
I. PRINCIPLES OF THE CHI-SQUARED TEST

A. Poisson distribution

In addition to the normal (or Gauss) distribution discussed earlier, the Poisson distri-

bution is another important limiting distribution often encountered in nature. Usually we

deal with the Poisson distribution when we count events that occur randomly but at a well

defined average rate. For example, consider the number of car accidents happening on a

busy road in a two-month period. Obviously, these are fairly random events. Therefore, the

number of accidents in two consecutive two-month periods might not be the same. However,

if such factors as the road condition, the busyness of traffic, the weather etc. are fairly con-

stant in time, we can expect that the average number of accidents in the two-month period

will be also constant. In other words, the average rate of accidents will be well defined. In

this case, we expect that the probability to have n accidents in a given two-month period is

given by the distribution function

Pν(n) =
νne−ν

n!
, (1)

where ν is a parameter which physical meaning will be clarified in a minute. This is called

the Poisson distribution. Note that, unlike the Gauss distribution, it is completely defined

by only one parameter ν (in case of Gauss distribution we need to know two parameters

X and σ). To find its physical meaning, let’s find the average value of n. First note that

the Poisson distribution is defined for discrete (integer) values, and has to be normalized

according to

∞
∑

n=0

Pν(n) = 1. (2)

The average value of counts per period is

〈n〉 =
∞
∑

n=0

nPν(n) =
∞
∑

n=1

νne−ν

(n− 1)!
= νe−ν

∞
∑

n=1

νn−1

(n− 1)!
= ν. (3)

Above, we dropped term for n = 0, which is identically zero, and used a well known expansion

series ex =
∑∞

n=0 x
−n/n!. Thus, the parameter ν in the distribution function in Eq. (1) is just

the mean value of distribution. Note that this justifies our assumption of the well defined

rate of events. Indeed, if we count events during a time period of duration T (e.g. two
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FIG. 1: Histogram of fractional occurrences of events and their continuous limit, the Poisson

distribution Pν(n) given by Eq. 1.

months in the above example), the rate of events r is obviously given by r = ν/T , which is

well defined number.

In reality, we do not know distribution parameter ν in advance, but we can obtain an

estimate for ν by counting events in a series of N time intervals of duration T , e.g. [0, T ],

[T, 2T ], ..., [(N − 1)T,NT ]. Suppose, we obtained a series of N results n1, n2, .., nN .

Obviously, the mean value if 〈n〉N =
∑N

i=1 ni. Again, according to the principle of maximum

likelihood, this number will be our best estimate of the parameter ν (and, therefore, the rate

of the events) providing that the random occurrence of events is governed by the Poisson

distribution.

Once again, I’d like to emphasize that distribution Pν(n) is the limiting distribution. In

the example of measurements given above, you can calculate the fractional occurrences ρn

of n events in an interval for every integer number n = 0, 1, .. by counting how many times

number n occurs in your experimental set n1, n2, .., nN , and divide it by N . Obviously,
∑∞

n=0 ρn = 1. If you plot ρn as a function of n in the form of a histogram, you might

obtain something like depicted in Fig. 1. If you do counting for a very large number of time

intervals, ideally N → ∞, you expect to become closer and closer to distribution Pν(n), see

dashed segmented line in Fig. 1. Note that this line is a schematic depiction of distribution,

which is defined only for discrete (integer) values!
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Next, lets find the dispersion σ2 of the distribution (1). By definition, we have

σ2 =
∞
∑

n=0

(n− ν)2Pν(n) =
∞
∑

n=0

n2Pν(n)− ν2 = 〈n2〉 − ν2. (4)

To find the mean value of n2, let’s instead consider mean value of n(n− 1). We have

〈n(n− 1)〉 =
∞
∑

n=0

n(n− 1)
νne−ν

n!
= e−νν2

∞
∑

n=2

ν(n−2)

(n− 2)!
= ν2. (5)

Thus, we have 〈n2〉 = ν2 + ν, therefore σ2 = ν. In other words, the Standard Deviation

of the Poisson distribution is equal to
√
ν. This is very famous result known as a ”square-

root rule”, and it will be used in the following discussions. Also, note that the Poisson

distribution is completely defined by its mean value ν, which also gives the dispersion of the

distribution.

