
Bonus lectures

By majority vote, apart from some sections that we did not discuss in detail in
lecture 4 (section 7 and appendix C), the topic in the bonus lectures is generalized
near-horizon symmetries in 4d. Physically, the motivation is to allow gravitational
waves to interact with a black hole and determine how this affects the near-horizon
symmetry analysis we did in lecture 6.

1 Kerr geometry and near-bifurcation expansion

For once, we are interested in black holes that actually exist, i.e., Kerr black holes.
The Kerr metric in Boyer–Lindquist coordinates

ds2 = −∆

ρ2

(
dt−a sin2 θ dϕ

)2
+
ρ2

∆
dr2 +ρ2 dθ2 +

(r2 + a2)2 sin2 θ

ρ2

(
dϕ− a

r2 + a2
dt
)2

with
∆ = r2 − 2Mr + a2 ρ2 = r2 + a2 cos2 θ (1)

depends parametrically on mass M and angular momentum J = Ma. The angular
coordinates (also called “angular part”) are the usual polar angle θ ∈ [0, π] and the
azimuthal angle ϕ ∼ ϕ + 2π. The time and radial coordinates (also referred to as
“spacetime part”) are non-compact, t ∈ (−∞, ∞) and r ∈ [0, ∞).

The inner and outer horizon radii r± are respectively the smaller and bigger
roots of ∆ = 0,

r± = M ±
√
M2 − a2 . (2)

The loci r = r± are bifurcate Killing horizons with a bifurcation 2-sphere B. The
outer one is simultaneously a black hole event horizon and will be our main region
of interest. Surface gravity at the black hole horizon is given by

κ =
r+ − r−

2(r+ + r−)r+
. (3)

Since Boyer–Lindquist coordinates are not well-adapted to near-horizon expansions
we introduce new coordinates below, following closely 2002.08346.

1.1 Near horizon coordinates

For near-horizon analyses various coordinate choices have been used in the liter-
ature, e.g., Eddington–Finkelstein (EF) types of coordinates, conformal types of
coordinates, and Rindler coordinates. Of course, there is also the venerable set of
Kruskal coordinates or simplifications thereof. Each of these has its own merits and
drawbacks. For our purpose, the most striking difference between various choices is
the way the horizon is approached and whether or not the bifurcation 2-sphere can
be covered. We found none of these coordinate systems suitable for our purposes.

Thus, we introduce a Kruskal–Israel-inspired coordinate system well-adapted to
study not only the black hole horizon but specifically the region near the bifurcation
2-sphere. The main features of our coordinates are

• co-rotation with the horizon (as opposed to Kruskal- or Israel-coordinates)

• no mixing of angular and spacetime coordinates (as opposed to HHPS)

• cover open region around the bifurcation 2-sphere (as opposed to EF or
Rindler)

We describe now explicitly the new coordinates, starting with the angular part.
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Since we are interested in an expansion around the outer horizon, r ∼ r+, it is
useful to transform the azimuthal angle so that our coordinate frame is co-rotating
with the outer horizon

φ = ϕ− ΩH t ΩH =
a

r2
+ + a2

. (4)

As we are content with the polar angle θ we do not transform it.
We address now the spacetime part. We introduce Kruskal–Israel-like coordi-

nates that we denote by x±, defined by

x+ = ±

√∣∣∣∣ r − r+

r+ − r−

∣∣∣∣ eκt x− = ±

√∣∣∣∣ r − r+

r+ − r−

∣∣∣∣ e−κt (5)

the inverse of which is

t =
1

2κ
ln

∣∣∣∣x+

x−

∣∣∣∣ r = r+ − (r+ − r−)x+x− (6)

and hence

∆ = (r+−r−)2x+x−(x+x−−1) ρ2 = (r+−(r+−r−)x+x−)2+r+r− cos2 θ . (7)

In this coordinate system x± ∈ R. The signs in (5) are fixed as follows. As in the
usual Kruskal coordinates, the outside region corresponds to x+ > 0, x− < 0, the
black hole region to x± > 0, the white hole region to x± < 0, and the second outside
region to x+ < 0, x− > 0. The locus x+x− = 0 describes the bifurcate black hole
horizon and x+ = x− = 0 the bifurcation 2-sphere B. The inner (Cauchy) horizon
corresponds to x+x− = 1 and our coordinates break down on it. Thus, the only
restriction on the range of the coordinates x± is that their product is smaller than
unity, x+x− < 1.

