
Near horizon symmetries and soft Heisenberg hair

In this lecture, we impose near horizon boundary conditions and choose a specific
state space slicing to obtain the simplest non-trivial symmetry algebra in AdS3

gravity, namely two copies of û(1) current algebras.
This will lead us to the concept of soft Heisenberg hair, where “soft” refers to the

fact that all descendants have the same energy as the parent state, in stark contrast
to typical descendants (e.g., Virasoro descendants). The expression “soft hair” was
coined by Hawking, Perry and Strominger and refers to zero energy excitations
on black holes that nevertheless carry physical information (hence “hair”). The
attribute “Heisenberg” comes from the specific form of the asymptotic symmetry
algebra that we shall encounter, see 1603.04824.

1 Near horizon symmetries

Near horizon symmetries are essentially the same as asymptotic symmetries, i.e.,
the AKVs are again given by solutions to(

Lξg
)
µν

= O(δgµν) ∀ gµν = ḡµν + δgµν (1)

except that ḡ is not some asymptotic background but rather a Rindler-type (“near
horizon”) metric and δg does not come from some asymptotic expansion but from
some near horizon expansion of the metric.

1.1 Why near horizon symmetries?

Whenever one is interested in asking conditional questions, like “given a black hole,
what are the scattering amplitudes in a given channel?” or “given a cosmological
horizon, what are the allowed states that remain in the physical Hilbert space
and how could they be related through symmetries?” or “given a black hole or
cosmological horizon, can we microscopically account for the Bekenstein–Hawking
entropy in the classical limit?” it is crucial to impose boundary conditions that
make sure that the condition in the question is met. Near horizon symmetries
achieve this goal.

1.2 How to choose the boundary conditions?

Like in asymptotic studies, there is again a lot of choice involved in the precise choice
of the boundary conditions. We are inspired by the universality of the Rindler
approximation of non-extremal Killing horizons and thus make an ansatz of the
form

ds2 = −κ2 ρ2 dt2 + dρ2 + Ωab dxa dxb + . . . (2)

where in the time-independent case κ is surface-gravity, ρ is the radial Rindler
coordinate, Ωab the co-dimension-2 metric transversal to the 2d Rindler space, and
the ellipsis denotes higher order terms and rotation terms proportional to dtdxa. In
principle, κ and Ωab could depend on Rindler time t and the transversal coordinates
xa, but not on the radial coordinate ρ.

Even if we grant that (2) might be what we want, we have to make up our minds
about the allowed fluctuations. The key question is whether or not κ is allowed to
fluctuate in our state space. A version of near horizon boundary conditions where κ
is allowed to fluctuate was proposed (in 2+1 dimensions) in 1512.08233. However,
the physical interpretation of this setup remained rather unclear. A physically
more transparent choice, first made in 1511.08687, is to demand δκ = 0 and to
allow δΩab 6= 0. In these lectures, we are choosing the latter.

For the sake of specificity, we analyze first the AdS3 case (with unit AdS radius)
and generalize in the final section to arbitrary dimensions.
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1.3 What are the near horizon symmetries?

Using all the tools from previous lectures, we can quickly answer the question in
the heading of this subsection. We use again the Chern–Simons formulation of 3d
gravity and the convenient split of the connection

A± = b−1±
(

d+a±
)
b± (3)

into some group elements that are state-independent and only depend on the radial
coordinate, b± = exp (±ρ (L1 − L−1)/2), and into boundary connections

a± =
(
µ±(t, ϕ) dt± J±(t, ϕ) dϕ

)
L0 (4)

that only depend on the boundary coordinates (t, ϕ) ∼ (t, ϕ + 2π) and also only
have legs in these directions.

Inspired by our analysis of the most general boundary conditions, we anticipate
that µ± are chemical potentials, i.e., δµ± = 0, while J± are charges, i.e., allowed
to vary, δJ± 6= 0.

