h_{c(n)k}(\mathbf{x}_n \mu_k)$ $h_{ck} = \exp[-\operatorname{dist}(c,k)/2\sigma^2]$
- Batch update
 - find c(n) for all \mathbf{x}_n
 - mean of neighbors $\mu_k = \sum_n h_{c(n)k} \mathbf{x}_n / \sum_n h_{c(n)k}$

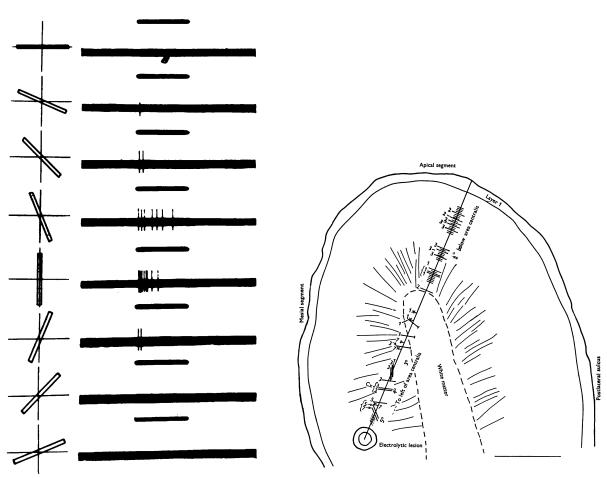
SOM Examples

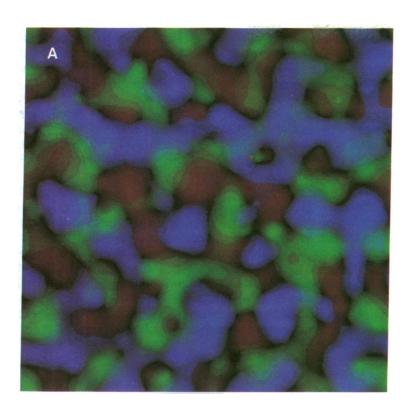
Animals (Ito et al. 2006)
Faces (Yuriy 2007)



Visual Cortical Columns

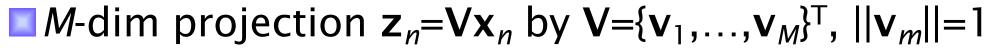
■ Cat visual cortex (Hubel & Wiesel) ■ SOM model (Obermayer et al.)





Principal Component Analysis

- $\square D$ -dim data $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}^T$ (zero mean)
- Find a low dimensional subspace with
 - largest variance
 - minimal projection error

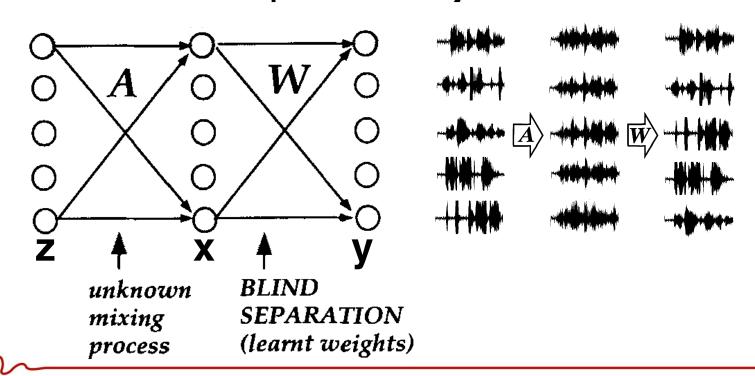


- data covariance $\mathbf{C} = \mathbf{X}^T \mathbf{X}/N = \sum_n \mathbf{x}_n \mathbf{x}_n^T/N$
- covariance of z: V^TCV
- Eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_M$ for $\mathbf{C}\mathbf{v}_m = \lambda_m \mathbf{v}_m$ with largest eigenvalues $\lambda_1, \dots, \lambda_M$
- Singular value decomposition (SVD): $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$ V:eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, $\mathbf{S}^2 = \mathrm{diag}(\lambda_1, \dots, \lambda_D)$

PCA by Autoencoder

Independent Component Analysis

- Latent variable with independent components $p(\mathbf{z}) = \prod_{j} p(z_{j})$... usually non-Gaussian
- Observed data: x = Az
 - blind source separation: y = Wx