In these new coordinates, the Kerr black hole is described by metrics of the form

ds2 = ρ2 dθ2−ρ2 (x− dx+ + x+ dx−)2

x+x−(1− x+x−)
+

sin2 θ

ρ2

(
a
(
x+ dx−−x− dx+

)(
2r+−(r+−r−)x+x−

)
+
(
r2
+(1− x+x−)2 + r2

−(x+x−)2 + r+r−(1 + 2x+x−(1− x+x−))
)

dφ
)2

+
1− x+x−

ρ2 x+x−

(
ρ2

+

(
x− dx+ − x+ dx−

)
− a sin2 θ (r+ − r−)x+x− dφ

)2

(8)

with a =
√
r+r− and ρ2

+ = r+(r+ + r− cos2 θ). In the extremal case, r+ = r− > 0,
the metric (8) simplifies to the near-horizon extremal Kerr (NHEK) geometry

ds2
NHEK = r2

+ (1+cos2 θ)
(
− (x− dx+ + x+ dx−)2

x+x−(1− x+x−)
+

(x− dx+ − x+ dx−)2(1− x+x−)

x+x−

+ dθ2 +
4 sin2 θ

(1 + cos2 θ)2

(
dφ− x− dx+ + x+ dx−

)2)
(9)

The reason why we obtain NHEK rather than extremal Kerr is that the coordinate
transformation (6) is singular in the extremal case and zooms into the region r = r+

for any finite values of x±. So, our coordinate system captures generic and near-
extremal cases. For convenience, we collect the ranges of the coordinates: x± ∈ R,
x+x− < 1, θ ∈ [0, π] and φ ∼ φ+ 2π.

In our new coordinates (8), the Kerr Killing vectors read

ζH = κ
(
x+∂+ − x−∂−

)
ζφ = ∂φ . (10)

Consistently, ζH is null at the bifurcate horizon x+x− = 0 and vanishes at the
bifurcation 2-sphere B.
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1.2 Fall-off conditions

To motivate our first attempt at 4d fall-off conditions, we expand the Kerr metric
(8) near the bifurcation surface B at x± = 0,

ds2 = −4ρ2
+ dx+ dx− − 8Ma

(
r2
+

ρ2
+

+ κr+

)
sin2 θ

(
x− dx+ − x+ dx−

)
dφ+ · · · (11)

where the ellipsis denotes the induced metric on B and higher order terms in x±.
In this expansion, we assume x± to be small and of the same order.

Suggested by the expansion (11), we postulate near-bifurcation fall-off conditions

g±± = O(x2) g±A = x∓C±A (xB) +O(x3) (12a)

g+− = η(xB) +O(x2) gAB = ΩAB(xC) +O(x2) (12b)

where xA = (θ, φ) denote the coordinates on B. To avoid clutter we use O(xn) as
a shorthand for O((x±)n). The near-bifurcation expansion functions, ΩAB , CA, η,
are not constrained by the Einstein field equations to leading order. The fall-off con-
ditions (12) are the most general ones (subject to Taylor-expandability) preserving
the bifurcation 2-sphere at x± = 0.

1.3 Near bifurcation Killing vectors

The diffeomorphisms that keep the near-bifurcation expansion (12) intact are gen-
erated by “near-bifurcation Killing vectors” given by

ξ± = ±x±T±(xA) +O(x3) ξA = Y A(xB) +O(x2) . (13)

Under a transformation generated by near-bifurcation Killing vector fields (13), the
leading order metric functions transform as

δξη = Y A∂Aη +
(
T+ − T−

)
η (14a)

δξC
±
A = Y B∂BC

±
A + C±B∂AY

B +
(
T+ − T−

)
C±A ∓ η∂AT

∓ (14b)

δξΩAB = Y C∂CΩAB + ΩAC∂BY
C + ΩBC∂AY

C (14c)

1.4 Near-bifurcation Killing vector algebra

The near-bifurcation Killing vector fields (13) satisfy the Lie bracket algebra[
ξ(T+

1 , T
−
1 , Y

A
1 ), ξ(T+

2 , T
−
2 , Y

A
2 )
]

= ξ(T+
12, T

−
12, Y

A
12) (15)

where

T±12 = Y A1 ∂AT
±
2 − Y A2 ∂AT

±
1 Y A12 = Y B1 ∂BY

A
2 − Y B2 ∂BY

A
1 . (16)

The generators T±, Y A are functions on B. As (16) shows, Y A generate general
2d diffeomrphisms on B. The T± transform as scalars under 2d diffeomorphisms
while commuting among themselves and with each other. Thus, the T± generate
so-called supertranslations.

