
Zoo of asymptotic symmetries

For the same bulk theory there could be inequivalent boundary theories, depending
on the chosen boundary conditions. Even for a given fall-off behavior of the fields
near the boundary the asymptotic symmetry algebra may change if we allow for
state-dependent transformation parameters.

In these lectures, we address why it can be useful (or even necessary) to allow for
state-dependence in the transformation parameters, how we deal with such a situa-
tions, and what it implies for the asymptotic symmetries. We can understand these
issues in terms of different state space slicings. Finally, we study these somewhat
abstract notions for AdS3 Einstein gravity, where we shall find numerous alterna-
tives to Brown–Henneaux boundary conditions, including all the explicit examples
discovered in the literature of the past decade. These considerations explain the
zoo of asymptotic symmetries highlighted at the end of lecture 4.

1 State-dependent parameters

Let us first clarify the notation: by state-dependent we mean that the corresponding
quantity is allowed to vary on our state-space, while state-independence negates
this possibility. For example, in the usual Feferman–Graham expansion of locally
asymptotically AdS3 metrics,

ds2 = dρ2 +
(
e2ρ/` γ(0)

µν + γ(2)
µν +O(e−2ρ/`)

)
dxµ dxν (1)

the leading order term is state-independent, δγ(0) = 0, while the subleading or-
der term is state-dependent, δγ(2) 6= 0. The sub-subleading terms can be state-
dependent, but this state-dependence is inherited from the one contained in γ(2)

and does not bring any relevant new information into the system.
So far, we assumed that the transformation parameters (appearing, e.g., in

asymptotic Killing vectors) are state-independent, which seems eminently reason-
able. Thus, before delving into details of how to deal with state-dependent trans-
formation parameters we explain why it can be necessary to do this in the first
place.

1.1 Why?

The simplest reason for considering state-dependent parameters is the consistency
between metric and gauge-theoretic formulations of gravity. For concreteness, con-
sider the example we studied in detail, 3d gravity.

In the metric formulation, after imposing some boundary conditions we obtain
some asymptotic Killing vector vector fields ξµ. Let us assume that all functions
appearing therein are state-independent.

In the gauge-theoretic formulation we similarly obtain some asymptotic gauge
parameters εa. Let us assume that all functions appearing therein are state-independent
as well.

Translating between these two formulations requires the identity

εa = Aaµ ξ
µ (2)

where Aaµ is the gauge connection. If both εa and ξµ were state-independent, δεa =
0 = δξµ, then also Aaµ must be state-independent, δAaµ = 0. However, this is not
true for any interesting set of boundary conditions: in any physically interesting
scenario, the gauge-connection always allows for some state-dependent function(s),
like the functions L± in the Brown–Henneaux case.

Thus, we have to allow some state-dependence, either in εa or in ξµ or in both.
Once we permit this possibility, some of the choices we made in the previous lectures
should be reconsidered.
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1.2 Why was this not an issue so far?

Actually, when discussing Brown–Henneaux boundary conditions in the Chern–
Simons formulation, we had state-dependence in our gauge transformation param-
eters, since we found (I am using here notations and conventions from lectures 3-4)

ε̂ = ε L1 − ε′ L0 +
(

1
2ε
′ − Lε

)
L−1 . (3)

So even when we assume the parameter function ε to be state-independent, we get
a non-vanishing variation

δε̂ = −(δL) ε L−1 + δε-terms = −(δL) ε L−1 if δε = 0 . (4)

However, this state-dependence did not affect our charges or asymptotic symmetries,
because in the result for the variation of the charges

δQ[ε̂] =
k

2π

∮
S1

tr
(
ε̂(x+) δa(x+)

)
= − k

2π

∮
S1

tr
(
ε̂(x+)L−1) δL(x+) dx+ (5)

the trace took care that only the L1-component of ε̂ contributed. As evident from
(4), that component is state-independent, and this is why we never had an issue so
far with integrating the charges in field space.

In other words, so far we were lucky. But what shall we do if our luck runs out?