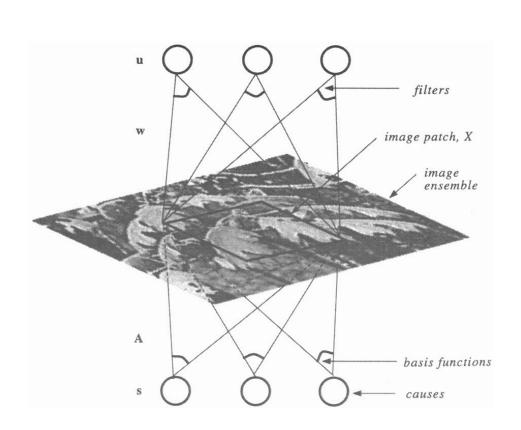
Infomax and ICA

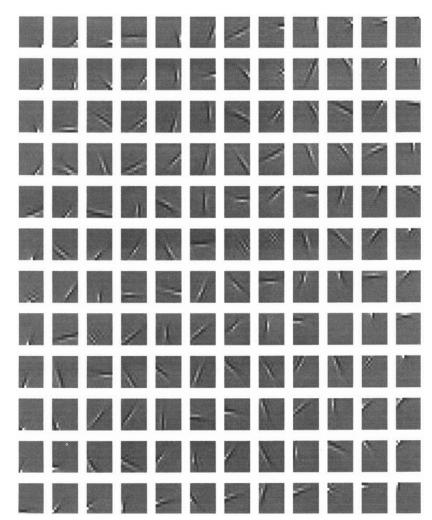
- Mutual information of input x and output y
 - I(y,x) = H(y) H(y|x)H(y|x): constant for additive noise
 - maximum information transfer I(y,x)
 - maximum output entropy H(y)
 - independence of outputs $p(\mathbf{y}) = \prod_{i} p(y_i)$
- Sigmoid output: y = tanh(u), u = Wx
 - - $= ([\mathbf{W}^{\mathsf{T}}]^{-1} + \mathbf{y} \mathbf{x}^{\mathsf{T}}) \mathbf{W}^{\mathsf{T}} \mathbf{W}$
 - $= (I+yu^{T})W$

Visual Feature Detector by ICA

(Bell & Sejnowski 1997)

Independent components of natural images





Mental Simulation

Brain's process using an action-dependent state transition model s'=f(s,a) or P(s'|s,a)

- Estimate the present from past state/action
 - perception under noise/delay/occlusion
- Predicting the future
 - model-based decision, action planning
- Imagining in a virtual world
 - thinking, language, science,...

Multiple Ways of Action Selection

Model-free

 \circ a = argmax_a Q(s,a)

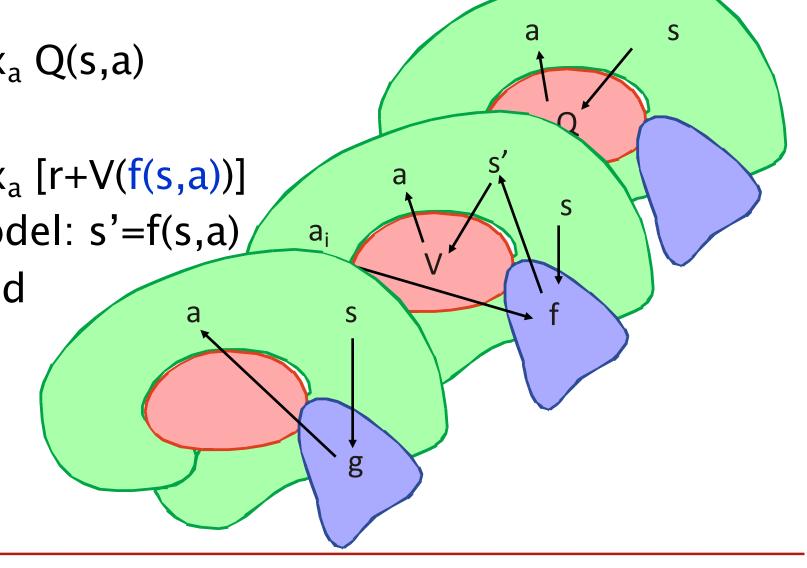
Model-based

 \circ a = argmax_a [r+V(f(s,a))]

forward model: s'=f(s,a)