For simplicity, we impose a further restriction on the metric, namely conformal-
ity to the round S2 of the codimension-two metric ΩAB ,

ΩAB dxA dxB = Ω γAB dxA dxB = Ω
4 dz dz̄

(1 + z z̄)2
. (17)

The assumption (17) allows us to work with a single function Ω instead of ΩAB . At
the level of diffeos, this amounts to working with a subclass of the Y A generating
Weyl rescalings of B, i.e., we are restricting to superrotations rather than diff(S2).
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In the coordinates z, z̄ defined in (17) the generators expand as

T ±n,m := ±znz̄mx±∂± ξ±∂± =
∑
n,m∈Z

τ±nmT ±n,m (18a)

Ln := −zn+1∂z , L̄n = −z̄n+1∂z̄ Y A(xB)∂A =
∑
n∈Z

(
YnLn + ȲnL̄n

)
(18b)

where τ±nm, Yn and Ȳn are arbitrary numbers.
In the basis spanned by Ln, L̄n, T ±n,m the algebra (15) takes the form

[Ln,Lm] = (n−m)Ln+m [L̄n, L̄m] = (n−m)L̄n+m (19a)

[Lk, T ±n,m] = −n T ±n+k,m [L̄k, T ±n,m] = −m T ±n,m+k (19b)

[Ln, L̄m] = 0 [T ±n,m, T ±k,l] = 0 = [T +
n,m, T −k,l] . (19c)

The algebra (19a) consists of a Witt ⊕ Witt algebra (the “superrotation part”),
generated by Ln, L̄m, and two towers of supertranslations generated by T ±n,m. This
algebra closely resembles the DGGP algebra, but we have two copies of supertrans-
lations instead of one copy there.

1.5 Conserved charges and their algebra

If the charge is integrable, then the fundamental theorem of the covariant phase
space method (see lecture 2) states

δξ2Qξ1 = {Qξ1 , Qξ2} = Q[ξ1,ξ2] +K(ξ1, ξ2) (20)

where the bracket is defined by the first equality and K(ξ1, ξ2) is a central extension.
In the present case, the metric g + δg is given by the near-bifurcation fall-off

(12), the symmetry generators by the near-bifurcation Killing vectors (13), and the
theory is general relativity. The action-based covariant phase space method yields

/δQξ =
1

8πG

∮
B

d2xµν
√
−g
(
hλ[µ∇λξν]−ξλ∇[µh

ν]
λ −

1

2
h∇[µξν]+ξ[µ∇λhν]λ−ξ[µ∇ν]h

)
where hµν = δgµν is a metric variation allowed by the near-bifurcation fall-off (12).

Assuming that the generators T±, Y A are field-independent, the charges are
integrable and independent from the difference T+ − T−,

Q(T, Y A) ≡
∫
B

d2x
(
T P + Y A JA

)
(21)

with T = (T+ + T−)/2 and the charge densities

P =
Ω

8πG
JA = − Ω

16πG

C+
A − C

−
A

η
. (22)

Since there are fewer charges in (22) than functions parametrizing our phase space,
η, Ω, C±A , there is a redundancy in our phase space.

Let us now return to the general result for the charges (21) and derive the algebra
generated by them, using (20). The transformation laws (14) yield

δξP = Y A∂AP + P∂AY A (23a)

δξJA = Y B∂BJA + JB∂AY B + JA∂BY B + P∂AT (23b)

which is the usual transformation behavior of scalar- and vector-densities of weight
one under 2d diffeos generated by Y A. The algebra above coincides with the DGGP
algebra, which notably features no central extension.

Thus, the near-bifurcation boundary conditions recover known results (for more
details, see 2002.08346). In particular, it is impossible for gravitational waves to be
absorbed or emitted by black holes that obey near-bifurcation boundary conditions,
so they are not good enough for our purposes. We wasted 4 pages on this statement!
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2 Near null boundary expansion

We want to describe physical processes of gravitational wave absorption through
some null hypersurface (which initially might coincide with an isolated horizon of a
black hole). We follow closely 2110.04218, see also refs. therein.

Let N be a given smooth codimension-one null hypersurface in a D dimensional
spacetime of signature (−,+, . . . ,+). In a neighborhood of any such hypersurface,
one can adopt Gaussian null-type coordinates that we set up as follows. Let v be
the advanced time coordinate along the null hypersurface such that the null surface
is defined by

gµν ∂µv ∂νv = 0 . (24)

We take the null surface N to be localized at vanishing affine parameter, r = 0, as
depicted in Fig. 1. The null surface N is assumed to have the topology Rv n Nv,
where Nv is the D − 2 dimensional constant-v subspace on N spanned by xA. We
refer to Nv as transverse surface.

v

infalling
null rays

r
=
0

N

r > 0

r < 0

Figure 1: Section of null hypersurface N at r = 0 in rv-plane. Infalling null rays
traverse N at different values of advanced time v. Each point on the red line
corresponds to a transverse surface Nv.

