
Flat space holography

The holographic principle, if correct, should apply beyond its most famous incar-
nation, the AdS/CFT correspondence. Whether or not this is the case is one of the
big open research questions: How general is holography? If it always works, how
does it work precisely? If it does not always work, when does it work?

When facing such big questions, it can be a useful strategy to break them down
into smaller but sharper questions, such as: (How) does holography work in asymp-
totically flat spacetimes?

In this lecture, we address this question from the perspective of asymptotic
symmetries. Hence, our first task is to figure out the asymptotic symmetries of
asymptotically flat spacetimes.

1 BMS asymptotic symmetries

The first thing we could try is to simply take some AdS boundary conditions and
send the AdS-radius to infinity, i.e., to take the flat space limit of asymptotically
AdS. So let us try this.

lim
`→∞

(
dρ2 +

(
e2ρ/` γ(0)µν + γ(2)µν +O(e−2ρ/`)

)
dxµ dxν

)
= dρ2 +O(1)µν dxµ dxν (1)

The result looks strange: all terms are of the same order in ρ, so we cannot accom-
modate even simple solutions like Schwarzschild(–Tangherlini) in such an expansion.
Clearly, the naive limit of asymptotically AdS fails to produce anything of relevance.

The second thing to try is lifting our 2d example of asymptotically flat spaces
from lecture 1 to higher dimensions. If you were not present in lecture 1, we found
asymptotically flat space boundary conditions in 2d using Eddington–Finkelstein
(EF) coordinates,

ds2 = −2 dudr +
(
g−1(u) r + g(u)

)
du2 +O(1/r) (2)

that are preserved by the AKVs

ξ = ε(u) ∂u +
(
− ε′(u) r + η(u)

)
∂r +O(1/r) . (3)

The function ε(u) generates diffeomorphisms of the line, and the function η(u)
generates time-dependent radial translations. Since we did get something non-
trivial, both in terms of metrics and asymptotic symmetries, we are encouraged to
generalize the expansion (2) to higher dimensions.

Thus, the third thing we do is to formulate asymptotically flat space boundary
conditions in 3d, by analogy to (2). With hindsight, we guess (ϕ ∼ ϕ+ 2π)

ds2 =
(
− 2 dudr+huu(u, ϕ) du2 + 2huϕ(u, ϕ) dudϕ+ r2 dϕ2

) (
1 +O(1/r)

)
(4)

The rationale for the choice (4) is that we use again EF gauge (since this worked
like a charm in 2d) and that we switch on all metric fluctuations compatible with
asymptotically vanishing curvature invariants. Since we want to maintain r as
radial coordinate (and u is retarded time), we are led to spherical coordinates for
the remainder, which in 3d is just one azimuthal angle ϕ. The boundary (plus
gauge) conditions (4) are preserved by the AKVs ξL and ξM ,

ξL = uL′(ϕ) ∂u +
(
L(ϕ)− u

r
L′′(ϕ) +O(1/r2)

)
∂ϕ −

(
rL′(ϕ) +O(1)

)
∂r (5)

ξM = M(ϕ) ∂u −
(1

r
M ′(ϕ) +O(1/r2)

)
∂ϕ +O(1) ∂r . (6)

The subleading terms, represented by O(rn)-expressions, generate proper gauge
transformations and are modded out in the asymptotic symmetry algebra, which is
generated by two arbitrary functions on the celestial 1-sphere, L(ϕ) and M(ϕ).
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Their Lie bracket algebra (the ellipses refer to subleading terms in the AKVs)

[ξL(L1), ξL(L2)]Lie = ξL
(
L1L

′
2 − L2L

′
1

)
+ . . . (7)

[ξL(L1), ξM (M2)]Lie = ξM
(
L1M

′
2 −M2L

′
1

)
+ . . . (8)