1.3 How?

As long as we specify how precisely the gauge parameters depend on the state-
dependent functions we might still be able to end up with integrable charges.

In the BH-example above, consider for example a state-dependence in the func-
tion ε of the form

ε(x+) = L(x+) ε̃(x+) δε̃
!
= 0 . (6)

In that case, the variation analogous to (3),

δε̂ = δL ε̃ L1 + . . . (7)

yields a non-zero L1 component. Thus, in the variation of the charges (5),

δQ[ε̃] =
k

2π

∮
S1

ε̃L δL dx+ (8)

there is now a non-trivial state-dependent prefactor in front of δL. Fortunately, we
chose this prefactor such that the charges remain integrable in field space:

Q[ε̃] =
k

4π

∮
S1

ε̃L2 dx+ (9)

So state-dependent gauge parameters can be fine and compatible with integrable
charges, as long as we choose some appropriate state-dependence (we shall be more
general and explicit in the next section.)

Of course, integrability is not automatic. A simple counter example is the mod-
ified state-dependence

ε(x+) =
(
∂x+L(x+)

)
ε̃(x+) δε̃

!
= 0 (10)

yielding the variation

δQ[ε̃] =
k

2π

∮
S1

ε̃L′ δL dx+ . (11)

Since there is no functional of L the variation of which yields L′ δL, the charges
(11) are not integrable in field space.
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2 Slicings of state space

While we intend to return to Chern–Simons theories in the next sections for detailed
and physically motivated examples, in this section we step back and consider generic
gauge- or gravity theories with boundaries and address the issue of state-dependent
transformation parameters in full generality, if somewhat abstractly.

Denote the gauge parameter(s) by ε and the field(s) by φ. The variation of the
co-dimension 2 boundary charges

δQ =

∫
∂Σ

ε(φ) k(φ) δφ (12)

is in general not integrable in field space if ε is some generic functional of φ. We
parametrize ε as

ε = ε̃ c(φ) δε̃ = 0 (13)

with some generic functional c(φ). If the functional k formally can be written as

k =
δF

δφ
+ F

δ ln c

δφ
(14)

then the associated charges

Q =

∫
∂Σ

ε F (φ) (15)

are integrable in field space.
The proof of this statement is straightforward: varying the charges (15) yields

δQ =

∫ (
ε̃ c(φ)

δF (φ)

δφ
+ ε̃

δc(φ)

δφ
F (φ)

)
δφ =

∫
ε̃ c(φ)

(δF (φ)

δφ
+ F (φ)

δ ln c(φ)

δφ

)
δφ

which by virtue of (14) and (13) recovers precisely (12).
Note that in the discussion above we have not altered the boundary conditions.

Instead, we have injected (or changed) the state-dependence of the transformation
parameters appearing the boundary-condition preserving gauge transformations.
We refer to such a procedure as a “change of slicing of the state space”. The
idea behind this nomenclature is as follows. Our state space is specified by the
bulk theory and the boundary conditions, so we are not changing the state space
when changing the state dependence of the transformation parameters. However,
we change the boundary charges, so the same state can have different values for the
boundary charges depending on our choice of state space slicing.

Changes of slicings are in general not a change of basis in the asymptotic sym-
metry algebra. To see this, one counter example is sufficient. Consider a situation
where the boundary charges

Q[ε] =
k

2π

∮
ε(ϕ) J(ϕ) dϕ (16)

obey a û(1) current algebra

δεJ = ε′ ⇒ δε1Q[ε2] = {Q[ε1], Q[ε2]} =
k

2π

∮
ε2ε
′
1 dϕ . (17)

Changing the slicing as

ε = ε̃ J δε̃
!
= 0 (18)

yields new charges

Q[ε̃] =
k

4π

∮
ε̃ J2 dϕ (19)

that produce a new asymptotic symmetry algebra (using δJ = ε̃J ′ + ε̃′J)

δε̃1Q[ε̃2] = {Q[ε̃1], Q[ε̃2]} = Q[ε̃2ε̃
′
1 − ε̃1ε̃′2] (20)

recognized as Witt algebra. There is no change of basis from a û(1) current algebra
(abelian but with center) to a Witt algebra (without center but non-abelian).
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3 Most general boundary conditions for AdS3

In this section, we return to AdS3 Einstein gravity, with the intention to go beyond
BH boundary conditions. In fact, we are aiming for the loosest set of boundary
conditions, in the sense that we obtain the maximal number of towers of charges
(for BH this number was 2).