In these adapted coordinates, inverse metric and metric have the following van-
ishing components

gvv = gvA = grr = grA = 0 . (25)

The line-element

ds2 = −V dv2 + 2η dv dr + gAB
(
dxA + UA dv

) (
dxB + UB dv

)
(26)

depends on generic functions of all coordinates, V,UA, gAB , as well as on the func-
tion η = η(v, xA)> 0. (Geodecity, k · ∇k = 0, implies ∂rη = 0.)

We assume that the locus of the null surface, r = 0, is not singular and that the
metric coefficients admit a Taylor series expansion in powers of r around r = 0.

V = 2
(
ηκ−Dvη

)
r+. . . UA = UA− η

Ω
ΥAr+. . . gAB = ΩAB−2ηλAB r+. . . (27)

where all functions depend on v, xA, the ellipses denote O(r2) terms, and

Ω :=
√

det ΩAB ΩAB = Ω2/(D−2)γAB det γAB = 1 (28)

where γAB is an arbitrary unimodular matrix. We defined Dv := ∂v −LU . To have
a non-degenerate volume form,

√
− det gµν |r=0 = ηΩ, we assume Ω, η > 0. The

function η yields the volume of the spacetime part of the metric.
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3 Null boundary symmetries

We analyze the diffeomorphisms that preserve our null boundary structure and then
determine their algebra.

3.1 Null boundary preserving diffeomorphisms

Diffeomorphisms generated by the vector field

ξ = T ∂v +
(
r(DvT −W )− r2 η

2

(ΥA

Ω
− ∂Aη

η

)
∂AT +O(r3)

)
∂r

+
(
Y A − rη∂AT−r2η2λAB∂BT +O(r3)

)
∂A (29)

keep r = 0 as a null surface, where T = T (v, xA), W = W (v, xA) and Y A =
Y A(v, xA) are the symmetry generators.

3.2 Algebra of null boundary symmetries

Using the adjusted Lie bracket (see lecture 5) we have

[ξ(T1,W1, Y
A
1 ), ξ(T2,W2, Y

A
2 )]adj. bracket = ξ(T12,W12, Y

A
12) (30)

where

T12 =
(
T1∂v + Y A1 ∂A

)
T2 − (1↔ 2), (31a)

W12 =
(
T1∂v + Y A1 ∂A

)
W2 − (1↔ 2), (31b)

Y B12 =
(
T1∂v + Y A1 ∂A

)
Y B2 − (1↔ 2). (31c)

The above algebra is Diff(N ) A Weyl(N ), where Diff(N ) is generated by T, Y A and
Weyl(N ) which denotes the Weyl scaling on N , is generated by W . We refer to it
as null boundary symmetry algebra.

Note that the null boundary symmetry algebra is considerably larger than the
near-bifurcation symmetry algebra (15), since the functions in the latter depended
only on coordinates on the bifurcation 2-sphere, whereas here all functions depend
additionally on the null time v. This additional v-dependence is necessary if we
want to capture time-dependent processes such as gravitational wave absorption.

The null boundary symmetry algebra Diff(N ) A Weyl(N ) has several interesting
subalgebras. If we turn off Y A and W sectors, the generator T forms a Witt
algebra (diffeomorphisms along v direction) but with an arbitrary dependence in
xA. Turning off T,W sectors, Y A generate diffeomorphisms of the transverse surface
Nv. Nonetheless, one should note that these diffeomorphisms have arbitrary v
dependence. A class of subalgebras arises from the fact that our generators are
generic functions of v. If the v direction has no special points, one may Taylor-
expand the generators around any given point v0 and keep terms up to the order that
still close the algebra. As an example, consider the subalgebra obtained through
the following truncation

T = t0 + t1v + t2v
2 W = w0 Y A = yA0 (32)

where t0, t1, t2;w0, y
A
0 are only function of xA. The ti form an sl(2,R) algebra

and w0 an abelian u(1) algebra, Weyl(Nv). This subalgebra is hence (Diff(Nv) A
sl(2,R)Nv

)A Weyl(Nv).
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4 Surface charge analysis