[ξM (M1), ξM (M2)]Lie = 0 + . . . (9)

has again infinitely many generators. Comparing the first line (7) with AdS3 results,
we see the Witt algebra as a subalgebra. Geometrically, this makes sense since to
leading order, the asymptotic Killing vector ξL generates diffeomorphisms of the
celestial S1. The last line (9) shows that the asymptotic Killing vectors ξM commute
with each other (up to subleading terms). Since their zero mode, ξM0 = ∂u, generates
time-translations (which are part of Poincaré), the asymptotic Killing vectors ξM

are known as “supertranslations” (note: no relation to supersymmetry). In order
to have suggestive names, sometimes the Witt algebra generators ξL are called
“superrotations”, as the zero mode ξL0 = ∂ϕ generates rotations. Superrotations
and supertranslations do not commute (8), but instead, yield something reminiscent
of a Witt algebra. Neglecting the O(1/r)-terms, the algebra (7)-(9) is known as
BMS3, where the acronym stands for Bondi, van der Burgh, Metzner, and Sachs
who discovered the 4d analog of this algebra in the 1960ies.

All central extensions of the algebra (7)-(9) are known. To present them, it
is convenient to introduce again Fourier modes, in terms of which the centrally
extended version of BMS3 reads

[Ln, Lm] = (n−m)Ln+m +
cL
12

(
n3 − n

)
δn+m, 0 (10a)

[Ln, Mm] = (n−m)Mn+m +
cM
12

(
n3 − n

)
δn+m, 0 (10b)

[Mn, Mm] = 0 . (10c)

The central charge cL is a Virasoro central charge, while cM is referred to as BMS
central charge. Their specific values depend, of course, on the theory that we are
considering. We shall discuss these values later, in section 3.1.

In four or more spacetime dimensions, similar stories work: we use again EF
gauge, using retarded or advanced time and radius as two of our coordinates, we
place again the asymptotic boundary at the locus corresponding to r →∞, we use
again spherical coordinates for the remaining D − 2 directions (in practice, it is
often more convenient to use stereographic coordinates, but we will not delve that
deeply into details), and we make again an asymptotic expansion compatible with
the vanishing of all curvature invariants. In 4d, this asymptotic expansion yields

ds2 = −2 dudr +
2M

r
du2 +

(
1
2 ∂bC

b
a +

2

3r

(
Na + 1

4 C
b
a∂cC

c
b

))
dudxa

+
(
r2 Ωab + r Cab +O(1/r)

)
dxa dxb +O(1/r2) (11)

where all functions depend on u and xa but not on r. The functions are called
Bondi mass aspect (M), angular momentum aspect (Na), asymptotic shear (Cab),
and Bondi news tensor (Nab = ∂uCab). The leading order metric Ωab is fixed and
describes the celestial 2-sphere. All other functions are allowed to fluctuate. Bondi
mass and angular momentum aspects are additionally constrained to obey evolution
equations, e.g., ∂uM = − 1

8 NabN
ab + 1

4 ∂a∂bN
ab. For more details, extensions, and

literature see, e.g., 2009.01926.
The AKVs preserving (11) contain again an infinite set of supertranslations,

ξM = M(xa) ∂u, i.e., angle-dependent translations into the direction of (retarded or
advanced) time. The supertranslations mutually commute, and this feature persists
in any higher dimension as well. BMS were shocked by their discovery since they
expected to only get Poincaré as asymptotic symmetries, given that their spacetimes
asymptote to Minkowski, not an infinite enhancement thereof.
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2 Conformal Carrollian symmetries

Let us switch gears and consider conformal Carrollian symmetries. It will become
clear at the end of this section why we are doing this.

The Carroll algebra is the c → 0 İnönü–Wigner contraction of the Poincaré
algebra. Generators unaffected by this limit are time translations H = ∂t, spatial
translations Pi = ∂i, and rotations Jij = xi ∂j − xj ∂i. Thus, the only generators
affected are boosts, Bi = c t ∂i + 1

c xi ∂t. To be able to take the desired limit, we
rescale them by c before taking the limit,

Ci := lim
c→0

cBi = xi ∂t . (12)

Carroll boosts Ci commute among themselves and also with the Hamiltonian H.
This means there is no Thomas precession, and boosting does not generate energy,
unlike the Poincaré or Galilei cases. We have absolute space but relative time.

The finite conformal Carroll algebra has additional generators: dilatations D =
t∂t + xi∂t, spatial special conformal transformations Ki = −2xj(t ∂t + xi ∂i) +
xjxj ∂i, and temporal special conformal transformations K = xixi ∂t. For their
commutation relations, see, e.g., section 2.1 in 2202.01172.