For inspiration, we start with the quantum Hall system, which is also described
effectively by Chern–Simons theory, since the electrons are essentially confined to a
plane in such systems (hence, we are effectively dealing with a (2 + 1)-dimensional
gauge theory with boundaries).

While the physical requirements imposed on quantum Hall systems differ from
gravity (for instance, in quantum Hall systems we do not mind if the connection
trivializes locally, a = 0, whereas in gravity such a trivialization would render the
metric singular and is thus forbidden), we will still get more concrete ideas how to
generalized BH boundary conditions from that analysis.

3.1 Inspiration from quantum Hall system

Some aspects of quantum Hall physics are captured by an effective low-energy de-
scription of an abelian gauge field in 2+1 dimensions, for details see these lecture
notes by Tong. In a derivative expansion, the dominant part of the low-energy
effective action is the Chern–Simons term1

ICS[a] =
k

4π

∫
a ∧ da . (21)

In what follows, we use Minkowski coordinates t, x, y.
We assume an interface at y = 0 between the quantum Hall phase and the

vacuum. Thus, we need to impose boundary conditions at y = 0 on the connection
a to get a well-defined variational principle. Indeed, the first variation of the action

δICS[a] ≈ k

4π

∫
d
(
a ∧ δa

)
∼
(
at δax − ax δat

)∣∣
y=0

(22)

is on-shell a boundary term that we need to enforce to be zero for consistency, unless
we add some suitable boundary contributions to the action (21); see below for an
exploration of this possibility.

Some simple possibilities for consistent boundary conditions are at|y=0 = 0 or
ax|y=0 = 0. They can be combined into a 1-parameter family of boundary conditions(

at − v ax
)∣∣
y=0

= 0 (23)

where v is some fixed but arbitrary parameter with the dimension of a velocity.
This parameter is not present in the action but enters solely through our choice of
boundary conditions. For simplicity and concreteness we set v = 0.

We are interested in boundary excitations, i.e., gauge modes that become phys-
ical at the boundary. Since the bulk EOM dictate vanishing field strength, f = 0,
we can write the connection locally as a = dφ with some scalar field φ (which is
a gauge parameter). Inserting a = dφ into the Chern–Simons action (21) yields a
boundary term

Iv=0
FJ [φ] =

k

4π

∫
y=0

dtdx ∂tφ∂xφ . (24)

1The Chern–Simons level is quantized in integers to render this action gauge invariant under
large gauge transformations. This aspect is important for quantum Hall physics but not for the
point we are making here.
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This action is the v = 0 case of the Floreanini–Jackiw action and it describes
a self-dual scalar field in two dimensions. (The crucial detail is the single time-
derivative in the action, as opposed to actions of Klein–Gordon type with two
time-derivatives that propagate both chiralities.) Thus, the boundary excitations
of the effective quantum Hall description provided by the low energy effective action
(21) with the boundary conditions (23) are described by a Floreanini–Jackiw scalar
field that lives at the boundary. While we have shown this above only for v = 0,
the same statement is true for finite v, see section 6.1.2 in Tong’s lecture notes.

There is a relevant subtlety if we assume periodicity in x: we should not enforce
the Floreanini–Jackiw scalar field φ to be periodic in x but instead allow for a
winding mode, i.e., a term linear in x. The usual nomenclature is to call such a
field “quasi-periodic”: φ(x + 2π) = φ(x) + 2π w, where w is an arbitrary constant
associated with the linear term in φ. Physically, the winding mode is necessary
to allow for a zero mode of the charge density, ρ := ∂xφ, so that the total charge
Q =

∮
dx ρ =

∮
dx ∂xφ can be non-zero. In group-theoretic slang, what we allow

here is that the group element g in the gauge connection a = g−1 dg is not necessarily
single-valued. We shall keep this in mind for our gravity considerations below.