Note that although the distribution Pν(n) is defined for the integer values n, the mean

value is not necessary an integer number. It can as well be much smaller than 1, that is

〈n〉 << 1. Indeed, an event can have such a slow rate that it’s rarely observed during let’s

say a ten-minute interval. Sometimes we’ll be lucky to observe one (or may be even two!)

event, but most of the time we will not see it if we repeat observations many times. Of

cause, the mean value of events per ten-minute interval will be much less than 1.

Finally, I’d like to warn against some common misuses of the above results. The first

example is concerned with the estimation of a physical quantity that contains the number of

events in its definition. For example, suppose we would like to estimate experimentally the

rate of a certain process, for example the emission of α-particles by a radioactive sample.

Then, we count number of events due to this process, for example number n of clicks of

the Geiger counter brought close to the sample, during a time period T . As a result of this

single measurement, we can conclude that the average number of events during this time

period is n, therefore the average rate is r = n/T . Now, how do we estimate the error

of our result? We can assume that the events are governed by the Poisson distribution,

therefore the Standard Deviation of out result for n is given by
√
n, and from the equation

for propagation of errors we conclude that the error of our result for r is
√
n/T . Note that it

would be completely wrong to apply the ”rule of square root” directly to r, that is say that

our error is
√
r. Remember that the Poisson distribution is defined only for integer numbers,

while the physical quantity r can be any number.
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As a second example, consider that we would like to improve the above result and carried

out counting of clicks during N consecutive time intervals, each of duration T . Obviously,

our best estimate for the radioactive decay rate r becomes 〈n〉/T . What is the estimated

error of our result? From the discussion given in the Handout 1 it is clear that the error in

〈n〉 is given by the Standard Deviation of the Mean, thus the estimated error of our result

is given by SDM/T . Not that it will be completely wrong to estimate our error in 〈n〉
as

√

〈n〉. Indeed, as mentioned above the mean value of n can as well be less than 1, in

which case
√

〈n〉 will be larger than 1. And it would be a nonsense to state your result as

〈n〉/T ±
√

〈n〉/T because your result for the decay rate becomes negative within the error

bars! It is easy to see that the SDM in the above example will be always less than or equal

to 〈n〉.

B. Basic idea of the Chi-Squared test

As has been repeated many times, we would be never able to determine the parameters

of the limiting distribution (for example X and σ for the normal distribution, or ν for

the Poisson distribution) exactly because that would require to repeat our measurements

infinite number of times, N → ∞. Instead, we assume that our measured random quantity

obeys a particular distribution, and use the principle of maximum likelihood to find our best

estimates (and corresponding errors) for these parameters. However, we might not be sure

that our quantity indeed obeys this distribution. In this case, it is desirable to establish some

procedure and criteria to judge if the measured quantity indeed obeys this distribution, and

this procedure should be based on the available experimental data. This procedure is called

the χ2-test (Chi-Squared).

Suppose we performed N measurements of a physical quantity x (either continuous or

discrete) and obtained a series of results x1, x2, .., xN . We suspect that spread of these

results is due to some random processes and obey the Gaussian distribution ρG(x). We

can plot the histogram of fractional occurrence ρk, like we discussed in the Handout 1, and

visually compare it with ρG(x). However, we desire some quantitative comparison between

the two. Well, let’s divide the whole range of all possible x into a number of ”bins” such

that each bin contains a significant number of measured results xi. Next, let’s calculate

the number of measured values xi that fall into k-th bin and call this number Ok (observed
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FIG. 2: Example of division into bins for χ2-test of the Gauss distribution.

number). Typically, for the χ2-test the number of bins should not be very larger, certainly

much less than we needed in Handout 1 to visualize the distribution . For example, in case

of the Gauss distribution, it is reasonable to use K = 4 bins, which divide the range of

all possible x into four intervals [−∞, X − σ], [X − σ,X], [X,X + σ], and [X + σ,∞], see

Fig. 2. For each interval, we can calculate the probability Pk that the result of a single

measured will fall into this interval. Thus, if we are dealing with N measurements, we can

calculate the expected number Ek of measurements that fall into the k-th interval as N ×Pk.