The surface charge variation associated with a symmetry generator ξ

/δQξ :=

∮
∂Σ

Qµνξ dxµν (33)

expands in Einstein gravity as

Qµνξ =

√
−g

8πG

(
hλ[µ∇λξν] − ξλ∇[µh

ν]
λ −

1

2
h∇[µξν] + ξ[µ∇λhν]λ − ξ[µ∇ν]h

)
(34)

where hµν = δgµν , h = gµνδgµν , and ∂Σ corresponds to the transverse surface Nv.
Plugging (26) and (29) into (33), yields the surface charge variation

/δQξ =
1

16πG

∫
Nv

(
WδΩ + Y AδΥA + T/δA

)
(35)

with (see appendix for various definitions)

/δA = −2Ω δΘl + ΩΘl
δη

η
− Γ δΩ + UA δΥA − ΩNAB δΩAB . (36)

The notation /δ is used to stress that the charge variation is not necessarily integrable
in field space. Tackling the question of whether or not the charges are integrable
requires specifying which combinations of the symmetry generators are taken to be
field-independent, which amounts to a choice of slicing of the phase space.

Only after a slicing is specified one can state whether or not the charges are
integrable for this particular slicing. This implies that integrability of the charges is
not solely a property of the bulk theory or the boundary conditions, but additionally
may depend on the choice of how to slice the phase space.

Physically, non-integrable charges are typically related to a non-vanishing flux
through the boundary. Generally, /δQ is non-integrable over our null boundary
solution space since we allow fluxes through the boundary N . This feature prevents
us from working with the Poisson bracket of the charges. We use instead the
modified bracket (MB) proposed by Barnich and Troessaert,

δξ2Q
I
ξ1 :=

{
QI
ξ1 , Q

I
ξ2

}
MB
−Fξ2(δξ1g) (37a){

QI
ξ1 , Q

I
ξ2

}
MB

= QI
[ξ1,ξ2]adj. bracket

+Kξ1,ξ2 (37b)

where Kξ1,ξ2 is the central term, QI
ξ the integrable part of the charges and Fξ(δg)

the non-integrable part, /δQξ = δQI
ξ + Fξ(δg). The flux term is not necessarily

antisymmetric Fξ2(δξ1g) 6= −Fξ1(δξ2g), which we shall see in examples below.
The split into integrable and non-integrable parts is ambiguous

QI
ξ → Q̃I

ξ = QI
ξ +Aξ(g) Fξ(δg)→ F̃ξ(δg) = Fξ(δg)− δAξ(g) (38)

and leads to a shift-ambiguity in the central term Kξ1,ξ2 ,

Kξ1,ξ2 → K̃ξ1,ξ2 = Kξ1,ξ2 + δξ2Aξ1(g)− δξ1Aξ2(g)−A[ξ1, ξ2](g) (39)

To partially fix this ambiguity, we require the central term to be state-independent.
An important aspect is that the integrability of the charges and the presence

or absence of fluxes depends on the slicing. In the following, to shed light on this
issue, we discuss two classes of slicings.

The first one, studied in section 4.1, is dubbed “thermodynamic slicing”. In this
slicing, W,T, Y A are state-independent (δW = δT = δY A = 0). The second one is
a specific “genuine slicing”. By this, we mean any slicing in which the charges are
integrable in the absence of bulk fluxes through the boundary, i.e., when there is
no physical radiation through the boundary.
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4.1 Thermodynamical slicing

The thermodynamic slicing is defined by state-independence of W,T, Y A in the
vector field (29), δW = δT = δY A = 0.

Applying the MB method discussed above and separating the integrable and
flux parts, /δQξ = δQI

ξ + Fξ(δg), yields the integrable part

QI
ξ =

1

16πG

∫
Nv

(
W Ω + Y A ΥA + T (−ΓΩ + UAΥA)

)
(40)

and the flux

Fξ(δg; g) =
1

16πG

∫
Nv

T
(

ΩΘl
δη

η
− 2ΩδΘl + ΩδΓ−ΥAδUA︸ ︷︷ ︸

fake news

−ΩNABδΩAB︸ ︷︷ ︸
news

)
.

(41)
Straightforward but long computations show that the integrable part of the charges
(40) satisfy the same algebra as the symmetry generators (30), (31), i.e. Diff(N ) A
Weyl(N ). In particular, there is no central extension. Explicitly, if we denote the
charges associated with the symmetry generators ξ(T, 0, 0), ξ(0,W, 0) and ξ(0, 0, Y A)
by T (T ),W(W ) and J (Y A), respectively, then the MB bracket algebra reads

{T (T1),T (T2)}
MB

= T (T1∂vT2 − T2∂vT1), (42a)

{J (Y A1 ),J (Y B2 )}MB = J (Y A1 ∂AY
B
2 − Y A2 ∂AY

B
1 ), (42b)

{T (T ),J (Y A)}
MB

= −T (Y A∂AT ) + J (T∂vY
A), (42c)

{W(W1),W(W2)}
MB

= 0, (42d)

{T (T ),W(W )}
MB

= W(T∂vW ), (42e)

{W(W ),J (Y A)}MB = −W(Y A∂AW ) . (42f)

Consistently, in the absence of flux of bulk gravitons, NAB = 0, and in a co-
rotating frame, UA = 0, we recover the results of the first section.