In any dimension, it is possible to give the finite conformal Carroll algebra an
infinite lift by introducing (Carroll-)time translation generators that depend on
all the spatial coordinates, Mf = f(xi) ∂t. These (supertranslation) generators
mutually commute. We refer to the infinite version as conformal Carroll algebra.

It is possible to give the conformal Caroll algebra a geometric meaning. To
do so, let us step back and consider first a geometric interpretation of the Carroll
algebra without conformal symmetries.

Since we obtained Carroll symmetries as c→ 0 limit of Poincaré symmetries, we
naturally expect Carroll spacetime to emerge as c→ 0 limit of Minkowski spacetime.
Taking the c → 0 limit of ηµν dxµ dxν = −c2 dt2 + δij dxi dxj yields a degenerate
metric of signature (0,+, . . . ,+), i.e., the Carroll metric

hµν dxµ dxν = 0 · dt2 + δij dxi dxj (13)

has no inverse. Thus, to get a complete geometric description, we also take the
c→ 0 limit of the (suitably rescaled) inverse of the Minkowski metric, c2 ηµν∂µ∂ν =
−∂2t + c2 δij ∂i∂j , which yields a bi-vector −vµvν∂µ∂ν . So as the second ingredient
for defining a Carrollian structure, we use a vector field

vµ∂µ = ∂t hµνv
ν = 0 (14)

that lies in the kernel of the Carroll metric. These definitions naturally generalize
to curved Carroll manifolds. See appendix A of . for more details.

The vector fields ξ generating the Carroll algebra are all Killing vectors of the
Carroll structure, i.e., they preserve the Carollian structure defined above.

Lξhµν = 0 = Lξvµ (15)

However, there is an interesting difference to Minkowski and Poincaré: the Poincaré
Killing vectors not only preserve the Minkowski metric, but they are also the only
Killing vectors doing so. However, the Carroll symmetries above are not the only
vectors obeying (15). In particular, all vector fields ξ = f(xi) ∂t also obey (15). So
the infinite lift we gave to the finite Caroll algebra naturally arises geometrically.
The conformal Carroll algebra generalizes (15) by only conformally preserving the
Carrollian structure, Lξhµν ∝ hµν and Lξvµ ∝ vµ.

The punch line of this discussion is that the conformal Carroll algebra in D
spacetime dimensions is isomorphic to the BMS algebra in D + 1 dimensions, see
1402.5894. Thus, in the same way that the asymptotic symmetries of AdS provide
us with a natural candidate for the dual field theory, namely a conformal field
theory in one lower dimension, the asymptotic symmetries of BMS provide
us with a natural candidate for the dual field theory, namely a conformal
Carrollian field theory (CCFT) in one lower dimension.
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3 3d flat space holography: BMS3/CCFT2

Let us verify if the idea expressed at the end of the previous section withstands
scrutiny. To perform calculations, it is again convenient to consider 3d gravity. In
this section, we aim to test the conjectured BMS3/CCFT2 correspondence.

3.1 İnönü–Wigner contraction of AdS3/CFT2 and basic checks

In the last section, we reviewed the standard İnönü–Wigner contraction sending the
speed of light to zero, pioneered by Lévy-Leblond. However, for the purpose of flat
space holography, we are more interested in the limit where the AdS radius tends
to infinity.

Let us check if we can recover the BMS3/CCFT2 symmetries as a limit from
two Virasoro algebras.

[L±n , L±m] = (n−m)L±n+m +
c±

12

(
n3 − n

)
δn+m, 0 (16)

Defining the generators

Ln := L+
n − L−−n Mn :=

1

`

(
L+
n + L−−n

)
(17)

and taking the limit ` → 0 after evaluating all commutators in terms of the new
generators Ln,Mn yields

[Ln, Lm] = (n−m)Ln+m +
cL
12

(
n3 − n

)
δn+m, 0 (18a)

[Ln, Mm] = (n−m)Mn+m +
cM
12

(
n3 − n

)
δn+m, 0 (18b)

[Mn, Mm] = 0 . (18c)

with

cL = lim
`→∞

(
c+ − c−

)
cM = lim

`→∞

c+ + c−

`
. (19)

The contracted algebra (18) is identical to BMS3 (10).
The procedure above gives us a prediction for the central charges in flat space

Einstein gravity. Inserting the BH values of the central charges, c± = 3`/(2G), into
the result for the BMS central charges (19) yields

3d Einstein gravity: cL = 0 cM =
3

G
. (20)

So for flat space Einstein gravity, there is no Virasoro central charge but the
BMS central charge is non-zero. An asymptotic symmetry analysis confirms this
gr-qc/0610130. (In TMG both central charges are non-zero 1208.1658.)