It is not at all obvious why we used only the Cartan subalgebra generator L0

in (4). This was obtained by trial-and-error in 1603.04824. Indeed, using the
field configuration above and extracting from it the metric recovers the expansion
(2), where κ = −(µ+ + µ−)/2 is indeed fixed, while Ω = (J + + J−)2/4 is free
to vary. Assuming the chemical potentials are constant, the equations of motion
(a.k.a. “holographic Ward identities”) establish charge conservation,

∂tJ± = 0 . (5)

The boundary condition preserving gauge transformations

δε±a
± = dε± + [a±, ε±] (6)

modulo trivial gauge transformations are given by

ε± = η±(ϕ)L0 . (7)

The state-dependent functions transform as

δε±J± = ±(η±)′ . (8)

Using the background independent result for the co-dimension-2 charges of
Chern–Simons theory yields

Q±[η±] = ∓ k

4π

∮
η±J± dϕ (9)

where we used tr(L2
0) = 1

2 .
Expanding in Fourier modes

J±n =
k

4π

∮
J±e±inϕ dϕ (10)

yields the mode version of the canonical realization of the asymptotic symmetry
algebra (I replaced already −i{, } → [, ])

[J±n , J
±
m] =

k

2
n δn+m, 0 [J+

n , J
−
m] = 0 (11)

Thus, the asymptotic symmetry algebra associated with our near horizon boundary
conditions (for the chosen slicing of the state space) is given by two û(1) current
algebras. This is arguably the simplest set of non-trivial infinite-dimensional asymp-
totic symmetries and can serve as a building block for more complicated algebras.

Historical note: 1511.08687 found a different asymptotic symmetry algebra for
the same boundary conditions, namely a non-abelian algebra without central exten-
sion, whereas our algebra is abelian apart from the central extension. This difference
comes from a change of slicing, made explicit in 1611.09783.
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2 Soft Heisenberg hair

The main purpose of this section is to explain its title, which we do in reverse order.

2.1 Hair

I assume you know what “hair” means in a black hole context and that black holes
are supposed to have none. The black holes that are part of our state space can
have hair, namely boundary excitations generated by the charges J±. We have
shown in the previous section that J± 6= 0 corresponds to non-trivial states (since
their associated charges are non-zero), which means that black holes carrying J±
charges have hair.

Geometrically, we can generate such hair by diffeomorphisms of the S1,

dϕ→ J
+(ϕ) + J−(ϕ)

2
dϕ (12)

so as long as the quantities J± are compatible with periodicity and their sum is
positive these diffeomorphisms are globally well-defined. Thus, there is no reason to
exclude black holes with J±-hair from our state space if the parent black hoke was
regular, as no singularities are induced by equipping these black holes with (near
horizon) hair.

This explains why the expression “hair” is appropriate in our context.

2.2 Heisenberg

Linearly combining the generators as

Xn = J+
n − J−−n Pn =

i

kn

(
J+
−n + J−n

)
n 6= 0 P0 = J+

0 + J−0 (13)

converts the two û(1) current algebras (11) into an infinite tower of Heisenberg
algebras

[Xn, Pm] = i δn,m n 6= 0 (14)

while all undisplayed commutators vanish, in particular the ones with P0.
This explains why the hair was labeled as “Heisenberg” (which sounds more

digestible than “û(1)-hair”.)

2.3 Soft

Start with some reference state |ψ〉 and consider some arbitrary descendant

|ψ({n±i })〉 =
∏
n±
i >0

J+

−n+
i

J−−n−
i

|ψ〉 (15)

labeled by a set of integers {n±i }. The energy as measured by the near horizon
Hamiltonian

E = Q[∂t] = κ
(
J+
0 + J−0

)
(16)

commutes with all elements of the near horizon symmetry algebra (11). Therefore,
the action of raising operators J±−n±

i

does not change the energy of the state.

This means that all the Heisenberg hair excitations are without energy, which
explains the attribute “soft”, hence “soft Heisenberg hair”.