4.2 Genuine and Heisenberg slicing

The expression of the flux in the thermodynamic slicing (41) is non-zero even in
the absence of a graviton flux encoded in the news tensor NAB (see appendix for
its definition). This flux depends on the slicing, and one would expect that there
should exist genuine slicings such that the flux is manifestly zero for vanishing
genuine news, by which we mean NAB = 0.

Direct-sum genuine slicings. Starting from the thermodynamic slicing, con-
sider a one-parameter family change of slicings

W̃ = W − ΓT −
(
Y A + TUA

)
∇̄AP, (43a)

T̃ (s) = e−sPΩΘlT + e−sP∇̄A(Ω(Y A + TUA)) (43b)

Ỹ A = Y A + TUA (43c)

where s is a real number and P := ln(η/Θ2
l ). The change of slicing (43) takes the

original symmetry generators to a linear combination thereof, with coefficients that
depend on the fields on the solution space and their derivatives. The change of
slicing then amounts to taking δW̃ = δT̃ (s) = 0 = δỸ A. Therefore, the original
symmetry generators, W,T, Y A, have non-zero variations in the new slicing, dictated
by the requirement of new tilde-generators to have vanishing variations over the
solution space. As a result, the charges transform to a certain (in general non-
linear) combination of the original charges.
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The charge variation can be written as /δQξ = δQ̃I
ξ + F̃ξ(δg), with the integrable

part

Q̃I
ξ =

1

16πG

∫
Nv

(
W̃Ω + Ỹ AJA + T̃ (s)P(s)

)
(44)

and the flux

F̃ξ(δg) = − 1

16πG

∫
Nv

[
esP T̃ (s) − ∇̄C(ΩỸ C)

]
Θ−1
l NAB δΩAB (45)

where

JA = ΥA + ∇̄A(ΩP) , P(s) =

{
1
s e

sP = 1
s

(
η

Θ2
l

)s
if s 6= 0

P if s = 0 .
(46)

We call Ω,P(s),JA, respectively, entropy aspect, expansion aspect, and angular
momentum aspect. The expressions above make manifest that the flux proportional
to the traceless news tensor NAB is not integrable and vanishes if there is no genuine
news, NAB = 0. Therefore, this slicing is in the family of genuine slicings.

Using the MB, the charge algebra is

{Ω(v, x),Ω(v, x′)} = 0 (47a)

{P(s)(v, x),P(s′)(v, x
′)} = 0 (47b)

{Ω(v, x),P(s)(v, x
′)} = 16πG

(
sP(s)(v, x) + δs,0

)
δD−2 (x− x′) (47c)

{JA(v, x),JB(v, x′)} = 16πG (JA(v, x′)∂B − JB(v, x)∂′A) δD−2 (x− x′) (47d)

{JA(v, x),Ω(v, x′)} = {JA(v, x),P(s)(v, x
′)} = 0 . (47e)

This algebra is the direct sum C(s)
2 ⊕ Diff(Nv), where C(s)

2 is generated by the
Ω(v, x),P(s)(v, x)-towers of charges and Diff(Nv) by JA(v, x). We call this slicing a
direct-sum genuine slicing.

Heisenberg slicing. For s = 0 case the charge algebra (47) takes a simple form
of Heisenberg ⊕ Diff(Nv). The Heisenberg slicing is a fundamental slicing since the
other genuine slicings in the s-family (and many others) may be constructed from
it. Due to its importance as an algebraic building block, we display the charges

Q̃I
ξ =

1

16πG

∫
Nv

(
W̃Ω + Ỹ AJA + T̃P

)
, (48)

and flux

F̃ξ(δg) = − 1

16πG

∫
Nv

[
T̃ − ∇̄C(ΩỸ C)

]
Θ−1
l NAB δΩAB (49)

where T̃ = T̃ (0). The associated transformation laws

δξΩ = T̃ (50a)

δξP ≈ −W̃ +
2T

Θl
NABN

AB (50b)

δξJA ≈ LỸ JA − 2∇̄B(ΩTNAB) + 2∇̄A(ΩTΘ−1
l NBCN

BC) (50c)

yield the charge algebra

{Ω(v, x),Ω(v, x′)} = {P(v, x),P(v, x′)} = 0 (51a)

