
AdS3/CFT2

If you have followed all my OIST lecture, you will have noticed some redundancy
in my lecture notes. This is by design, so that individual lecture notes can be read
independently, especially for people who only come to some of the lectures. So do
not be alarmed when you see some stuff on the next pages that you have already
seen in the first three lectures.

The main point of this lecture is to show in which sense Einstein gravity in three
spacetime dimensions with negative cosmological constant (AdS3) is equivalent to
a two-dimensional conformal field theory (CFT2), a special case of Maldacena’s
AdS/CFT correspondence. After having shown this, we will mention some alterna-
tive boundary conditions where the conclusion about the holographic dual changes.

1 Précis of AdS3 Einstein gravity á la Brown–Henneaux

The bulk action of AdS3 Einstein gravity IAdS3
= ICS[A+]−ICS[A−] is the difference

of two sl(2,R) Chern–Simons actions

ICS[A±] =
k

4π

∫
M

Tr
(
A± ∧ dA± + 2

3 A
± ∧A± ∧A±

)
(1)

with level k = `
4G , where ` is the AdS radius (related to the cosmological constant

by Λ = − 1
`2 ) and G is Newton’s constant in 3d. In a convenient basis for the Lie

algebra generators La appearing, e.g., in A± = Aa±La their commutators read
[La, Lb] = (a − b)La+b with a, b ∈ {−1, 0, 1}. In this basis, the non-vanishing
traces of bilinears are Tr(L2

0) = 1
2 and Tr(L1L−1) = Tr(L−1L1) = −1. Dualized

spin-connection and dreibein follow from the connections as linear combinations,
Aa± = ωa ± 1

` e
a. The metric is then determined by a bilinear in the dreibein

gµν =
`2

2
Tr
((
A+
µ −A−µ

) (
A+
ν −A−ν

))
. (2)

Brown–Henneaux (BH) boundary conditions expressed in highest-weight gauge
for the connection are given by (btw, we assumeM to be a filled cylinder or torus)

A± = e∓ρ/`L0
(

d+a±(x+, x−)
)
e±ρ/`L0 (3)

with the “boundary connection” (L±(x±) are state-dependent functions)

a+ =
(
L+1 − L+(x+)L−1

) dx+

`
⇒ δa+ = −δL+(x+)L−1

dx+

`
(4)

a− =
(
L−1 − L−(x−)L+1

) dx−

`
⇒ δa− = −δL−(x−)L+1

dx−

`
. (5)

In the metric formulation, this generates a Fefferman–Graham expansion

ds2 = dρ2 +
(
e2ρ/` γ(0)

µν + γ(2)
µν +O(e−2ρ/`)

)
dxµ dxν (6)

with γ
(0)
µν = ηµν where η±∓ = 1

2 , η±± = 0, and γ
(2)
±± = L±(x±), γ

(2)
±∓ = 0, δγ

(2)
±± 6= 0.

In what follows, we set ` = 1. The BH boundary conditions are preserved, i.e.,
δεA = dε+ [A, ε] = O(δA), by gauge transformations ε± = e∓ρL0 ε̂ e±ρL0 with

ε̂± = ε±(x)L±1 − ε± ′(x)L0 +
(

1
2 ε
± ′′(x)− L±(x) ε±(x)

)
L∓1 + . . . (7)

where the ellipsis denotes subleading terms. The associated boundary charges

Q±[ε±] =
k

2π

∮
S1

ε±(x±)L±(x±) dx± (8)

depend on the state-dependent functions L±(x±). (EOMs dictate ∂∓L± = 0.)
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2 AdS3 Einstein gravity á la BH is a CFT2 if it exists

The BH boundary charges (8) are integrable in field space (since we assumed ε±(x)
to be state-independent!), finite for ρ→∞ (in fact, independent from ρ!), non-zero
for infinitely many physical states, zero for all gauge trafos that fall off so quickly
that ε±(x±) = 0, and conserved in time as a connsequence of the EOMs (in this
context a.k.a. “holographic Ward identities”).

Let us elaborate on the last point. If we had not assumed ∂∓L± = 0 already in
our ansatz (3), the EOMs would have enforced these conditions. If we rewrite the
lightcone coordinates in terms of time t and angle ϕ, x± = ϕ ± t then we see that
we can trade time-derivatives for (plus or minus) angle-derivatives when acting on
functions that depend only on one chiral combination, either x+ or x−, but not
both. Therefore, the time derivative of the charges

∂tQ
±[ε±] ∝ ∂t

∮
S1

ε±(x±)L±(x±) dx± ∝
∮
S1

∂ϕ
(
ε±(x±)L±(x±)

)
dϕ = 0 (9)

vanishes, as long as ε±(x±) and L±(x±) are globally defined on the S1.
Since the state-dependent functions transform with an infinitesimal Schwarzian,

δε±L± = ε±L± ′ + 2ε± ′L± − 1

2
ε±
′′′

(10)

the canonical realization of the asymptotic symmetry algebra

δε±1
Q[ε±2 ] = {Q[ε±1 ], Q[ε±2 ]} = Q[ε± ′1 ε±2 − ε

± ′
2 ε±1 ]− k

4π

∮
S1

ε± ′′′1 ε±2 dx± (11)

has a non-trivial central extension proportional to the Chern–Simons level k.
In Fourier modes for the generators, L±n := Q[einx