Finally, let us consider an enticing alternative to the boundary conditions (23).
If we add to the Chern–Simons action (21) a boundary term proportional to∫

y=0

dtdx atax (25)

then by choosing the coefficient suitably we can either cancel the at δax term or
the ax δat term in the variation (22) (the remaining boundary term then acquires
a factor 2). Assuming we do the former, we end up with a boundary term propor-
tional to ax δat. To get a well-defined variational principle we can thus impose the
boundary conditions

δat = 0 δax 6= 0 . (26)

Thus, at is fixed and ax is allowed to vary. Different names for these quantities exist
in various parts of the physics literature: at is called “source”, “chemical potential”,
“state-independent”, “non-normalizable”, “intensive”; ax is called “vev”, “charge”,
“state-dependent”, “normalizable”, “extensive”. Note that it is natural in gauge
theories to identify at as chemical potential — indeed, this is how the chemical
potential usually is introduced in gauge theories.

This rudimentary study of quantum Hall physics reinforces the necessity of phys-
ical input when choosing boundary conditions. However, it also suggests some
“natural” choices. In the following, we apply these lessons to 3d gravity in the
Chern–Simons formulation.

3.2 Chern–Simons formulation

In gravity, we do not want our connection to become zero at the boundary, like in
(23). However, we would not mind fixing the variation of the time component of the
connection, like in (26). Thus, let us make the ansatz (pioneered in 1608.01308)

A+ = b−1
(

d+a+(t, ϕ)
)
b A− = b

(
d+a−(t, ϕ)

)
b−1 (27)

with the group element
b = eL−1eρL0 (28)

and the boundary connections

a±t = µ±1 (t, ϕ)L1 + µ±0 (t, ϕ)L0 + µ±(t, ϕ)L−1 (29)

a±ϕ = L±1 (t, ϕ)L1 + L±0 (t, ϕ)L0 + L±−1(t, ϕ)L−1 (30)

where δµ±a = 0 and L±a 6= 0. Thus, we have a total of 6 state-independent functions
and 6 state-dependent functions, and therefore should expect 6 towers of charges.
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To obtain the charges, we study first the boundary condition preserving gauge
transformations (for brevity, consider just the +-chirality and drop the sign deco-
rations)

δεA = dε+ [A, ε]
!
= O(δA) (31)

As in previous lectures, it is convenient to redefine the gauge parameters with the
same group element b,

ε = b−1 ε̂ b = b−1
(
ε1(t, ϕ)L1 + ε0(t, ϕ)L0 + ε−1(t, ϕ)L−1

)
b (32)

which reduces the condition (31) to

δεa = dε̂+ [a, ε̂]
!
= O(δa) = O(1) dϕ . (33)

The ϕ-component of the equations (33) lead no constraints at all since we switched
on all algebraic components in aϕ and allowed them to vary arbitrarily and indepen-
dently from each other. The t-component establishes three constraints of the form
∂tεa = . . . that fix the behavior of the gauge parameters εa under time evolution.

Using the background independent result for the charge variation in Chern–
Simons theories,

δQ[ε] =
k

2π

∮
S1

tr
(
ε δA

)
(34)

yields charge variations

δQ[ε] =
k

2π

∮
S1

εa δLb κab (35)

where κab is the Cartan–Killing metric for sl(2,R). Assuming the parameter func-
tions εa to be state-independent (our “natural” choice of slicing) renders the charges
(35) integrable in field space.

