
Functions and Classes
Computational Methods, Oct. 2017, Kenji Doya

Let us learn how to define your own functions, and further organize them into a class for
neatness and extensibility.

References:

Python Tutorial section 4.6-4.8: Functions
Python Tutorial chapter 6: Modules
Python Tutorial chapter 9: Classes

In [1]:

Defining functions
If you find yourself running the same codes again and again with different inputs, it is time to
define them as a function.

Here is a simple example:

In [2]:

In [3]:

In [4]:

The line encosed by """ """ is called a Docstring, which is shown by help() command.

Out[3]: 25

Out[4]: array([1, 4, 9])

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

def square(x):
 """Compute x*x"""
 # result returned
 return x*x

square(5)

a = np.array([1, 2, 3])
input `x` can be anything for which `x*x` is valid
square(a)

In [5]:

A function does not need to return anything.

In [6]:

A function can return multiple values.

In [7]:

In []:

Arguments and local variables
A function can take single, multiple, or no arguments (inputs).
An argumet can be required, or optional with a default value.
An argument can be specified by the position, or a keyword.

In [8]:

In [9]:

Help on function square in module __main__:

square(x)
 Compute x*x

[1 4 9]

[1 4 9]
[1 8 27]

Out[9]: 3.0

help(square)

def print_square(x):
 """Print x*x"""
 print(x*x)
the end of indentation is the end of definition
print_square(a)

def square_cube(x):
 """Compute x**2 and x**3"""
 # return multiple values separated by comma
 return x**2, x**3
results can be assigned to variables separated by comma
b, c = square_cube(a)
print(b)
print(c)

def norm(x, p=2):
 """Give the L^p norm of a vector."""
 y = abs(x) ** p
 return np.sum(y) ** (1/p)

a = np.array([1, 2, -2])
norm(a) # default p=2

In [10]:

In [11]:

Local and global variables
Arguments and variables assigned in a function are registered in a local namespace.

In [12]:

Any global variables can be referenced within a function.

In [13]:

To modify a global variable, it have to be declaired as global.

In [14]:

You can modify an argument in a function.

In [15]:

Out[10]: 5.0

Out[11]: 2.1436515674591332

0

Out[13]: 4

Out[14]: 4

Out[15]: 6

norm(a, 1) # specify by position

norm(p=10, x=a) # specify by the keywords, in any oder

y = 0 # global variable
norm(a) # this uses `y` as local variable, y=[1, 4, 9]
print(y) # the global variable `y` is not affected

def add_a(x):
 """Add a to x."""
 return x + a
a = 1 # global variable
add_a(3) # 3 + 1

def addto_a(x):
 """Add x to a."""
 global a
 a = a + x # add x to a
a = 1
addto_a(3) # a = a + 3
a

def double(x):
 """Double x"""
 x = 2 * x
 return x
double(3)

In []:

Scripts, modules, and packages
Before Jupyter (iPython) notebook was created, to reuse any code, you had to store it in a
text file, with .py extension by convention. This is called a script.

In [16]:

The standard way of running a script is to type in a terminal:

$ python haisai.py

In a Jupyter notebook, you can use %run magic command.

In [17]:

You can edit a python script by any text editor.

In Jupyter notebook's Files window, you can make a new script as a Text file by New menu,
or edit an existing script by clicking the file name.

In [18]:

A script with function definitions is called a module.

In [19]:

You can import a module and use its function by module.function().

print('Haisai!')

Haisai!

name me!

"""L^p norm module"""

import numpy as np

def norm(x, p=2):
 """The L^p norm of a vector."""
 y = abs(x) ** p
 return np.sum(y) ** (1/p)

def normalize(x, p=2):
 """L^p normalization"""
 return x/norm(x, p)

%cat haisai.py

%run haisai.py

%run ../untitled.py

%cat lp.py

In [20]:

In [21]:

In [22]:

In [23]:

Caution: Python reads in a module only upon the first import, as popular modules like
numpy are imorted in many modules. If you modify your module, you need to restart your
kernel or call importlib.reload().

In [24]:

A collection of modules are put in a directory as a package.

Help on module lp:

NAME
 lp - L^p norm module

FUNCTIONS
 norm(x, p=2)
 The L^p norm of a vector.

 normalize(x, p=2)
 L^p normalization

FILE
 /Users/doya/Dropbox (OIST)/Python/ComputationalMethods/lp.py

Out[22]: 5.0

Out[23]: array([-0.42857143, 0.57142857])

Out[24]: <module 'lp' from '/Users/doya/Dropbox (OIST)/Python/ComputationalMe
thods/lp.py'>

import lp

help(lp)

a = np.array([-3, 4])
lp.norm(a)

lp.normalize(a, 1)

import importlib
importlib.reload(lp)

In [25]:

In []:

__init__.py fontconfig_pattern.py
__pycache__/ ft2font.cpython-36m-darwin.so*
_cm.py gridspec.py
_cm_listed.py hatch.py
_cntr.cpython-36m-darwin.so* image.py
_color_data.py legend.py
_contour.cpython-36m-darwin.so* legend_handler.py
_delaunay.cpython-36m-darwin.so* lines.py
_image.cpython-36m-darwin.so* markers.py
_mathtext_data.py mathtext.py
_path.cpython-36m-darwin.so* mlab.py
_png.cpython-36m-darwin.so* mpl-data/
_pylab_helpers.py offsetbox.py
_qhull.cpython-36m-darwin.so* patches.py
_tri.cpython-36m-darwin.so* path.py
_version.py patheffects.py
afm.py projections/
animation.py pylab.py
artist.py pyplot.py
axes/ quiver.py
axis.py rcsetup.py
backend_bases.py sankey.py
backend_managers.py scale.py
backend_tools.py sphinxext/
backends/ spines.py
bezier.py stackplot.py
blocking_input.py streamplot.py
cbook.py style/
cm.py table.py
collections.py testing/
colorbar.py texmanager.py
colors.py text.py
compat/ textpath.py
container.py ticker.py
contour.py tight_bbox.py
dates.py tight_layout.py
delaunay/ transforms.py
docstring.py tri/
dviread.py ttconv.cpython-36m-darwin.so*
figure.py type1font.py
finance.py units.py
font_manager.py widgets.py

see how matplotlib is organized
%ls ~/anaconda/lib/python3.6/site-packages/matplotlib

Object Oriented Programming
Object Oriented Programming has been advocated since 1980's in order to avoid confusions
and facillitate extensibility or large software development. Examples are: SmallTalk, Objective
C, C++, Java,... and Python!
Major features of OOP is:

define data structure and functions together as a Class
an instance of a class is created as an object
the data (attributes) and functions (methods) are referenced as instance.attribute
and instance.method().
a new class can be created as a subclass of existing classes to inherit their attributes and
methods.

In []:

Defining a basic class
Definition of a class starts with
class ClassName(BaseClass):
and include

definition of attributes
__init__() method called when a new instance is created
definition of other methods

The first argument of a method specifies the instance, which is named self by convention.

In [26]:

class Vector:
 """A class for vector calculation."""
 default_p = 2

 def __init__(self, arr): # make a new instance
 self.vector = np.array(arr) # array is registered as a vector

 def norm(self, p=None):
 """Give the L^p norm of a vector."""
 if p == None:
 p = self.default_p
 y = abs(self.vector) ** p
 return np.sum(y) ** (1/p)

 def normalize(self):
 """normalize the vector"""
 u = self.vector/self.norm()
 self.vector = u

A new instance is created by calling the class like a function.

In [27]:

Attributes and methods are referenced by .

In [28]:

In [29]:

In [30]:

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

A subclass can inherit attributes and methods of base class.

In [36]:

Out[28]: array([0, 1, 2])

Out[29]: 2.2360679774997898

Out[30]: 3.0

Out[32]: 3.0

Out[33]: array([0. , 0.33333333, 0.66666667])

Out[35]: 3.7416573867739413

x = Vector([0, 1, 2])

x.vector

x.norm()

x.norm(1)

x.default_p = 1

x.norm()

x.normalize()
x.vector

another instance
y = Vector([0, 1, 2, 3])

y.norm()

class Vector2(Vector):
 """For more vector calculation."""

 def double(self):
 u = 2*self.vector
 self.vector = u

In [37]:

In [38]:

In [39]:

In []:

Exercisre

1. Functions
Define the following functions and show some sample outputs.
1) Factorial of n: .1 × 2 × ⋯ × n

In []:

In []:

2) For a circle of radius r (default r=1), given x coordinate, return possible y coordinates (i.e.,
both positive and negative).

In []:

In []:

In []:

3) Any function of your interest

In []:

Out[37]: array([1, 2, 3])

Out[38]: array([2, 4, 6])

Out[39]: 2

z = Vector2([1, 2, 3])
z.vector

z.double()
z.vector

z.default_p

def factorial(n):
 # code

factorial(3)

def circley(x, r=1):
 # code

circley(0.5)

circley(np.sqrt(2), 2)

2. Classes
1) Define the Vector class with the following methods and test that they work correctly.

norm, normalize: as in the previous class (use L^p norm, with default p=2).
scale(s): multiply each component by scalar s.
dot(v): a dot product with another vector v.

In []:

In []:

In []:

In []:

2) Save the class Vector as a module vector.py, e.g., by
New button in the Jupyter Files tab,
copy, paste, and make any changes to the class definition,
rename the file and save.

3) Import the module and test how it works.

In []:

In []:

In []:

In []:

In []:

In []:

class Vector:
 """A class for vector calculation."""

 #code

x = Vector([0, 1, 2])
x.vector

x.scale(3)
x.vector

y = Vector([1, 2, 3])
x.dot(y)

import importlib

x = vector.Vector([0, 1, 2])
x.vector

x.norm(p=1)