±
] + k

4 δn,0, the mode version
of the asymptotic symmetry algebra (11)1

− i
{
L±n , L

±
m

}
= (n−m)L±n+m +

k

2

(
n3 − n

)
δn+m, 0 (12)

is recognized as two copies of the Virasoro algebra with central charges

c = 6k =
3`

2G
(13)

that tend to infinity in the classical limit on the gravity side, G→ 0.
In the quantum theory we replace −i{, } by commutators. What we have shown

above (and what BH have shown in 1986) is that the physical phase space (and in
the quantum theory the physical Hilbert space) of AdS3 Einstein gravity (with BH
boundary conditions) must fall into representations of two copies of the Virasoro
algebra. This is the defining property of a CFT2. In this sense, BH have proved
AdS3/CFT2 more than a decade before people knew about AdS/CFT. (However,
they did not show that AdS3 Einstein gravity exists as a consistent quantum theory.
It might not exist. Nor is it clear which CFT2 precisely is supposed to be dual to
the gravity theory. See 0706.3359 for an attempt.)

A caveat before moving on to some explicit checks/implications of AdS3/CFT2:
most of the checks below are “only” checks of the asymptotic symmetries, i.e.,
they relate gravity observables to CFT2 observables without the need (and without
the capability) of precisely identifying the CFT2 beyond its values of the central
charges. For such an identification, most likely we need a UV completion and have
to go beyond the (super)gravity approximation (see, e.g., 1812.01007 for such a
completion within string theory). Formulated positively, all the checks we are going
to discuss are completely universal and do only depend on the existence of a UV
completion but not on its details.

1The constant shifts of the zero modes L±0 by the Casimir energy − c
24

guarantees that the

Virasoro algebra (12) has an sl(2,R⊕ SL(2,R)-invariant subalgebra generated by L±1 , L±0 , L±−1.
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3 Elementary checks of AdS3/CFT2

Let us start with some elementary checks that do not require a lot of calculation.
As always, symmeries are a good place to start.

3.1 Match of global symmetries

The defining property of a CFT2 is conformal symmetry: the physical Hilbert space
must fall into representations of the conformal algebra, which in two dimensions
consists of two copies of the Virasoro algebra. For AdS/CFT to have any chance
to be true it must be the case that the physical Hilbert space (or in the classical
approximation the physical phase space) falls into representations of two copies of
the Virasoro algebra. In the previous sections we have proved that this is true for
AdS3 Einstein gravity with BH boundary conditions. Starting from a QFT with
Poincaré plus scale symmetries it is even possible to give a slick derivation of the
AdS line element as follows. Suppose we have the daring idea to use energy E as
additional coordinate, for instance to geometrize renormalization group flow of a
D-dimensional QFT. The most general line-element in D+1 dimensions compatible
with Poincaré symmetries is then given by

ds2 = f1(E) dE2 + f2(E) ηµν dxµ dxν µ, ν = 0..(D − 1) (14)

with two unknown scalar functions fi(E). Suppose further that our QFT has scale
symmetry

xµ → λxµ E → Eλ−1 . (15)

Then the most general line-element (14) compatible with the scale symmetry (15)
is given by

ds2 = `2
(

dE2

E2
+ E2 ηµν dxµ dxν

)
(16)

where we introduced some arbitrary but fixed length scale ` to have the correct
units. The metric (16) is Poincaré patch AdS in D+1 dimensions, with AdS radius
` and the asymptotic boundary at E →∞.

3.2 Absence of gravitational/Lorentz anomaly

Any CFT2 is characterized, among other things, by the values of the two central
charges. In the absence of gravitational or Lorentz anomalies, the left and right
central charges must be equal in magnitude. In the previous sections, we have
proved this is true for AdS3 Einstein gravity with BH boundary conditions.

3.3 Compatibility with non-triviality and unitarity

All unitary CFTs that are non-trivial must have strictly positive central charges.
In the previous sections, we have proved his is true for AdS3 Einstein gravity with
BH boundary conditions as long as Newton’s constant is positive.

3.4 Heuristics from supergravity limit

From the way the string theory construction á la Maldacena works, it is clear
that AdS/CFT is a duality of strong/weak type, meaning that strongly coupled
CFTs are mapped to weakly coupled gravity theories. Heuristically, we expect that
the supergravity limit, which is very simple, should produce CFTs that are very
complicated. More concretely, in the classical limit of vanishing Newton constant,
G → 0, the CFT central charge is expected to diverge, c → ∞. In the previous
section we have proved his is true for AdS3 Einstein gravity with BH boundary
conditions.
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4 Thermodynamical check of AdS3/CFT2 a.k.a. Cardyology

4.1 Bekenstein–Hawking entropy of BTZ black holes

Thermal states in a CFT2 are dual to BTZ black holes, with metric (ϕ ∼ ϕ+ 2π)

ds2
BTZ = −

(r2 − r2
+)(r2 − r2

−)

`2r2
dt2+

`2r2 dr2

(r2 − r2
+)(r2 − r2

−)
+r2

(
dϕ− r+r−

`r2
dt
)2

(17)

Their Bekenstein–Hawking entropy

S =
2π r+

4G
= 2π

√
cL

6
+ 2π

√
c L̄

6
(18)

with L = `L+/(4G), L̄ = `L−/(4G) is of Cardy-type.

4.2 Cardy entropy of states dual to BTZ black holes

As reviewed in appendix A, the last expression for the entropy is a generic result
for thermal states in CFT2, assuming the existence of a gap in the spectrum of
states. Therefore, it is worthwhile to verify whether or not the gravity state space
naturally leads to such a gap.