Introducing Fourier modes Jan (and replacing Poisson brackets by commutators,
with suitable factors i attached) yields two copies of sl(2,R) current algebras

[Jan , J
b
m] = (a− b) Ja+b

n+m − k nκab δn+m, 0 (36)

as asymptotic symmetry algebra for AdS3 Einstein gravity with the loosest set of
boundary conditions. The algebra (36) is non-abelian and has a central extension
proportional to k.

For our choice of slicing, δεa = 0, the charges (35) are integrable in field space.
Moreover, they are manifestly finite (since they do not depend on the radial co-
ordinate ρ), and non-zero on all states where at least one of the functions La is
non-zero. So apart from conservation, we have checked all the usual nice properties
of boundary charges. Conservation of the charges,

∂tδQ[ε] = 0 (37)

can be proven using the EOM. For details see section 4.1 in 1608.01308.
Moreover, adding a boundary term analogous to (25),

Γ = ICS −
k

4π

∫
dtdϕ tr

(
AtAϕ

)
(38)

leads to a well-defined variational principle for the action Γ,

δΓ ≈ − k

2π

∫
dtdϕ tr

(
aϕ δat

)
(39)

since our boundary conditions enforce fixed chemical potentials, δat = 0. This is
completely analogous to the example discussed in the last few paragraphs of the
quantum Hall section.

Before recovering known examples of boundary conditions with fewer towers of
charges (including the original BH), we translate the results above into the metric
formulation.
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3.3 Metric formulation

There are some interesting subtleties in the metric formulation. First of all, had we
chosen the group element b = eρL0 instead of (28) the metric would not feature all
six state-dependent functions. This may seem confusing since the Chern–Simons
formulation does not care about the particular choice of the group element b (indeed,
the boundary charges are independent of b), but recall that perfectly regular Chern–
Simons field configurations can correspond to singular metric configurations. The
simplest pertinent example is to choose the group element b = 1l, in which case the
metric degenerates to a 2d metric and is thus singular from a 3d perspective. In
short, we chose the group element b as in (28) to get non-degenerate metrics that
feature all six state-dependent functions and all six chemical potentials. (Having
said this, other such choices of b are possible.)

With our choices, the boundary conditions on the metric are given by a gener-
alized Fefferman–Graham expansion,

ds2 = dρ2 + 2
(
eρN

(0)
i +N

(1)
i + e−ρN

(2)
i +O(e−2ρ)

)
dρdxi

+
(
e2ρg

(0)
ij + eρg

(1)
ij + g

(2)
ij +O(e−ρ)

)
dxi dxj (40)

where the quantities N
(n)
t and g

(n)
tt (with n = 0, 1, 2) are fixed and determined by the

six chemical potentials, while N
(n)
ϕ and g

(n)
ϕϕ are allowed to vary independently and

are determined by the six state-dependent functions. The mixed components g
(n)
tϕ

are also given in terms of the chemical potentials and state-dependent functions,
but do not contain additional indepedent functions. For further details see section
3.2 of 1608.01308. The lesson from the result (40) is that gauge-fixing to Fefferman–
Graham gauge (where all the Ni vanish) comes with loss of generality!

The AKVs follow from solving the defining property

Lξgµν
!
= O(δgµν) (41)

leading to an expansion

ξµ(t, ϕ, ρ) = ξµ(0)(t, ϕ) + e−ρ ξµ(1)(t, ϕ) + e−2ρ ξµ(2)(t, ϕ) +O(e−3ρ) (42)

where explicit results for the ξµ(n) can be found in section 3.3 of 1608.01308.

If we assume that the leading order functions appearing in ξµ(0) are all state-

independent we obtain the usual Lie bracket algebra of the AKVs as asymptotic
symmetry algebra.

However, if we assume that instead the gauge parameters ΛI in the Chern–
Simons formulation are state-independent we have to use instead the adjusted
(sometimes also called “modified”) bracket

[ξ1, ξ2]µadjusted = Lξ1ξ
µ
2 − δ

g
ξ1
ξµ2 + δgξ2ξ

µ
1 (43)

where δgξ1ξ
µ
2 denotes the change induced in ξµ2 (g) due to the variation δgξ1gµν :=

Lξ1gµν . The last two terms on the right hand side of (43) are absent in the usual
Lie bracket.