Memory-based

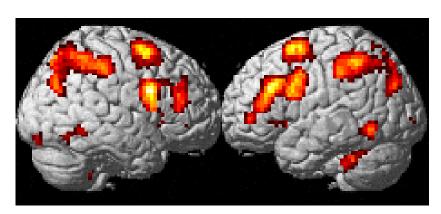
 \circ a = q(s)

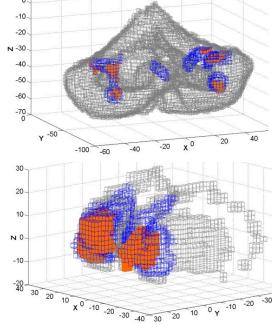


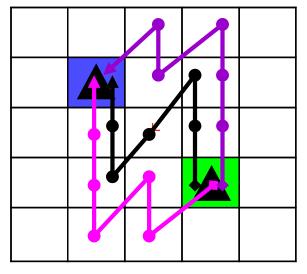
SCIENTIFIC REPORTS

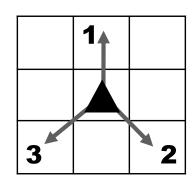
OPEN Model-based action planning involves cortico-cerebellar and basal ganglia networks

Received: 16 February 2016 Accepted: 19 July 2016 Alan S. R. Fermin^{1,2,3}, Takehiko Yoshida^{1,2}, Junichiro Yoshimoto^{1,2}, Makoto Ito², Saori C. Tanaka⁴ & Kenji Doya^{1,2,3,4}









How to Witness Mental Simulation

- ■State transition model s'=f(s,a) or P(s'|s,a)
- Action planning
 - predict action value

$$Q(s,a) = \sum_{s'} P(s'|s,a)[R(s,a) + \gamma V(s')]$$

- hard to tell when/which action is imagined
- State estimation
 - dynamic Bayesian filter

$$P(s_t|a_{t-1},o_t) \propto P(o_t|s_t) \sum_{s_{t-1}} P(s_t|s_{t-1},a_{t-1}) P(s_{t-1})$$

can compare actual and predicted states

nature neuroscience

96

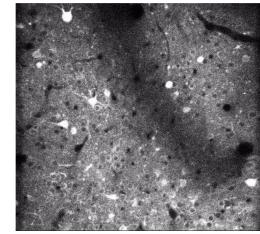
Neural substrate of dynamic Bayesian inference in the

cerebral cortex

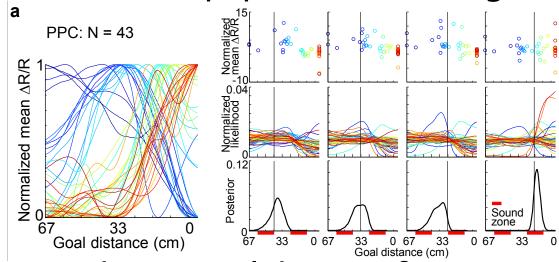
Akihiro Funamizu^{1,2}, Bernd Kuhn² & Kenji Doya¹

PPC two-photon imaging

- Auditory virtual environment
 - intermittent sensory input



Probabilistic population decoding



predicting goal distance from action

Reinforcement Learning

- Predict reward: value function
 - $V(s) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)... | s(t)=s]$
 - $Q(s,a) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)... | s(t)=s, a(t)=a]$
- Select action

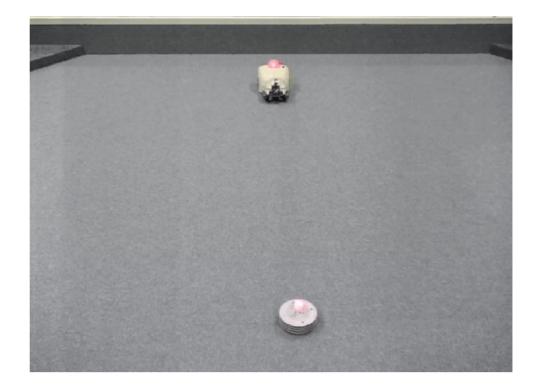
 How to implement these steps?
 - greedy: a = argmax Q(s,a)
 - Boltzmann: $P(a|s) \propto exp[\beta Q(s,a)]$
- Update prediction: TD error

 - $\Delta V(s(t)) = \alpha \delta(t)$ How to tune these parameters?