BTZ black holes and global AdS3 are examples of zero-mode solutions, i.e., states
where the functions L±(x±) are both constant. The translation between gravity-
and CFT-notation is

r2
+ + r2

−
2`2

= m = L+ + L− − r+r−
`2

=
j

`
= L+ − L− (19)

where m is the mass parameter and j the angular momentum parameter (the cor-
responding charges are multiplied with the Chern–Simons level k).

On the gravity side we exclude naked singularities, including naked conical de-
fects, implying L± ≥ 0. Thus, starting from the value zero we have a continuous
spectrum of states. So far, so bad. However, this continuous spectrum of states
describes just the black hole sector of our theory (and the massless limit to so-called
Poincaré patch AdS, L± = 0). To find/exclude a gap we still need to identify the
gravity solution dual to the CFT2 vacuum. From the CFT perspective this must
be an sl(2,R)⊕ sl(2,R)-invariant ground state, with a mass that is gapped by − c

12
from the rest of the spectrum. On the gravity side, the ground state is global AdS3,
which indeed has the correct six Killing symmetries. It is given by the metric (17)
with r2

+ = −`2, r− = 0, corresponding to a mass gap of − `
8G . Using the BH result

(13) for the central charge reveals that we have the correct mass gap, − c
12 = − `

8G .

4.3 Semiclassical corrections to the entropy

The classical matching (17) between Bekenstein–Hawking entropy and Cardy en-
tropy can be generalized to a semi-classical matching, by taking into account 1-loop
corrections on both sides of the correspondence. Generically, this leads to results
for the entropy of the form

S = S0 − q lnS0 +O(1) (20)

where S0 is the Bekenstein–Hawking entropy/leading order Cardy entropy, and
q is an ensemble-dependent number than can be calculated on both sides of the
AdS3/CFT2 correspondence, using the saddle-point approximation. In a mixed
ensemble (where the mass is fixed but the angular momentum is allowed to vary),
the result turns out to be q = 3

2 . See, e.g., section 5 in 1205.0971. The key idea
for this last check is that lnS0 is still a large number for S0 → ∞, even though it
is much smaller than S0. Therefore, the result for q must be universal and cannot
depend on details of the UV completion (as long as the UV completion is compatible
with semiclassical Einstein gravity).
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5 Stress tensor correlation functions

The main class of observables in a QFT are correlation functions of gauge invariant
operators. Thus, the most important entry in the AdS/CFT dictionary is how to
relate such correlation functions with corresponding observables on the gravity side.
The conjectured relation by Gubser–Klebanov–Polaykov and Witten is〈

exp
(∫

j(x)O(x)
)〉

CFT

= Zgravity

[
φ(x, z)|z→0 = j(x)

]
. (21)

The left hand side is evaluated in the CFT. Here O(x) is some gauge invariant
operator whose source is given by j(x). The expression on the left hand side is
nothing but the generating functional of correlation functions, and you get arbitrary
n-point functions by taking n functional derivatives with respect to the sources
and then setting the sources to zero. If you know quantum field theory all these
statements must be familiar to you; if not, you should acquire this knowledge by
studying quantum field theory, which has applications all over physics and beyond.

The right hand side is evaluated in quantum gravity; in the supergravity approx-
imation this reduces to an evaluation in classical gravity. In that limit the quantity
Zgravity is the classical partition function evaluated with boundary conditions for
the field φ given by the function j(x) (which coincides with the source on the CFT
side), where the limit z → 0 denotes approaching the asymptotically AdS boundary
(while x are the boundary coordinates). The field φ must be the one corresponding
to the gauge invariant operator O.

Which operators exist in a given CFT depends very much on the details of the
CFT. However, all of them have at least one operator, namely the stress energy
tensor. The natural guess for the field on the gravity side corresponding to the
CFT stress tensor is the metric, since it also exists universally in any (reasonable)
theory of gravity. Thus, for n-point correlation functions of the CFT stress tensor
the GKPW prescription in the supergravity approximation reads

〈Tµ1ν1(x1)Tµ2ν2(x2) . . . Tµnνn(xn)〉connectedCFT

=
δn

δγ
(0)
µ1ν1(x1) δγ

(0)
µ2ν2(x2) . . . δγ

(0)
µnνn(xn)

Γgravity

[
gµν(x, z)|z→0 = γ(0)

µν (x)
]∣∣∣

EOM

(22)

where Γgravity is the classical gravity action and the subscript EOM means going on-
shell, which is equivalent to switching off the sources.

Thus, we have the surprising claim that, say, the 42nd functional derivative of
the (holographically renormalized) Einstein–Hilbert AdS action with respect to the
metric reproduces the 42-point correlation function of the stress tensor in a CFT.

In a CFT2 all such correlation functions can be derived using the recursion
relation

〈T 1T 2 . . . Tn〉 =

n∑
i=2

(
2

z2
1i

+
1

z1i
∂zi

)
〈T 2 . . . Tn〉 (23)

by Belavin, Polyakov and Zamolodchikov. Here, we introduced the abbreviations
zij := zi − zj and T i := T (zi) := Tzz(zi), where z and z̄ are coordinates on the
plane with metric gzz = 0 = gzz̄ and gzz̄ = 1 and Tzz(z) is the holomorphic flux
component of the stress tensor. We focus on the holomorphic sector, but the anti-
holomorphic sector is analogous, just swapping barred and unbarred quantities.

