
19/8/03 1(4310_Management

1 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

Software Management
Computational Methods, Dec. 2018, Kenji Doya

In addition to writing a program for each computing task, knowldge and skills are needed for
designing and managing the entire data analysis or simulation procedure, testing and revising
the codes, and sharing the data and tools among collaborators.

Unlike commercial software development, research computing often start from simple
exploratory codes created by a single researcher. However, even for a single-person project,
it is beneficial to follow the standard practices in software development because.

If your project is successful, it will be succeeded by other members of your lab or the
research community world wide.
You, after a few months, do not remember where you put which file, what was this file, or
why you wrote this code.

Reference:

Greg Wilson, et al. (2017). Good enough practices in scientific computing. PLOS
Computational Biology, 13(6): e1005510 (https://doi.org/10.1371/journal.pcbi.1005510
(https://doi.org/10.1371/journal.pcbi.1005510))

Data Management
Most research start with obtaining raw data, continues on with a series of pre-processing,
visualization and analyses, and complete with paper writing. Handling all different files
without confusion and corruption takes some good thoughts and habits.

Keep the raw data and metadata and take back up.
Store data as you wish to see when receiving.
Record all the steps of processing, better with a script.

For a small scale data, DropBox is an easy solution for sharing and backup.

At OIST, for storing large scale data, you can use the bucket drive. See:
https://groups.oist.jp/it/research-storage (https://groups.oist.jp/it/research-storage)

In []: 1

https://doi.org/10.1371/journal.pcbi.1005510
https://groups.oist.jp/it/research-storage

19/8/03 1(4310_Management

2 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

Software Management
In writing programs, keep in mind:

Make them modular and aviod duplicate codes.
Give explanation at the beginning of each file/function.
Use file/function/variable names that you can comprehend a year later.
Never write a numeric parameter in an equation; define it as a variable/argument.
Give comments for significant parts/lines of codes.
Turn comment/uncomment into if-else for different modes of operation.
Verify your code with a simple input for which the correct output is known.
Prepare documentation even before somebody asks you, as you yourself will need that
after a few months.

In some projects, all you need is to download pre-existing tools and apply them to the data.
Even in that case, it is better to record the procedure as a script for

avioding/detecting manual errors
reproducibility of the result
re-analysis with new data, tool, or parameters

Scritping
On Unix-like systems, the common way is a shell script, which is a file containing a series of
commands you would type into a terminal.

For a more elaborate processing, a Python script is often preferred.

In []:

Graphic User Interface
When running your own programs, working interactively within Jupyter Notebook or running
scripts for systematic experiments is fine. When you let your collaborators run your program,
especially those without computing background, it is often nice to create a graphic user
interface (GUI).

There are several Python packages for building GUIs, such as Tkinter, PyQt and kivy.

 1

19/8/03 1(4310_Management

3 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

Tkinter
Tkinter is a Python interface for a GUI library Tcl/Tk: https://www.tcl.tk
(https://www.tcl.tk)
See the following for details:
https://wiki.python.org/moin/TkInter (https://wiki.python.org/moin/TkInter)
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
(http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html)

You create a window and place menus, listboxes, buttons, canvas, etc. called widgets.

You define functions that are called when a button is pressed, etc.

Finally you run an event loop to get user's actions and call corresponding functions.

To use matplotlib with Tkinter, you can check the samples like
http://matplotlib.org/examples/user_interfaces/embedding_in_tk.html
(http://matplotlib.org/examples/user_interfaces/embedding_in_tk.html)

In []:

Version Control System
Software development is repetitions of coding, testing, and improving. A version control
system (VCS) allows

parallel development of parts and re-integration
trace back to previous versions when a problem is detected

 1

https://www.tcl.tk/
https://wiki.python.org/moin/TkInter
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://matplotlib.org/examples/user_interfaces/embedding_in_tk.html

19/8/03 1(4310_Management

4 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

Git and GitHub
The most popular VCS today is Git, created by Linus Torvalds for developing Linux. There is a
cloud service GitHub, which is free for open software.

OIST subscribes to its commercial option, which can be used for proprietary software
development: https://github.com/oist (https://github.com/oist)

For account setup, wee https://groups.oist.jp/it/github-oist (https://groups.oist.jp/it/github-
oist)

This is a preferred way of sharing programs, or in some cases text data and manuscripts,
among collaborators. It is also helpful for a single-person project, for succession by a future
member of your lab, for open access after publication, or for yourself after some time.