Temporal Discount Factor y

- Large γ
 - reach for far reward

- Small γ
 - only to near reward

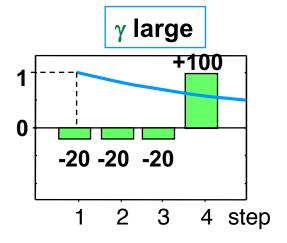


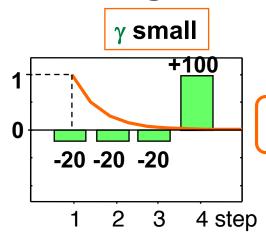
Temporal Discount Factor γ

- $V(t) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \gamma^3 r(t+3) + ...]$
 - controls the 'character' of an agent

no pain, no gain!

$$V = 18.7$$





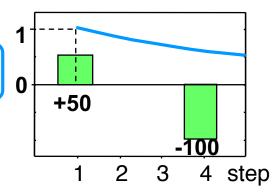
Depression?

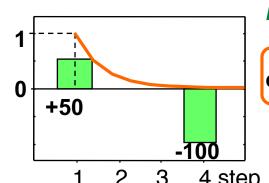
better stay idle

$$V = -25.1$$

stay away from danger

$$V = -22.9$$





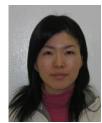
Impulsivity?

can't resist temptation

$$V = 47.3$$

Serotonin?

Optogenetic Stimulation of Dorsal Raphe Serotonin Neurons

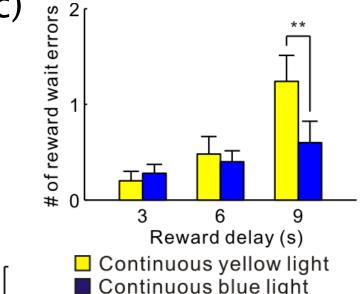


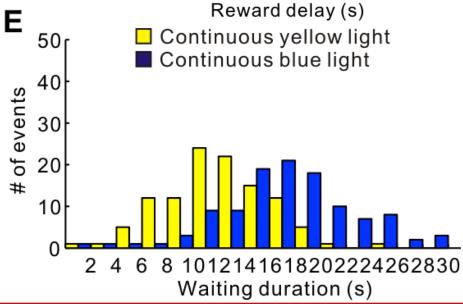
(Miyazaki et al., 2014, Current Biology)

Reward Delay Task (3, 6, 9, ∞ sec)

omission: 12.1 s

omission: 20.8 s



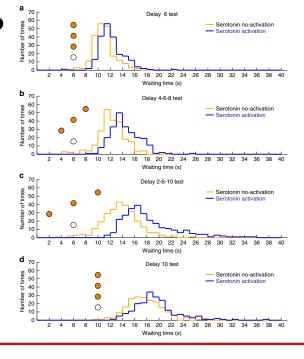


OPEN

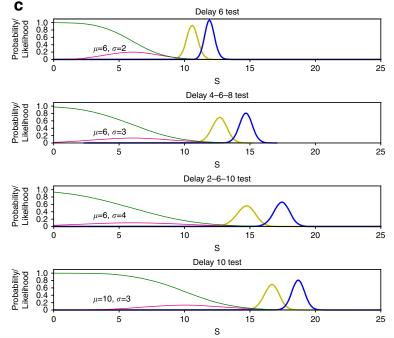
Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience Katsuhiko Miyazaki 1, Kayoko W. Miyazaki 1, Akihiro Yamanaka 2, Tomoki Tokuda 3, Kenji F. Tanaka 4 & Kenji Doya 1

- Serotonin stimulation facilitates waiting when...
 - reward probability is high
 - reward timing is uncertain
- Prior for reward?

20 10



Bayesian decision model



ISSA Summer School 2017

Program

Hands-on Projects

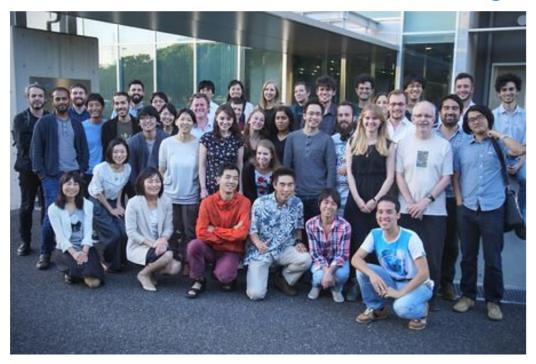
People

Organizers

Practical Information

ISSA Summer School 2017

groups.oist.jp/issa



The Initiative for a Synthesis in Studies of Awareness, ISSA for short, is a group of scientists and scholars advocating an integrative approach to the study of awareness.