To get the recursion (23) started, we need the 2-point function,

〈T 1T 2〉 =
c

2z4
12

(24)

which is uniquely determined from conformal invariance and the central charge c.
To holographically calculate all the stress-tensor correlation functions, it is there-

fore sufficient to verify that the holographic 2-point function is given by (24) and
that the BPZ-recursion relations (23) hold on the gravity side. We shall do this
using the Chern–Simons formulation of AdS3 Einstein gravity. (See lecture 3.)
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A convenient trick to calculate the 2-point function is to calculate instead the
1-point function

〈T 1〉µ = 〈T 1〉+ ε 〈T 1T 2〉+O(ε2) (25)

of a CFT whose action (the undeformed action is Γ0)

Γµ = Γ0 −
∫

d2z µ(z, z̄)T (z) (26)

is deformed by a localized source µ(z, z̄) = ε δ(2)(z−z2, z̄− z̄2) for the stress tensor.
On the gravity side, the µ-deformed version of BH boundary conditions is given

by connections A = b−1(d+a)b with the group element b = eρL0 and the boundary
connection

az = L+ +
L
k
L− az̄ = −µL+ + . . . (27)

where k = `/(4G) is the Chern–Simons level and L±, L0 are the standard sl(2,R)
generators (see lecture 3 for more on these notations and conventions.) The state-
dependent function L is allowed to vary but the source µ is kept fixed. The ellipsis
denotes the remaining algebraic components of az̄, which are determined completely
by the EOM. Moreover, the EOM lead to the holographic Ward identities

− ∂̄L = µ∂L+ 2(∂µ)L+
k

2
∂3µ . (28)

To holographically calculate the 2-point function (24), we localize the source as
above and expand the state-dependent function as L(z) = L(0)(z)+εL(1)(z)+O(ε2)
where L(0) is the background value, for which we take the result for Poincaré patch
AdS3, L(0) = 0 (since we are interested in comparing with a CFT2 defined on a
plane this is the correct choice.) Inserting this expansion into the holographic Ward
identities (28) and neglecting terms of higher order in ε yields

∂̄L(1) = −k
2
∂3 δ(2)(z − z2, z̄ − z̄2) . (29)

The inhomogeneous linear PDE (29) is solved using the Green function of the
flat space Laplacean ∂∂̄, given by G(z12, z̄12) = ln(z12z̄12), establishing

L(1) = −k
2
∂4
z1G(z12, z̄12) =

3k

z4
12

. (30)

The result for the holographic 2-point function (30) coincides with the CFT2 result
for the 2-point function (24), provided the central charge is given by c = 6k, which
is precisely the result obtained by BH (13).

The holographic n-point functions can be obtained similarly, by localizing the
source at n − 1 points, µ(z, z̄) =

∑n
i=2 εi δ

(2)(z − zi, z̄ − z̄i) :=
∑n
i=2 εi δi. On

the CFT side, this yields the desired term 〈T 1T 2 . . . Tn〉 mutiplied by the multi-
linear factor

∏n
i=2 εi, i.e., each of the εi appears exactly once. On the gravity side,

repeating the analysis above for this new form of the source, keeping track of the
multi-linear factor

∏n
i=2 εi in the EOM, and using again the Green function for the

Laplacean on the plane yields a recursion relation

L(n−1)(z1) =

n∑
i=2

εi

(
2

z2
1i

+
1

z1i
∂zi

)
L(n−2)(zi) . (31)

This result is the gravity version of the BPZ recursion relation (23). The sum of
terms in this expression proportional to

∏n
i=2 εi yields the holographic n-point stress

tensor correlator.
For more details, references, and a generalization for CFT2 defined on a cylinder

see the first 2.2 pages of 1507.05620.
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6 Virasoro descendants of the vacuum

The CFT2 vacuum |0〉 obeys the highest weight conditions Ln|0〉 = 0, ∀n ≥ −1,
where Ln are the Virasoro generators. Generic descendants of the vacuum,

|n1, n2, . . . , nm〉 := L−n1
L−n2

. . . L−nm |0〉 ni ≥ 2∀i = 1..m (32)

can be organized by their L0 eigenvalue, called the level of the descendant. It is a
well-known result2 that the number of descendants at level N coincides with the
N th coefficient in the Taylor expansion around q = 0 of the generating function

∞∏
n=2

1

1− qn
= 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 +O(q9) . (33)

The leading order 1 refers to the vacuum |0〉, the next-to-leading order q2 to the
level-2 vacuum descendant L−2|0〉, etc. For instance, the 4 descendants at level 7
are L−7|0〉, L−5L−2|0〉, L−4L−3|0〉, L−3L

2
−2|0〉.

On the gravity side, the vacuum state corresponds to global AdS3 and Virasoro
excitations correspond to boundary gravitons above the global AdS3 vacuum that
are generated through 1-loop effects. Thus, we should calculate the 1-loop partition
function on the gravity side and verify whether or not it reproduces the generating
function (33) (times its ant-holomorphic counter part).

The (Euclidean) 1-loop torus partition function for fluctuations above global
(Euclidean) AdS3 is given by

Z(1) = Zgh ×
∫
DhTT

µν Dh̃ exp

(
− κ

∫
d3x
√
ḡ hµνG(h)µν

)
(34)

where we split the metric into the AdS3 background plus fluctuations, gµν = ḡµν +
hµν , linearized in hµν , and decomposed the latter as

hµν = hTT

µν +
1

3
h̃ ḡµν +∇µξν +∇νξµ (35)

where TT stands for “transverse-traceless”, i.e., ∇̄µhTT
µν = 0 = ḡµνhTT

µν . The quan-
tity G(h)µν is the linearized Einstein tensor (including the contribution from the
cosmological constant). The value of the coupling constant κ is irrelevant for us, as
long as κ is large enough to make the semi-classical approximation valid. We sepa-
rated already the gauge part generated by the ξµ-contributions to hµν and denoted
the associated ghost contribution as Zgh. We work with unit AdS radius, ` = 1.