{Ω(v, x),P(v, x′)} = 16πGδD−2 (x− x′) (51b)

{JA(v, x),Ω(v, x′)} = {JA(v, x),P(v, x′)} = 0 (51c)

{JA(v, x),JB(v, x′)} = 16πG (JA(v, x′)∂B − JB(v, x)∂′A) δD−2 (x− x′) . (51d)

The brackets in the first two lines above justify the name Heisenberg slicing.
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5 Null surface balance equation

In the presence of flux, surface charges are not integrable. Moreover, non-integrability
and the presence of flux are closely related to the charge non-conservation. While
integrability is slicing-dependent, as discussed, there are genuine slicings for which
the flux is proportional to the genuine news NAB associated with infalling gravi-
tons. Conservation, too, depends on the choice of phase space slicing. The relation
between charge integrability and conservation is captured by the generalized con-
servation equation, which in the more standard null infinity analyses is called the
“flux balance equation”. In this section, we briefly discuss the null surface balance
equation for the thermodynamic and the Heisenberg slicings.

5.1 Balance equation in thermodynamic slicing

For the thermodynamic slicing, the generator of translations along the advanced
time ∂v is among the symmetry generators ∂v = ξ(T = 1,W = 0, Y A = 0). The
associated integrable part of the charge (40) and the flux (41)

Hv := QI
∂v=

1

16πG

∫
Nv

(
−ΓΩ + UAΥA

)
(52a)

F∂v (δg; g) =
1

16πG

∫
Nv

(
−2ΩδΘl+ΩΘl

δη

η
+ΩδΓ−ΥAδUA−ΩNABδΩAB

)
(52b)

obey the null surface energy balance equation

d

dv
Hv ≈ −F∂v (δ∂vg) (53)

where ≈ denotes on-shell equality and F∂v (δ∂vg) := F∂v (δξg; g)|ξ=∂v . This flux
receives two contributions, one from the bulk modes, the NABN

AB term in F , and
the other from boundary modes. The latter is essentially a reflection of the fact
that in the thermodynamic slicing, the coordinate system adopted (26) corresponds
to a non-inertial frame for the boundary dynamics. As viewed by the observer
adopting the coordinate system v, r, xA, the quantity Hv = Hv(v) is the boundary
Hamiltonian. Thus, a suggestive interpretation of (53) is that it describes an open
system, the Hamiltonian of which is time-dependent as a consequence of leakage.

Similarly, one may study the time variation of all other charges, in particular of
the zero mode charges, angular momentum, associated with the symmetry generator
∂A = ξ(T = 0,W = 0, Y A = 1),

JA := QI
∂A =

1

16πG

∫
Nv

ΥA F∂A(δg) = 0 (54a)

and entropy, associated with the symmetry generator −r∂r = ξ(T = 0,W =
1, Y A = 0),

S := 4πQI
−r∂r =

1

4G

∫
Nv

Ω F−r∂r (δg) = 0 . (54b)

Both obey null surface balance equations similar to (53).
The algebraic relations (42) imply

{Hv, Q
I
ξ}MB = QI

∂vξ {S, QI
ξ}MB = 0 (55)

and in particular

{Hv,S}MB = {Hv,JA}MB = {S,JA}MB = 0 . (56)
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As expected, Hv generates time translations. Moreover, the entropy S commutes
with all the charges. The zero mode charges Hv,S,JA mutually commute.

On can show that balance equations for zero-mode charges can be generalized
to all null boundary charges for generic symmetry generator ξ as

d

dv
QI
ξ = δ∂vQ

I
ξ +QI

∂vξ ≈ −F∂v (δξg) (57)

by virtue of (55), where we used the definition of the MB (37) and that F∂v (δξg) is
given by F∂v (δg, g) in (52) evaluated at δξg.

To derive (57), we have used that ∂v is among our field-independent symmetry
generators. The null surface balance equation (52) shows that the flux F∂v (δξg)
receives contributions from the genuine flux, the term proportional to NAB , as well
as from terms only involving boundary fields, referred to as fake flux. As for the
angular momentum, the latter is generically there because the v, xA coordinates do
not correspond to an inertial observer at the boundary.

A pictorial way to represent a physical process that can be described using the
flux balance equations above is shown in fig. 3 at the end of these lecture notes.