Historical note: the term “soft hair” was coined by Hawking, Perry and Stro-
minger and also refers to excitations on black holes that do not carry energy.
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3 Applications

3.1 Entropy and near horizon first law

You may remember that the Cardy-formula

S = 2π
(√c+L+

0

6
+

√
c−L−0

6

)
(17)

contains the square root of the asymptotic zero mode charges. It is natural to ask
if there is a Cardy-like formula that features the near horizon zero mode charges
J±0 . The answer is yes.

The entropy in near horizon variables

S = 2π
(
J+
0 + J−0

)
(18)

turns out to be linear in the near horizon zero mode charges, which is a slight
simplification as compared to Cardy’s formula (17). It turns out that the near
horizon entropy law (18) is far more universal than the Bekenstein–Hawking or the
Wald entropy, for more on this see below.

The near horizon first law
dE = T dS (19)

relates the entropy (18) to the temperature T = κ
2π and the near horizon energy

(16). As a consequence of our choice to have κ state-independent, the near horizon
first law (19) trivially integrates to E = TS. Notably, there are no work terms in
the near horizon first law (19).

You may wonder whether or not there is a Cardy-like derivation of the Cardy-like
formula (18). Again, the answer is yes. The main technical difference is that we no
longer have an isotropic scale invariance with respect to the boundary coordinates,
as we did for the CFT2 case. Instead, there is an anisotropic scale invariance of
Lifshitz type,

t→ λzt ϕ→ λϕ (20)

with Lifshitz exponent z = 0. The fact that t is not allowed to scale stems again
from our assumption in the boundary conditions that κ is fixed. For positive z
one can show that the Cardy-like formula for the entropy is given by (see, e.g.,
1611.09783)

S = 2π(1 + z)
∑
±

∆
1/(1+z)
± exp

( z

1 + z
ln
(
∆±0 /z

))
(21)

where ∆± are the zero mode charges of the state whose entropy is calculated and
∆±0 are the zero mode charges of some ground state. In the limit z → 0+ the latter
drop out (assuming they remain either finite in the limit or diverge not worse than
polynomially in 1/z) and the Cardy-like formula (21) reduces to the near horizon
entropy (18) with ∆± = J±0 .

3.2 Relation to asymptotic symmetries of BH

We can relate the near horizon results to asymptotic results, where for the latter
the connection is given by (for brevity we discuss only one chiral sector)

Â = b̂−1
(

d+â
)
b̂ b̂ = eρL0 (22)

ât = ζ L1 − ζ ′ L0 +
(1

2
ζ ′′ − 1

2
Lζ
)
L−1 âϕ = L1 −

1

2
LL−1 (23)
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Here, ζ is the asymptotic chemical potential and L the asymptotic (Brown–Henneaux)
charge. One can show that the configuration above is gauge-equivalent to (3), (4)
upon identifying

ζ ′ − J ζ = −µ L =
1

2
J 2 + J ′ (24)

Similarly, the gauge parameter η in (7) relates to the BH-parameter ε as

ε′ − J ε = −η . (25)

Inserting this relation together with (24) into the near horizon transformation law
(8) recovers the infinitesimal Schwarzian

δεL = εL′ + 2ε′L − ε′′′ . (26)

In Fourier modes, the second equality (24),

Ln =
1

k

∑
m∈Z

Jn−mJm + in Jn (27)

is recognized as a twisted Sugawara construction. Using the near horizon symmetry
algebra (11), it is straightforward to show that the twisted Sugawara stress tensor
(27) obeys the Virasoro algebra with central charge c = 6k.

Yet another way to understand the relation between near horizon and asymp-
totic variables is as a change of slicing. To see this, consider the variation of the
codimension-2 charges

δQ = − k

4π

∮
dϕ ε δL = − k

4π

∮
dϕη δJ . (28)

For the BH-slicing, ε is state-independent (by assumption), while for our Heisenberg-
slicing, η is state-independent.