Using the path integral measure (for more on this see, e.g., 1007.5189)

1 =

∫
Dhµν e−

∫
〈h, h〉 =

∫
Dξµ e−

∫
〈ξ, ξ〉 =

∫
Dσ e−

∫
〈σ, σ〉 (36)

with the ultra-local inner products

〈h, h′〉 =

∫
d2x
√
ḡ hµνh′µν 〈ξ, ξ′〉 =

∫
d2x
√
ḡ ξµξ′µ 〈σ, σ′〉 =

∫
d2x
√
ḡ σσ′

allows to calculate the ghost partition function defined as

Dhµν = Zgh ×DhTT

µν DξµDh̃ (37)

after the convenient split ξµ = ξT
µ+∇̄µσ with ∇̄µξT

µ = 0 yielding Zgh = J2/J1 where

Dξµ = J1DξT

µ Dσ Dhµν = J2DhTT

µν Dh̃DξT

µ Dσ . (38)

2The generating function (33) is related to partitions of integers. You should be able to figure
out why this is the correct combinatorics from the definition of the descendants and the level. For
details on the combinatorics of integer partitions see section 2 in these lecture notes by Wilf.
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The quantity J1 follows from the chain of identities

1=

∫
DξT

µDσJ1e
−〈ξ,ξ〉=

∫
DξT

µDσJ1 e
−

∫
d3x
√
ḡ
(
ξTµ ξ

µT−σ∇̄2σ
)

=J1

[
det(−∇̄2)0

]−1/2

(39)
where in the last step we used the standard QFT result about path integrals of
Gaussians. The subscript 0 indicates that the functional determinant is evaluated
for a spin-0 field. Similarly, one can calculate J2, obtaining

J2 =
[

det(−∇̄2)0 det(−∇̄2 + 3)0 det(−∇̄2 + 2)T

1

]1/2
(40)

Thus, the ghost partition function is a product of functional determinants.

Zgh =
J2

J1
=
[

det(−∇̄2 + 3)0 det(−∇̄2 + 2)T

1

]1/2
(41)

We do now the same for the remaining part in the partition function (34), using
results for the linearized Einstein tensor when acting on transverse-traceless or
scalar modes (see appendix B) and obtain

Z(1) = Zgh ×
[

det(−∇̄2 + 3)0 det(−∇̄2 − 2)TT

2

]−1/2
=

√
det(−∇̄2 + 2)T

1

det(−∇̄2 − 2)TT
2

. (42)

The remaining task is to evaluate the functional determinants in (42), which can
be done using heat kernel techniques, see e.g. the user manual by Vassilevich.

− ln det
(
− ∇̄2 − 2

)TT

2
=

∞∫
0

dt

t
K(2)(t) e2t (43)

The heat kernel of the operator (−∇̄2)TT
2 reads (see, e.g., 0804.1773 or 0911.5085)

K(2)(t) =

∞∑
n=1

τ2 cos(2nτ1)√
4πt| sin(nτ/2)|2

e−
n2τ22
4t e−3t (44)

where τ = τ1 + i τ2 and for later convenience we define the modular parameter q :=
eiτ . The quantities 2πτ1 and 2πτ2 correspond physically to the angular potential θ
and inverse temperature β, respectively, i.e., to the chemical potentials with which
we evaluate the partition function. Similarly, the vector heat kernel is given by

K(1)(t) =

∞∑
n=1

τ2 cos(nτ1)√
4πt| sin(nτ/2)|2

e−
n2τ22
4t e−2t . (45)

Putting all results together, we find that the logarithm of the 1-loop partition
function (42) evaluates to

lnZ(1) =

∞∑
n=1

cos(2nτ1)e−nτ2 − cos(nτ1)e−2nτ2

2n| sin(nτ/2)|2
=

∞∑
n=1

1

n

( q2n

1− qn
+

q̄2n

1− q̄n
)
. (46)

Exponentiating this result and using the power series of ln(1−qn) finally establishes

Z(1)[q, q̄] =

∞∏
n=2

1

|1− qn|2
(47)

in full agreement with the CFT2 result.3

3On the CFT side we are considering not just the Ln-descendants of the vacuum discussed in
(33) but also the anti-holomorphic counterpart. So the CFT result for the generating function is
ZCFT[q, q̄] =

∏∞
n=2

1
1−qn

· 1
1−q̄n

=
∏∞

n=2
1

|1−qn|2 .
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7 Entanglement entropy

Consider a bipartite quantum system with a direct product Hilbert space H = HA⊗
HB and consider a general state described by some density matrix ρ (normalized
such that trρ = 1). Then define the reduced density matrix as the partial trace

ρA = trBρ (48)

where all degrees of freedom associated with HB are traced out. Entanglement
entropy (EE) is then defined as the van Neumann entropy of the reduced density
matrix.

SA := −tr
(
ρA ln ρA

)
(49)

In a QFT context we can define spatial entangling regions and calculate (or least
define) EE with respect to such regions. Note that EE will always be infinite in
a QFT due to UV divergences. Thus, we need to regularize them by introducing
some UV cutoff.