If you are concerned that the BMS central charge is dimensionful and thus its
value has no meaning: there is a change of basis, Mn → αMn, that changes its
value multiplicatively by α. However, this does not mean there is no content in the
value of cM . There are invariant quantities independent from this change of basis,
for instance, the ratio of the M0 eigenvalue of some state and cM . We just have
to make sure in the future when we discuss observables that they depend only on
such basis-independent ratios (and if they do not, we have to be aware that the
corresponding result is basis-dependent).

In CCFT2, one can label states by their L0 and M0 eigenvalues, analogous to the
labeling of CFT2 states by their L±0 eigenvalues, the conformal weights. Similarly,
there is again the concept of highest weight states in CCFT2. Since CCFT2 are
isomorphic to Galilean CFT2 (just exchange space with time), one can exploit
results like the representation theory of the latter, see 0912.1090.
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3.2 Thermodynamical checks

In AdS3, thermal states are given by BTZ black holes (ϕ ∼ ϕ+ 2π)

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2+

`2r2 dr2

(r2 − r2+)(r2 − r2−)
+r2

(
dϕ− r+r−

`r2
dt
)2
. (21)

While taking the naive `→∞ limit of (21) produces nonsense, this can be averted
by redefining first r+ → ` r̂+, yielding after the limit (we keep fixed r̂+ and r−)

ds2FSC =
r̂2+(r2 − r2−)

r2
dt2 − r2 dr2

r̂2+(r2 − r2−)
+ r2

(
dϕ− r̂+r−

r2
dt
)2
. (22)

By construction, the solutions (22) solve the vacuum Einstein equations Rµν = 0
and are known as “flat space cosmologies”. In the same way that BTZ is an orbifold
of AdS, FSC is an orbifold of Minkowski space, the so-called shifted-boost orbifold
hep-th/0203031. Note that unlike BTZ, the FSC solutions only have one Killing
horizon at r = r−. This horizon is not a black hole horizon but rather a cosmological
horizon since r has now the meaning of time for r > r− (have a look at the signs
in (22) to convince yourself). The solutions are regular and without closed timelike
curves on and outside the Killing horizon. Moreover, by transforming to EF gauge
one can show that they obey the asymptotically flat boundary conditions (4). So
FSCs are admissible states in our theory.

FSCs are indeed thermal states, and their macroscopic thermodynamical quan-
tities can be determined in a variety of standard ways, see 1305.2919 for results
on free energy, entropy, temperature, angular momentum, angular potential, and
Hawking–Page like phase transitions to hot flat space. The Bekenstein–Hawking
entropy

S =
4π r−

4G
(23)

is reproduced microscopically by a Cardy-like formula for CCFT2 (with cL = 0)

S = 2π L0

√
cM

2M0
(24)

where L0 and M0 are the corresponding zero mode eigenvalues of the FSC whose
entropy is being counted (they are respectively, angular momentum and mass of the
FSC solution). See 1208.4372 and 1208.4371 for derivations. Note that the entropy
(24) depends on cM and M0 only through their ratio and thus is basis-independent,
as it should be.

In summary, thermodynamical considerations confirm the BMS3/CCFT2 corre-
spondence.

3.3 Stress tensor correlation functions

In lecture 4 I explained in detail how to holographically calculate the stress ten-
sor correlation functions by first checking the 2-point function and then establish-
ing a BPZ recursion relation (see lecture 4 for details). This was a check of the
AdS3/CFT2 correspondence.

The short version of a longer story is that essentially the same calculation works
again in the context of BMS3/CCFT2. For details, see 1507.05620.