ISSA Summer School 2017

ISSA will organize a two-week Summer School, with plenary lectures in the morning and parallel sessions in the afternoon, in which the lecturers will lead study groups that are aimed at producing original research of publishable quality. The lectures will cover topics in various aspects of neuroscience, experimental as well as computational; theoretical physics; logic and philosophy; and various other fields in cognitive science and the study of complex systems, including artificial intelligence, artificial life, and robotics.

Date: May 22nd – June 2nd, 2017

Venue: Center for Information and Neural Networks (CiNet)

Osaka University, Suita, Japan

Initiative for Synthetic Studies of Awareness (ISSA): Introduction

2017 May 22 AProf Nao Tsuchiya Monash University, Australia

Consciousness is composed of various aspects

Consciousness is integrated

Consciousness is excluded outside of the certain boundary

Integrated information theory of consciousness

- Starts from phenomenology, identifies five axioms (1. existence, 2. composition, 3. information, 4. integration, 5. exclusion)
- Tries to seek for potential physical mechanisms that can support the axioms

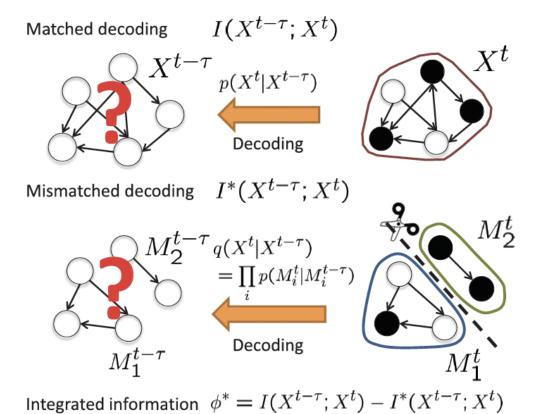
Tononi 2004, 2008, Oizumi et al 2014 PLoS Comp Bio

Intuitive explanation 1

Integrated information =

loss of predictability of past states based on current states, when system is cut

(Oizumi et al 2016 PLoS Comp)



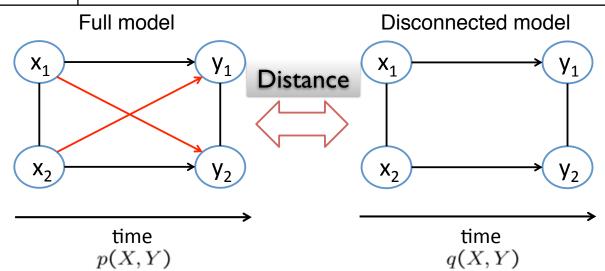
(Oizumi et al 2016 PLoS Comp)

Intuitive explanation 2

Integrated information =

a distance between the actual and disconnected model

Oizumi, Tsuchiya, Amari 2016 PNAS



Integrated information

$$\Phi_G = \min_{q(X,Y)} D\left(p(X,Y)||q(X,Y)\right)$$

$$\Phi_G = \frac{1}{2} \log \frac{|\Sigma(E)'|}{|\Sigma(E)|}$$

Tinbergen's Four Questions

How?

proximate view

Mechanism
How does it work?

Ontogeny *How does it develop?*

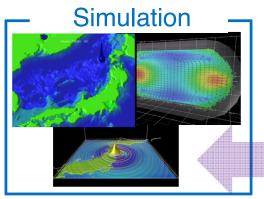
Why?

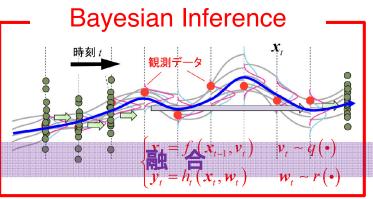
ultimate/evolutionary view

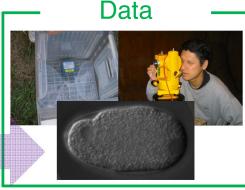
Function
What is it for?

Phylogeny
How did it evolve?

Consciousness as Data Assimilation?







(Komaki Lab. U Tokyo)

- Generative model
- observation $\mathbf{y}_t = \mathbf{g}(\mathbf{x}_t) + \varepsilon_0$

• dynamics $\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}) + \varepsilon_s$ atmosphere, ocean,...

temperature, wind,...