These are typical steps in contributing to a project in GitHub.

Join as a member of a repository.
Copy the existing files and see how they work.
Make a new branch and add or modify the codes.
After tesing locally, commit the new version.
Open a pull request for other members to test your revision.
Your pull request is merged into the master branch.

See "Hello World" in GitHub Guide for details (https://guides.github.com
(https://guides.github.com)).

In []: 1

https://github.com/oist
https://groups.oist.jp/it/github-oist
https://guides.github.com/

19/8/03 1(4310_Management

5 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

Software/Data Licenses
Today, increasingly more journals and agencies request that you make the data and programs
publicly accessible for

reproducibility of research results
enable meta-analysis
facilitate reuse of data and programs

You should set an appropriate condition in making your data or program public, to facillitate
their use and to keep your (and your organization's) intellectural property. Points of
consideration in making your data/programs public include:

copyright
acknowledgement
revision
re-distribution
commercial use

It is also important to know the licenses of the software you use for your development, as that
can limit the way you can use/distribute your programs.

Creative Commons
Creative Commons (https://creativecommons.org (https://creativecommons.org)) is an
emerging standard using combination of three aspects:

Attribution (BY): request aknowldgement, e.g., citing a paper
NonCommercial (NC): no commercial use
ShareAlike (SA) or NoDerivs (ND): allow modification and re-distribution or not

See https://creativecommons.org/licenses/?lang=en (https://creativecommons.org/licenses/?
lang=en) for typical combinations.

https://creativecommons.org/
https://creativecommons.org/licenses/?lang=en

19/8/03 1(4310_Management

6 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

GPL, BSD, MIT, Apache, etc.
In open software community, several types of licensing have been commonly used:

Gnu General Public Licence (GPL): redistribution requires access to source codes in the
same license. Called copy left.
BSD and MIT license: do not require source code access or succession of the same
license.
Apache License: does not even require the license terms.
Public Domain (CC0): no copyright insisted. Free to use/modify/distribute.

See https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
(https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses) for
further details.

In []:

Exercise

1. GitHub
Let's try team software development using OIST GitHub: https://github.com/oist
(https://github.com/oist)

If you cannot connect there, you are not registered as an OIST member on GitHub. Follow the
guide here to be registered:
https://groups.oist.jp/it/github-oist (https://groups.oist.jp/it/github-oist)

Create your GitHub account if you haven't
Send your GitHub ID to it-help@oist.jp to request registration

DynaView
Goto https://github.com/oist/ComputationalMethods
(https://github.com/oist/ComputationalMethods) and download the entire repository. The
folder DynaView2018 includs the Python codes for this exercise. There are three (or more)
files:

DynaView.py: the main python script
first.py, second.py: python modules for dynamical systems

Run the script in a console, by
$ python DynaView.py

 1

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://github.com/oist
https://groups.oist.jp/it/github-oist
https://github.com/oist/ComputationalMethods

19/8/03 1(4310_Management

7 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

This should open a window with a list of system names, three buttons, and a plot area. You
can play with the buttons:

Run: run the system currently selected and plot the trajectory.
Reset: reset the state to the default initial state.
Select: after selecting a system in the list, press this button to confirm a selection.

After figuring out how the program works, try the following.

1) Add a dynamical system of your interest to DynaView.

make a copy of first.py or second.py and modify the dynamics() function. Also
change the name, default initial state, and parameters. Don't forget to include your name
in the header so that we can see who made it.
add lines in DynaView.py so that your module is imported and registerd in
system_list (please position in alphabetic order).
test on your computer that your system appears in the listbox and runs as expected.
make a new branch to register your changes.
commit, i.e., upload your new and modified files.
send a pull request so that other people can test your changes.

Follow the tutorial here:
https://guides.github.com/activities/hello-world/ (https://guides.github.com/activities/hello-
world/)

In []:

Optional) In addition to adding a new module, you are welcome to improve the main program
DynaView.py itself. For example,

add text boxes to see/change states and parameters. (rows 1 and 2 are inteded for such
use).
add quit button for clean finish.
enable phase space trajectory plot (with a checkbox/menu to select the plot mode, or in
a second canvas).
make the window look cooler by adjusting the widget locations.
fix any bugs or improve error handling.
add documentation.
...

In []:

1

1

https://guides.github.com/activities/hello-world/

19/8/03 1(4310_Management

8 / 8 ページhttp://localhost:8885/notebooks/ComputationalMethods/10_Management.ipynb