For a CFT2 defined on a plane, the only (connected) entangling region available
is some interval of length L. EE should then depend in some way on the interval
L (in units of the UV cutoff a). As shown by Holzhey, Larsen and Wilczek, EE is
universally given by

EE for planar CFT2 at zero temperature : SA =
c

3
ln
L

a
+ const. (50)

and depends linearly on the central charge c.
The proposal of Ryu and Takayanagi (RT) hep-th/0603001 is to calculate EE

holographically by the following recipe. For any entangling region in the CFT take
a minimal surface γA attached to the boundary defining the entangling region A.
Its area gives EE. The RT-formula

holographic EE: SRT =
area(γA)

4G
(51)

resembles the Bekenstein–Hawking formula, but note that the latter is a thermal
entropy (not EE) and involves the area of the event horizon of a black hole (not a
minimal area hanging from some asymptotically AdS boundary).

Originally, RT was checked only for time-independent situations. In time-
dependent situations Hubeny, Rangamani and Takayanagi (HRT) generalized the
proposal 0705.0016 with the result that minimal surfaces are replaced by ex-
tremal surfaces. The (H)RT proposal applies to any spacetime dimension. In the
AdS3/CFT2 context it simplifies to calculating the length of geodesics, which is a
rather straightforward calculation. See figure 1.

Figure 1: RT prescription for holographic EE
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Figure 2: Graphic proofs of strong subadditivity inequalities using holographic EE

One of the neat aspects of the RT proposal (apart from its simplicity) is that it al-
lows to prove straightforwardly the strong subadditivity inequalities, see Fig. 2, just
from knowing that EE corresponds to the area of minimal surfaces (see 0704.3719).

Let us now verify that the RT proposal reproduces the CFT2 result (50). The
dual geometry to the CFT2 vacuum on the plane is given by Poincaré patch AdS.

ds2 =
`2

z2

(
− dt2 + dx2 + dz2

)
(52)

We apply now the RT prescription (51) to this case for an entangling region of size L,
i.e., the endpoints of the geodesic are (zL = 0, xL = −L/2) and (zR = 0, xR = L/2).

Since
∫ 0

dz/z =∞ the length of the geodesic diverges, which recovers the expected
UV divergence of the CFT result (50) in the limit a→ 0. To introduce the analogue
of the UV cutoff on the gravity side we anchor the geodesics not at z = 0 but instead
at z = ε, with some small but finite cutoff ε. EE is thus given by

SA =
1

4G

∫
ds =

`

2G

zmax∫
ε

dz

z

√
x′ 2 + 1 =

`

2G

0∫
L/2−O(ε)

dx

z

√
1 + ż2 =

`

2G

0∫
L/2−O(ε)

dxL(z, ż)

(53)
where zmax is the maximal value of z, i.e., the point where the geodesic turns
around back towards the asymptotic boundary. Prime denotes z-derivatives and
dot x-derivatives. We choose the parametrization in terms of x.

There is a Noether charge due to invariance under x-translations

Q = L − ż ∂L
∂ż

=
`

z

1√
1 + ż2

(54)

which is related to the maximal z-value (where żmax = 0) through

Q =
`

zmax

. (55)

We can also relate it to the interval length.

L/2−O(ε) =

L/2−O(ε)∫
0

dx =

ε∫
zmax

dz

ż
= zmax

√
1− ε2 = zmax −O(ε2) (56)

The length integral (53) then simplifies to

SA =
`

2G

1∫
ε/zmax

dy

y

1√
y2 − 1

= ln
zmax

ε
+O(ε2 ln ε) . (57)

Labelling the UV cutoff as ε ∝ a and using the relation (56) the final result for
holographic entanglement entropy

SA =
`

2G
ln
L

a
+ const. =

c

3
ln
L

a
+ const. (58)

reproduces precisely the CFT2 result (50) for any length L and central charge c.
The results above generalize to all Bañados geometries and their dual states in

the CFT2, see appendix C.
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8 Great, but what happens if we deviate from BH?

If you saw them for the first time you should be suitably impressed (and perhaps
overwhelmed – if so, check also the appendices and quoted literature) by the calcu-
lations and checks of AdS3/CFT2 on the previous ten pages.

In this final section, we step back and reconsider our starting point, the BH
boundary conditions summarized in section 1, as a segue to the next set of lectures.

In the Chern–Simons formulation, after we split off the group element that
depends on the radial coordinate ρ, we were left with a boundary connection a
that had only legs in the boundary directions and depended only on the boundary
coordinates. So far so good. To get BH boundary conditions we then enforced a
fixed (but non-zero) highest weight component (the L+1 term was there but had a
fixed numerical prefactor), a vanishing Cartan subalgebra component (no L0 term),
and an arbitrary (state-dependent) lowest weight component (the L−1 term).

Why did we make this choices? The honest answer is, to reproduce known
results in the metric formulation, namely the seminal BH results.

But how can we be sure this is the right choice? The short answer is we can’t.
There are other legitimate choices, and it depends on the physics context which
boundary conditions you should use. There is no mathematical way to prove that
you must enforce BH boundary conditions. It took the community a while to figure
this out.

A first step was done by Compère, Song and Strominger (CSS) in 1303.2662,
who imposed boundary conditions different from BH and found as asymptotic sym-
metry algebra a single Virasoro algebra and a û(1) current algebra. With all possible
central terms switched on, the mode version of this algebra reads (n,m ∈ Z)

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m, 0 (59)

[Ln, Jm] = −mJn+m + iκ
(
n2 − n) δn+m, 0 (60)

[Jn, Jm] = k n δn+m, 0 . (61)

Imposing CSS boundary conditions in AdS3 Einstein gravity yields non-zero c and
k but vanishing κ. While the symmetry algebra above clearly is different from the
CFT2 symmetry algebra, they still have something in common: in both cases we
have two towers of charges.