3.4 BMS descendants of the vacuum

If the previous subsection was short, this one will be even shorter: see 1502.06185.
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3.5 Entanglement entropy

While in the corresponding AdS3/CFT2 check, Ryu and Takayanagi had CFT2-
results available to guide them, here we need to first establish the CCFT2 results
for entanglement entropy before attempting a holographic derivation thereof.

This was done in 1410.4089. For an entangling interval with separations ∆u and
∆ϕ in a CCFT2 on the plane with central charges cL and cM entanglement entropy
turns out to be given by

SEE =
cL
6

ln
∆ϕ

εϕ
+
cM
6

(
∆u

∆ϕ
− εu
εϕ

)
(25)

where ε` and εϕ are UV cutoffs. For cM = 0 the result above recovers a chiral half of
the CFT2 result, as it must be. However, if cM 6= 0 the result (25) looks qualitatively
different from the CFT2 result: both ∆u and ∆ϕ are present, there are two cutoffs,
and the dependence on the intervals is monomial rather than logarithmic.

Despite the differences to the CFT2 results, it is again possible to give a Ryu–
Takayanagi-like prescription to determine entanglement entropy (25) holograph-
ically. This was done first in the Chern–Simons formulation (see appendix) in
terms of Wilson lines (with specifically chosen boundary conditions) in 1410.4089
(see 1511.08662 for more details) and later in the metric formulation in terms of
geodesics by Jiang, Song, and collaborators in 1706.07552 and 2006.10740.

Similarly to CFT2, there is again a uniformization map that allows determining
entanglement entropy for all states dual to solutions of flat space Einstein gravity
in 3d, see 1907.06650. On the gravity side, this uniformization map captures the
flat space analog of all Bañados geometries,

ds2 = −2 dudr +M(ϕ) du2 +
(
L(ϕ) + u ∂ϕM(ϕ)

)
dudϕ+ r2 dϕ2 . (26)

For constant M,L and positive M , the geometries (26) describe FSCs in EF coor-
dinates. The Fourier modes of M,L are essentially the BMS3 charges.

3.6 Further remarks on BMS3/CCFT2

Essentially, any calculation done in the context of AdS3/CFT2 could be trans-
posed to a corresponding BMS3/CCFT2 calculation. Sometimes, taking limits
works nicely (like in the derivation of the CCFT2 symmetry algebra from the CFT2

algebra), whereas at other times, it can be more fruitful to perform calculations
directly in flat space (on the gravity side) or the CCFT (on the field theory side).

Some further checks and developments along these lines include the flat space
chiral gravity proposal 1208.1658, a flat version of the Liouville boundary the-
ory 1210.0731, induced representations 1403.5803, the addition of chemical poten-
tials 1411.3728, BMS modules 1603.03812, BMS bootstrap 1612.01730, Poincaré
blocks 1712.07131, semiclassical BMS blocks 1805.00949, quantum energy condi-
tions 1907.06650, saturation of the chaos bound 2106.07649, etc.

The morale appears to be that anything that can be done in AdS3/CFT2 can also
be done in BMS3/CCFT2, though it is often not evident how. The non-triviality of
the limit of vanishing cosmological constant makes further checks and developments
desirable to get a firm understanding of the inner workings of flat space holography.

3.7 Link to flat space holography in 2d

Given the recent success of the SYK/JT correspondence that can be viewed as a
holographic description of AdS2 dilaton gravity (see, e.g., 1801.09605 and refs. there-
in) it is natural to wonder whether there is a flat space version of the story. The
answer is affirmative, and there is a flat space analog of the Schwarzian boundary
action featured in this correspondence. See 1911.05739 for details.
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4 4d flat space holography: Carrollian vs. celestial

As suggested on the previous six pages, a natural candidate for the holographic
dual to flat space (Einstein) gravity is a CCFT in one lower dimension, since the
symmetries match. This viewpoint is known as the Carrollian approach to flat space
holography. It is developed to a reasonable degree of maturity in lower dimensions
but far less developed in 4d or higher.

Alternatively, there is the celestial approach to flat space holography, specifically
for 4d, developed mostly by Strominger and collaborators, see e.g. 2107.02075 and
refs. therein. In the celestial approach, the focus is put on scattering amplitudes
and their translations into correlation functions on the celestial 2-sphere.