5.2 Balance equation in Heisenberg slicing

Unlike the thermodynamic slicing (56), the zero mode charges in the Heisenberg
slicing

H̃ := Q̃I
T̃=1

=
1

16πG

∫
Nv

P (58a)

S̃ := 4πQ̃I
W̃=1

=
1

4G

∫
Nv

Ω (58b)

J̃A := Q̃I
Ỹ A=1

=
1

16πG

∫
Nv

JA (58c)

do not commute with each other. Nor does the entropy generically commute with
the remaining charges,

{S̃, H̃} =
1

4G

∫
Nv

1 {S̃, J̃A} = {H̃, J̃A} = 0 . (59)

Notably, S̃ and H̃ are Heisenberg pairs with an effective ~ proportional to 1/G.
One can therefore change the entropy of the system by injecting a H̃-charge. Recall
that H̃ is the charge associated with the symmetry generator W̃ = 0 = Ỹ A and
T̃ = ΩΘlT = 1, but not with unit v-translations, so we do not refer to it as
energy. Moreover, there are no other local combinations of charges playing this
role. Thus, in the Heisenberg slicing the zero-mode charge H̃ should not be viewed
as a Hamiltonian, but rather as the Heisenberg conjugate of the entropy.

Since ∂v is not among the symmetry generators in the Heisenberg slicing, we do
not have a null surface balance equation like in thermodynamic slicing (57). The
zero-mode charge dynamics is given by

DvΩ = ΩΘl (60a)

DvP = Γ +
2NABN

AB

Θl
(60b)

DvJA = 2Ω∇̄A(Θ−1
l NBCN

BC)− 2Ω∇̄BNAB . (60c)
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A Details and news of null hypersurfaces

To decompose the bulk metric adapted to null hypersurfaces, it is standard to define
two null vector fields lµ, nµ (l2 = n2 = 0) such that l ·n = −1, lµ is outward pointing
and nµ inward pointing. In adapted coordinates the associated 1-forms read

l := lµ dxµ = −1

2
V dv + η dr n := nµ dxµ = −dv (61)

and the corresponding vector fields are given by

lµ∂µ = ∂v − UA∂A +
V

2η
∂r nµ∂µ = −1

η
∂r . (62)

From (62) we see that Dv := ∂v−LU is the Lie derivative along the vector l evaluated
on N . In terms of l, n, the induced codimension-two metric

qµν = gµν + lµnν + lνnµ qµν l
µ = qµνn

µ = 0 (63)

yields the line-element on N

ds2
N = ΩAB

(
dxA + UA dv

) (
dxB + UB dv

)
. (64)

As depicted in Fig. 2, ΩAB = ΩAB(v, xA) is the metric over Nv. The inverse of
the D − 2 dimensional metric ΩAB is denoted by ΩAB , ΩABΩBC = δAC , and A,B
indices are raised or lowered by them.

vxA

N
Nv

Figure 2: Codimension-one null boundary N has topology Rv n Nv. Transverse
surface Nv is (D − 2)-dimensional spacelike compact surface.

The deviation tensors,

Bl

µν :=
(
qαµq

β
ν∇βlα

)∣∣
r=0

Bn

µν :=
(
qαµq

β
ν∇βnα

)∣∣
r=0

(65)

provide a convenient parametrization. One can decompose them into trace (=ex-
pansion), symmetric trace-less (=shear) and anti-symmetric (=twist) parts

B
l

µν =
1

D − 2
Θl qµν +Nµν + ωl

µν Bn

µν =
1

D − 2
Θn qµν + Lµν + ωn

µν . (66)

One can show that the twists ωl
µν , ω

n
µν are zero, and the expansions on N are

Θl = (qµν∇µlν)
∣∣
r=0

=
DvΩ

Ω
=
∂vΩ

Ω
− ∇̄AUA Θn = (qµν∇µnν)

∣∣
r=0

= ΩABλAB

(67)
In the expression for charges, we often use a scalar defined as

Γ := −2κ+
2

D − 2
Θl +

Dvη
η

(68)

The shears are given by

NAB =
1

2
DvΩAB −

Θl

D − 2
ΩAB =

1

2
Ω

2
D−2DvγAB LAB = λAB −

Θn

D − 2
ΩAB

(69)
The quantity NAB is called news tensor, and its inverse reads NAB = − 1

2DvΩ
AB −

1
D−2ΘlΩ

AB . Note that NAB need not be small, i.e., we do not use a linearized
approximation here. For further details, see 2110.04218.
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gravitational
shockwave

Figure 3: Penrose diagram for shockwave entering black hole. Shaded oval denotes

absorption. Dashed orange (green) line is initial (final) horizon H+ (H̃+
). Null

surfaces used are either the orange or the green line, including the dotted parts.
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