Soon after CSS, two additional sets of boundary conditions were found, both
of which have four towers of charges, in contrast to BH or CSS. The proposal in
1303.3296 led to two copies of the CSS algebra, so it contains the CFT2 symmetries
but enlarges them by two û(1) current algebras. The proposal in 1304.4252 replaced

one Virasoro algebra by an ŝl(2) current algebra, yielding

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m, 0 (62)

[Ln, T
a
m] = −mT an+m (63)

[T an , T
b
m] = (a− b)T a+b

n+m − k κab n δn+m, 0 (64)

as asymptotic symmetry algebra, where a, b ∈ {−1, 0, 1} while n,m ∈ Z.
A few years later, inspired by near horizon considerations (see future lectures and

1603.04824), we found boundary conditions that lead to two û(1) current algebras.
Confusingly, earlier work in 1511.08687 appeared to impose the same boundary
conditions but arrived at a different set of (non-abelian) asymptotic symmetries,
without central extension.

This led to some natural questions: what is the most general set of boundary
conditions, with the largest number of towers of charges? how is it possible to
apparently have the same boundary conditions but end up with different asymptotic
symmetries? is there some way to reduce this babylonian confusion of boundary
conditions by relating them in some way? We shall address all these questions in
the next lectures.
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A Cardy formula in one page

Consider a Euclidean CFT2 on a torus with coordinates σ ∼ σ+ 2π and τ ∼ τ + β,
where β = 1/T is inverse temperature. The Euclidean partition function

Z[β] = tre−βH = e−βF (65)

yields the free energy F . In the low-temperature limit, β → ∞, the trace is domi-
nated by the lowest-lying state, the vacuum, which has a free energy given by the
Casimir energy F0 = −c/12. (We are using here that the vacuum state is gapped
from the rest of the spectrum.)

lim
β→∞

Z[β]→ eβc/12
∣∣
β→∞ = Z0 = e−βF0

∣∣
β→∞ (66)

The entropy of the vacuum state vanishes, S0 = −∂F0

∂T = (1− β∂β) lnZ0 = 0.
We exploit now a duality, known in the literature as “S-duality”, “low-high tem-

perature duality”, “Kramers–Wannier duality” or “Tauberian theorem”. Namely,
we swap the two cycles σ → τ̃ , τ → σ̃ and then make a dilatation {τ̃ , σ̃} →
2π/β{τ̂ , σ̂} so that the exchanged and rescaled cycles now have the periodicities
σ̂ ∼ σ̂ + 2π and τ̂ ∼ τ̂ + 4π2/β. This geometric duality (a special case of modular
invariance of the torus) implies

Z[β] = Z[4π2/β] = Z[β̂] with the dual temperature β̂ = 4π2/β (67)

and thus shows a relation between low- and high-temperature limits of the partition
function that allows to extract the high-temperature limit as

lim
β→0

Z[β] = lim
β̂→∞

Z[β̂]→ eβ̂c/12 = ecπ
2/(3β) = e−βF (68)

yielding the 2d (Stefan–Boltzmann-)free energy

F = −π
2cT 2

3
(69)

and the (Cardy-)entropy

S =
2π2cT

3
. (70)

Introducing energy E = F + TS = 1
2 TS allows to re-express entropy as

S = 2π

√
cE

3
. (71)

Taking into account rotation, and allowing for different central charges c, c̄ and
left-/right-chiral temperatures T , T̄ , the entropy formula (70) generalizes to

S =
π2cT

3
+
π2c̄T̄

3
(72)

or, equivalently:

S = 2π

√
cL0

6
+ 2π

√
c̄L̄0

6
(73)

The last equation provides a common form of the Cardy formula. The quantities L0,
L̄0 refer to the eigenvalues of the Virasoro zero-mode generators (on the cylinder)
evaluated for the (high-temperature-)state whose entropy is being computed. Often
the Cardy formula is expressed in terms of Virasoro zero-mode eigenvalues with
respect to the plane, which leads to shifts by the Casimir energy, L0 → L0 − c/24,
L̄0 → L̄0 − c̄/24 in (73).

For more details, refs., and an estimate of the subleading terms see 1904.06359.
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B Linearized fluctuations around global AdS3

The first step is to calculate the linearized Einstein tensor around global AdS3, in
presence of negative cosmological constant (with unit AdS radius, to reduce clutter).
I assume you are familiar with linearizing Einstein’s equations (if not, have a look
at appendix A of my black holes book and then read section 4.4 therein.)

Indices are raised and lowered with the global AdS3 background metric, which
in standard coordinates and Euclidean signature is given by

ḡµν dxµ dxν = dρ2 + cosh2ρ dt2 + sinh2ρ dϕ2 . (74)

Euclidean time t and angular coordinate ϕ obey the periodicity properties

(t, ϕ) ' (t, ϕ+ 2π) ' (t+ β, ϕ+ θ) (75)

where physically β is interpreted as inverse temperature and θ as angular potential.
Topologically, Euclidean AdS3 is a filled torus with modular parameter 2πτ = θ+iβ.