Obviously, if our quantity indeed obeys the Gauss distribution, the observed numbers Ok

should be close to the expected numbers Ek. How close?

To answer this question, let’s ask ourselves what do we expect if we repeat the procedure

of making N measurements many times, and count Ok for each bin for all these repeated

procedures. Naturally, we expect that different 0k for the same bin will fluctuate around the

”true” value Ek with a standard deviation given by the ”square-root rule” as
√
Ek. Thus,

we expect that the absolute value of the difference Ok − Ek should not be very different

from 1, providing that distribution of x is indeed described by ρG(x). Thus, we introduce

the quantity χ2 as

χ2 =
K
∑

k=1

(Ok − Ek)
2

Ek

, (6)

and state that our assumption that the distribution of x obeys ρG(x) is valid if χ2 ≈ K,

where K is the number of chosen bins. This statement formulates the χ2-test.
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C. Degrees of freedom, reduced χ2 and probabilities of χ2

Now, let us refine the above definition. Note that in order to calculate the probabilities

Pk, where k = 1, 2, .., K, we need to know the parameters of the distribution, which actually

are never known a priori. What can we do? Well, again we can find our best estimates

of these parameters from our experimental data using the principle of maximum likelihood.

For example, we can approximate the parameters X and σ for the Gauss distribution by

the mean value 〈x〉N and standard deviation SD calculated from our N measurements.

Then, we can calculate probabilities Pk and, therefore, χ2. However, note that by using

our measurement results in calculating Ek, we introduce some constraints in our test for the

”true” distribution. In the above example, we introduce C = 3 constrains: the number of

measurements N , the estimation of X as the mean value 〈x〉, and the estimation of σ as the

SD. Correspondingly, we define the number of degrees of freedom as D = K − C, and the

reduced χ2 as

χ̃2 =
χ2

D
, (7)

and formulate our criteria for validity of the distribution as χ̃2 ≈ 1.

From the above it is clear that the number of beans has to be at least larger than the

number of constrains. For example, in the above example of Fig. 2 we have D = 4− 3 = 1.

Suppose now that we calculated the reduced Chi-Squared and obtained χ̃2 ≈ 1.5. Is it

sufficiently close to 1 to consider this validity test as positive? What we can do is to use the

Gauss distribution and calculate the probability Pχ̃2≥1.5 that the value of χ̃2 is larger than

or equal to 1.5. If this probability is small, lets say below 1%, we can say that based on our

data it is unlikely that distribution of our quantity is goverened by the Gauss distribution.

If it is let’s say about 25%, we can assume that it is quite reasonable that our distribution

is indeed the Gauss distribution. Usually, we define a significance level (e.g. 5% significance

level) and compare the result for probablity of χ̃2 with this number. If it is larger than the

significance level, we say that we accept the assumption of validity at this significance level.

Otherwise, we reject the asumption at this significance level.

The calculated probabilities Pχ̃2≥A depend on D and are usually stated in tables. For

example, a typical table states numbers for Pχ̃2≥A for D = 1, 2, ..., and some discrete

values of A. Usually these tables are calculated for the Gauss distribution, but also are
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very reasonably account for other distributions, which can be approximated by the Gauss

distribution. For example, for values of ν > 8 the Poisson distribution is very closely

described by Gauss distribution with X = ν and σ =
√
ν, as you can check numerically

yourself.
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