One of the open questions in the celestial program is whether or not there is an
independent definition of the celestial CFT2 that does not rely on a mere translation
of scattering data into CFT language. Evidence that the celestial CFT2, if it exists,
is a logarithmic CFT was presented in 2305.08913.

If both approaches capture the physics of asymptotically flat spacetimes ade-
quately, they must be related. In other words, there should be a map between
Carrollian and celestial observables. This turns out to be true and was shown
independently in 2202.04702 and 2202.08438.

5 Final words

Apart from my bonus lectures, which I will not convert into lecture notes, this
is the end of my OIST lectures on asymptotic symmetries, given in July/August
2023. If you listened to my lectures I hope you could take something useful away
for your own research program. If you are just reading these lecture notes online,
I hope they are reasonably understandable without my additional explanations on
the blackboard.

If you have some questions, corrections, or comments on my lecture notes please
let me know by e-mail: grumil@hep.itp.tuwien.ac.at.

Ĳ

OIST Lectures on Asymptotic Symmetries, Daniel Grumiller, August 2023
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A Chern–Simons formulation for flat space

In lecture 3, we discussed in detail the Chern–Simons formulation for AdS3 Einstein
gravity. For 3d flat space Einstein gravity, there is a Chern–Simons formulation as
well, reviewed in this appendix.

Taking the naive `→∞ limit does not work since all this achieves is to send the
Chern–Simons level to infinity. It is more fruitful to work directly in flat space with-
out invoking any limits. For AdS3 we took the isometry algebra of the maximally
symmetric solution (global AdS3) as gauge algebra, so(2, 2) ' so(2, 1)⊕ so(2, 1) '
sl(2,R) ⊕ sl(2,R). This suggests taking the isometry algebra of Minkowski space
as gauge algebra for flat space Einstein gravity in the Chern–Simons formulation,
iso(2, 1) ' isl(2,R). And indeed, this works.

So the Chern–Simons formulation of 3d Einstein gravity without cosmological
constant is given by the bulk action

ICS[A] =
k

4π

∫
〈A ∧ dA+

2

3
A ∧A ∧A〉 (27)

where the connection 1-form expands as

A = ωa La + eaMa (28)

with the isl(2,R) generators (a, b ∈ {1, 0, −1})

[La, Lb] = (a− b)La+b [La, Mb] = (a− b)Ma+b [Ma, Mb] = 0 (29)

and the bilinear form (ηab = antidiag(1,− 1
2 , 1) is the 3d Minkowski metric)

〈La, Mb〉 = −2ηab . (30)

We use suggestive notation to make clear that the L-part of the connection is
interpreted as (dualized) spin connection ωa = 1

2 ε
abc ωbc and the M -part as dreibein

ea. (Latin indices are lowered with ηab.)
As expected, the Chern–Simons equations of motion, i.e., the gauge flatness

conditions
dA+A ∧A = 0 (31)

reproduce the 3d Einstein–Hilbert–Palatini equations of motion

Ra = 0 = T a (32)

where T a = dea + εabc ω
b ∧ ec is the torsion 2-form and Ra = dωa + 1

2 ε
a
bc ω

b ∧ ωc
is the (dualized) curvature 2-form.

To obtain the flat space analog of the Bañados geometries (26) (in EF gauge) as
part of the solution space allowed by the boundary conditions, we take inspiration
from BH and impose the boundary conditions

A = b−1
(

d+a
)
b b = exp

(
r
2 M−1

)
(33)

with the boundary connection

a =
(
M1−

M(ϕ)

4
M−1

)
du+

(
L1−

M(ϕ)

4
L−1−

uM ′(ϕ) + 2L(ϕ)

4
M−1

)
dϕ . (34)

A difference to the AdS case is that the metric is no longer given by a trace,1

but it still reads
gµν = eaµe

b
ν ηab . (35)

Inserting the field configuration (33) with (34) and (28) into the metric (35)
recovers the solution space (26).

1It is possible to define some twisted version of a trace so that the metric is the twisted trace of
the bilinear in the Chern–Simons connection; see 1411.3728, which discusses also the generalization
to include arbitrary chemical potentials and/or spin-3 fields.
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