On such a background, the linearized Einstein tensor (including the negative
cosmological constant term) is given by

G(h)µν =
1

2

(
− ∇̄2hµν − ∇̄µ∇̄νh+ ∇̄ν∇̄σhσµ + ∇̄µ∇̄σhσν − 2hµν

− ḡµν(∇̄σ∇̄τhστ − ∇̄2h)
)

(76)

where h := ḡµνhµν .
We consider now separately the three terms in the decomposition (35). For

the transverse-traceless part we use transversality ∇̄µhµν = 0 and tracelessness,
ḡµνhTT

µν = 0. The only subtlety is that in some expressions we need to swap the
covariant derivatives to be able to exploit transversality, which leads to Riemann-
tensor terms. However, since the background is maximally symmeric all these
Riemann-tensor terms simplify considerably using the identity R̄αβγδ = ḡαδ ḡβγ −
ḡαγ ḡβδ. In the end, you should find

G(hTT)µν = 0 ↔ (−∇̄2 − 2)hTT

µν = 0 . (77)

For the gauge part ∇̄µξν + ∇̄νξµ you can either do a straightforward but boring
brute-force calculation, or you realize that linearized EOM are tensor equations
and thus must be trivially annihilated by gauge modes. Thus, G(∇ξ)µν = 0 holds
identically.

Finally, for the trace part we obtain

G(h̃ḡ)µν = 0 ↔ ḡµν(−∇̄2 + 2) h̃+ ∇̄µ∇̄ν h̃ = 0 . (78)

Contracting this expression from the left with h̃ḡµν yields

h̃ḡµν G(h̃ḡ)µν ∝ −3h̃∇̄2h̃+ 6h̃2 + h̃∇̄2h̃ ∝ −h̃∇̄2h̃+ 3h̃2 . (79)

In the quadratic action appearing in (34) all terms involving gauge modes cancel,
and also all bilinear terms cancel except for the purely quadratic ones,

hµνG(h)µν ∝ hµν TT(−∇̄2 − 2)hTT

µν + # h̃(−∇̄2 + 3)h̃ (80)

where # denotes some (known, but irrelevant) numerical coefficient. In particular,
the mixed terms between hTT

µν and ḡµν h̃ cancel, because of tracelesness of hTT
µν .

Therefore, the decomposition (35) of the linearized modes persists to quadratic
order, and we can separately path integrate the transverse-traceless modes, the
gauge modes, and the trace modes, as done in the main text.
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C Holographic EE for Bañados geometries

In the main text, we derived holographically EE for CFT2 states dual to Poincaré
patch AdS3. Using the fact that any Bañados geometry (vacuum solutions of AdS3

Einstein gravity) can be locally mapped to Poincaré patch AdS3 the result can be
generalized to EE for CFT2 states dual to arbitrary Bañados geometries, including
thermal AdS3, global AdS3, BTZ black holes and their Virasoro descendants.

The Bañados geometries are labelled by a holomorphic and an antiholomorphic
function, L±(x±), see Eq. (43) of lecture 3. The final result of these calculations
for holographic EE yields (see, e.g., section 2 in 1901.04499)

SA =
c

6
ln

(
`+(x+

1 , x
+
2 )`−(x−1 , x

−
2 )

a2

)
+ const. (81)

where a is again a UV cutoff, c is the central charge, x±1 and x±2 are the two
endpoints defining the entangling region and the functions `± are bilinears of other
functions ψ±1,2.

`±(x±1 , x
±
2 ) = ψ±1 (x±1 )ψ±2 (x±2 )− ψ±2 (x±1 )ψ±1 (x±2 ) (82)

The functions ψ±1,2 are two independent solutions to Hill’s equation

ψ±
′′
− L± ψ± = 0 (83)

with unit Wronskian, ψ±2 ψ
± ′
1 − ψ

±
1 ψ
± ′
2 = ±1.

As a sanity check, let us recover first from above the Poincaré patch result
(58). In that case L± = 0 and the normalized solutions to Hill’s equation read
ψ+

1 = x+, ψ+
2 = 1 = ψ−1 and ψ−2 = x−. For a constant time slice we have

|x+
1 − x

+
2 | = |x

−
1 − x

−
2 | = L and thus the general result (81) yields

Poincaré : SA =
c

6
ln

(
|x+

1 − x
+
2 ||x

−
1 − x

−
2 |

a2

)
+ const. =

c

6
ln

(
L2

a2

)
+ const.

(84)
which coincides precisely with (58).

For BTZ black holes we have constant L± ≥ 0 and the appropriate solutions to
Hill’s equation read

ψ±1 =
1√

2
√
L±

e
√
L±x± ψ±2 =

1√
2
√
L±

e−
√
L±x± . (85)

Assuming again an equal time entangling region of length L inserting (85) into
(81)-(82) yields (we drop from now on the trivial additive constant to EE)

BTZ : SA =
c

6
ln

(
sinh(

√
L+L) sinh(

√
L−L)√

L+L−a2

)
. (86)

The simpler case of non-rotating BTZ black holes, L+ = L− = π2T 2 (with T being
the Hawking temperature, see chapter 4 or Black Holes II), yields

non-rotating BTZ : SA =
c

3
ln

(
sinh

(
πT L

)
πT a

)
(87)

which coincides precisely with the EE for thermal states in a CFT2 at temperature
T , see 0905.4013. The small temperature limit T → 0 reproduces the Poincaré
patch result (58), as expected, while the high temperature limit yields a volume law

lim
T→∞

SA =
c

3
πT L+ . . . (88)

This volume law is a well-known QFT result, see, e.g. this summary by Calabrese
and Cardy.

OIST Lectures on Asymptotic Symmetries, Daniel Grumiller, August 2023
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