- State estimation by real-time simulation
 - utilizing sparse, multi-modal data
- Prediction of future states
- Postdiction of past history

Characteristics akin to consciousness

reason for the emergence of conscious phenomenology?

Tinbergen's Four Questions

How?

proximate view

- Mechanism
 How does it work?
 - dynamic Bayesian inference

- Ontogeny
 How does it develop?
 - learn internal models

Why?

ultimate/evolutionary view

- Function
 What is it for?
 - estimate the past and present
 - predict the future
- Phylogeny
 How did it evolve?
 - mammalian neocortex

Universe, Life, and Intelligence

To explain the universe, people called for the god(s).

To explain life, people called for soul.

To explain human intelligence, people now call for consciousness.

Acknowledgements

- Striatum recording
- Makoto Ito (Progress Technology)
- Tomohiko Yoshizawa (Tamagawa U)
- **Charles Gerfen (NIH)**
- Kazuyuki Samejima (Tamagawa U)
- Minoru Kimura (Tamagawa U)
- Cortical imaging
 - Akihiro Funamizu (CSHL)
 - Bernd Kuhn
 - Yuzhe Li
 - Sergey Zobnin
- Human fMRI/behavior
- Alan Fermin (Tamagawa U)Takehiko Yoshida (NAIST)
- Saori Tanaka (ATR)
- Nicolas Schweighofer (USC)
- Sigeto Yamawaki (Hiroshima U)
- Yu Shimizu
- Tomoki Tokuda (NAIST)
- Shoko Ota
- Serotonin Recording
- Kayoko W Miyazaki
- Katsuhiko Miyazaki
- Optogenetics
- Kenji Tanaka (Keio U)
- Akiĥiro Yamanaka (Nagoya U)

- Marmoset data analysis
 - Carlos Gutierrez
 - Hiromichi Tsukada
 - Jun Yoshimoto, Takashi Nakano (NAIST)
 - Junichi Hata, Alex Woodward (RIKEN)
 - Ken Nakae, Henrik Skibbe (Kyoto U)
- Spiking neural network model
 - Jun Igarashi, Sun Zhe (RIKEN)
 - Tadashi Yamazaki, Hiroshi Yamamura (UEC)
 - Jan Moren
 - Osamu Shouno (HRI)
 - Benoit Girard, Daphne Heraiz (UPMC)
 - Jean Lienard
- Robotics
 - Jun Morimoto (ATR)
 - Eiji Uchibe (ATR)
 - **Stefan Elfwing (ATR)**
 - Jiexin Wang (ATR), Naoto Yoshida (Groove X)
 - Paavo Parmas

Scientific Research on Innovative Areas **Strategic Research Program for Brain Sciences**

Brain/MINDS Project

Post-K Supercomputing Program

International Symposium on AI and Brain Science

October 10–12, 2020, Ito Hall, U Tokyo

- Deep Learning and Reinforcement Learning
 - Yann LeCun (NYU, Facebook)
 - Yutaka Matsuo (U Tokyo)
 - Doina Precup (McGill U)
 - David Silver (DeepMind)
 - Masashi Sugiyama (RIKEN AIP/IRCN)
- World Model Learning and Inference
 - Karl Friston (UCL)
 - Maneesh Sahani (Gatsby Unit)
 - Tadahiro Taniguchi (Ritsumeikan U)
 - Josh Tenenbaum (MIT)
- Metacognition and Metalearning
 - Matthew Botvinick (DeepMind)
 - Ryota Kanai (ARAYA)
 - Angela Langdon (Princeton U)
 - Hiroyuki Nakahara (RIKEN CBS)
 - 💥 🤦 Xiao-Jing Wang (NYU)

www.brain-ai.jp/symposium2020

- Al for Neuroscience and Neuromorphic Technologies
 - Jim DiCarlo (MIT)
 - Yukiyaku Kamitani (Kyoto U)
 - Rosalyn Moran (King's College London)
 - Terry Sejnowski (Salk Institute)
 - Hidehiko Takahashi (Tokyo MDU)
- Social Impact and Neuro-Al Ethics
 - Anne Churchland (CSHL)
 - Kenji Doya (OIST)
 - Arisa Ema (U Tokyo)
 - Hiroaki Kitano (SONY CSL)
 - Stuart Russell (UC Berkeley)