3.3 Generalizations in 3d

While the story above was first developed for AdS3 Einstein gravity, it generalizes
within 3d in several ways to

• flat space cosmologies

• higher derivative theories [no Bekenstein–Hawking]

• higher spin black holes [no Bekenstein–Hawking, no Wald formula]

• warped black holes [no Bekenstein Hawking]

Algebraically, a key aspect is that we recover asymptotic symmetry algebras like
BMS3 or warped conformal symmetries or even higher spin algebras from specific
Sugawara-like constructions, that are induced by the same logical flow as in the
previous subsection.

As an example and application, consider higher spin black holes within spin-
3 gravity, see 1607.05360 for details of this analysis. The entropy of such black
holes obeys some complicated “Cardy-formula” in terms of spin-2 (L±) and spin-3
charges (W±)

S = 2π

[√
L+ cos

(
1

3
arcsin

W+

L3/2
+

)
+
√
L− cos

(
1

3
arcsin

W−
L3/2
−

)]
(29)

In the near horizon version, the entropy of these higher spin black holes reduces to
the universal form (18).
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4 Generalizations to higher dimensions

Given the universality and simplicity of the near horizon symmetries and the as-
sociated entropy law, one may wonder if this story extends to higher dimensions.
The answer is essentially yes, though there will be additional technical and physical
aspects to consider. The main difference is that in higher dimensions we have lo-
cal gravitational degrees of freedom that can fall into the black hole (gravitational
wave absorption by a black hole). So when setting up near horizon boundary condi-
tions, one has to decide whether or not the boundary conditions should allow such
processes.

The simplest approach is to forbid gravitational wave absorption (or emission)
by black holes. In this case, the boundary conditions imposed in higher dimensions
are again given by (2) with state-independent κ and state-dependent Ωab.

gtt = −κ2ρ2 +O(ρ3) gρρ = 1 +O(ρ)

gtρ = O(ρ2) gρa = fρa ρ+O(ρ2) (30)

gta = fta ρ
2 +O(ρ3) gab = Ω̂ab +O(ρ2) .

The near horizon expansion (30) is preserved by diffeomorphisms generated by
vector fields ξ = ξµ ∂µ with

ξt =
η

κ
+O(ρ), ξρ = O(ρ2), ξa = ηa +O(ρ2) (31)

where ηa depends arbitrarily on xa, while η depends additionally on t subject to
the condition ∂tη + ηa∂aκ = δκ. The dynamical fields, P and Ja, defined by

P :=

√
Ω

8πG
Ja :=

√
Ω

16πGκ

(
∂tfρa − 2fta

)
(32)

transform as

δP = ηa∂aP + P∂aηa (33a)

δJa = P∂aη + ηc∂cJa + Jc∂aηc + Ja∂cηc . (33b)

The associated codimension-2 charges

δQ[η, ηa] =

∫
dD−2x

[
η δP + ηa δJa

]
(34)

turn out to be non-trivial and finite. For more details and numerous different
state-space slicings (including BMS-slicing, higher-spin versions of BMS, and the
Heisenberg-slicing) as well as examples like Kerr–NUT black holes, see 1908.09833.
In BMS-slang, the charges associated with P generate supertranslations, and the
charges associated with J (some version of) superrotations.

The entropy is again linear in the near horizon charges,

S = 2πP0 (35)

with P0 =
∫

dD−2xP, which may have been anticipated from the 3d universality.

For the Kerr BH in Boyer–Lindquist coordinates it reads P = r+(r++r−)
8πG sin θ.

Generalizing this story to allow for gravitational wave absorption (or, semiclas-
sically, also emission) is not completely trivial, but possible. See 2110.04218 and
Refs. therein. A technical challenge is that the charges are neither integrable nor
conserved, which necessarily happens when dealing with an open system. Notably,
there is a flux-balance law that relates the non-conservation of the charges to the
flux through the horizon, which physically is sensible.
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