It can be shown that the ASA generated by the Lie bracket is different from
the ASA generated by the modified Lie bracket. Given what we know already
about changes of slicings, this is not a surprise. It was checked in 1608.01308 that
the modified Lie brackt algebra of the AKVs recovers the centerless version of the
sl(2,R) current algebras (36), as anticipated on general grounds.

7

https://arxiv.org/pdf/1608.01308.pdf
https://arxiv.org/pdf/1608.01308.pdf
https://arxiv.org/pdf/1608.01308.pdf


3.4 Recovering the AdS3 zoo

Since we have now the most general set of AdS3 boundary conditions available to
us (up to changes of slicings, of course), we should be able to recover all known
special cases, like BH boundary conditions. This is indeed the case. For a detailed
survey of all relevant cases see section 4 of 1608.01308.

Here, we confine ourselves to recovering BH boundary conditions. Starting from
the most general boundary conditions of section 3.2, we impose additional con-
straints on the state-depedent functions.

L+
1 = L−−1 = 1 L+

0 = L−0 = 0 L+
−1,L

−
1 : arbitrary (44)

This procedure is also known as “Drinfeld–Sokolov reduction” in the literature. The
chemical potentials are constrained by the EOM, see section 4.2.1 of 1608.01308 for
details.

An important consequence of the Drinfeld–Sokolov reduction is that the canon-
ical realization of the asymptotic symmetries reduces the two sl(2,R) current alge-
bras (36) to two Virasoro algebras with the BH values of the central charge, c = 6k.

4 Boundary actions

Inspired by the Floreanini–Jackiw boundary action (24) encountered in the quantum
Hall system it is natural to ponder what are the boundary actions of various gravity
theories, e.g., for AdS3 Einstein gravity with BH boundary conditions. You can find
the answer to this, for instance, in section 3 of 1906.10694. Here are some key steps.

The spatial part of the connection can be locally represented in terms of a group
element G,

Ai = G−1∂iG G(t, ϕ+ 2π, ρ) = h(t)G(t, ϕ, ρ) (45)

which, however, is globally allowed to be non-trivial, i.e., the holonomy function
h(t) need not be the identity. It turns out that in the boundary action one can get
rid of the radial dependence, so that effectively for our purposes the group element
G can be assumed to depend only on the boundary coordinates t, ϕ.

Technically, it is convenient to Gauss-decompose the SL(2,R) group element,

G = eXL1eΦL0eY L−1 . (46)

The (quasi-)periodicity properties of the three functions are Y (t, ϕ+ 2π) = Y (t, ϕ),

X(t, ϕ+ 2π) = e−2πJ0(t)X(t, ϕ) Φ(t, ϕ+ 2π) = Φ(t, ϕ) + 2π J0(t) (47)

where h(t) = exp (2π J0(t)L0).
For BH boundary conditions it turns out that the boundary action reduces to

the Floreanini–Jackiw action of a self-dual scalar field with finite velocity

IBH[Φ] ∼ Iv=0
FJ [Φ] + µ

∫
∂M

dtdϕ
(

(Φ′)2 + 2Φ′′
)
∼ Iv=µ

FJ [Φ] . (48)

See section 4.2 in 1906.10694 for details. The combination appearing in the Hamil-
tonian,

L = (Φ′)2 + 2Φ′′ (49)

up to normalization can be interpreted as the Sugawara-constructed stress tensor
appearing in BH boundary conditions. The fields X and Y are determined by
constraints as

X ′ = e−Φ Φ′ = −2Y . (50)

Expressing the boundary action instead as functional depending on the field X
yields the Alekseev–Shatashvili boundary action, featuring the famous Schwarzian
derivative {X,ϕ} = X ′′′/X ′′ − 3

2 (X ′′/X ′)2 as Hamiltonian term. This is the geo-
metric action of the Virasoro group on its coadjoint orbit.
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