
OIST Lectures on Asymptotic
Symmetries — July/August 2023

1 Introduction

Boundaries are important in physics. Let us not neglect boundary issues in these
lectures. Asymptotic symmetries are a diagnostic tool of physics at actual or asymp-
totic boundaries.

1.1 Motivations

• asymptotic symmetries key concept in gravity

• asymptotic symmetries key concept in gauge theories

• asymptotic symmetries key concept in holography

1.2 Life cycle of an asymptotic symmetrist

1. take some interesting bulk theory (with or without gravity)

2. invent some reasonable-looking boundary conditions for the fields

3. check that these boundary conditions are interesting, in particular

4. check that classical EOM allow solutions with these boundary conditions

5. derive the asymptotic symmetries

6. derive the canonical realization of the asymptotic symmetries

7. derive the associated boundary charges and their algebra

8. check whether or not this algebra has central extensions

9. derive the values of the central charges for the given bulk theory

10. postulate asymptotic symmetries as global symmetries of the dual QFT

11. use symmetries to make physical statements about dual QFT, in particular

12. constrain/derive correlation functions, thermodynamical observables, entan-
glement entropy, quantum energy conditions, etc.

If you are unhappy with the results go back to the second point and invent bet-
ter boundary conditions. Sometimes, this means making the boundary conditions
stricter (e.g., when the boundary charges turn out to be infinite). Sometimes, this
means making the boundary conditions looser (e.g. when the boundary charges turn
out to be zero). Sometimes, this means inventing something completely new.

Morale: investigating boundary conditions is technique; inventing bound-
ary conditions is art.1

1Ironically, the Greek word “Tekhne” from which “technique” derives literally means “art”.
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1.3 Quantum mechanics example

Imposing different boundary conditions can change the spectrum of physical states
and may lead to boundary excitations. A very basic example of this is quantum me-
chanics of a free particle on the half-line, x > 0. The time-independent Schrödinger
equation

− d2

dx2
ψ(x) = E ψ(x) (1)

has no normalizable bound states (with E < 0) for Dirichlet (ψ(0) = 0) or Neumann
(ψ′(0) = 0) boundary conditions, concurring with the classical intuition that this is
a boring system.

However, for Robin boundary conditions(
ψ + αψ′

)∣∣
x=0+

α ∈ R+ (2)

there is a single normalizable bound state

ψ(x)
∣∣
x>0

=

√
2

α
e−x/α (3)

localized exponentially near x = 0, with negative energy, E = −1/α2.

1.4 Overview of lectures

Lecture 1 Boundary conditions in QFT and GR, asymptotic Killing vectors, and asymp-
totic symmetries

Lecture 2 Canonical realization of asymptotic symmetries, central extensions in asymp-
totic symmetry algebras, and boundary excitations

Lecture 3 Example: gravity in three dimensions

Lecture 4 State-dependent parameters, change of phase space slicing, and zoo of asymp-
totic symmetries

Lecture 5 AdS3/CFT2, Brown-Henneaux, and alternative boundary conditions

Lecture 6 Near horizon symmetries, soft Heisenberg hair, and black hole entropy

Lecture 7 Conformal Carrollian symmetries, BMS, and flat space holography

Lecture 8 Q&A session, recent developments, and outlook

Note 1: I am flexible. If you want to learn something in more detail (or avoid
learning some of the proposed topics, either because you know it already or because
you do not care) let me know by e-mail <grumil@hep.itp.tuwien.ac.at>.

Note 2: Since I do not know the precise background you have, I might review
some material you consider basic, and I might omit to review material even though
you have no clue about it. Whenever this happens please let me know and I can
either further elaborate or skip some parts of the presentation, depending on your
needs.

Note 3: There are supplementary exercises each week. If you finish two-thirds of
them successfully you are very good, if you finish one-third of them successfully you
are doing ok. If you want, I can have a look at your calculations and/or present
selected exercises in Lecture 3, Lecture 8, or at the beginning of any of the other
lectures.
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2 Summary of gravity with boundaries

On this sheet of paper, we give a brief reminder of essential aspects related to
gravity in the presence of boundaries. For the sake of concreteness, we assume that
the boundary is timelike, which is true e.g. for asymptotically AdS boundaries or
stretched horizons. If you are completely unfamiliar with gravity in the presence of
boundaries you may wish to consult my lecture notes for the course Black Holes II,
section 10 or my book “ Black Hole Physics — From Collapse to Evaporation” with
Sheikh-Jabbari, Springer Grad.Texts Math. (2022), doi: 10.1007/978-3-031-10343-8.

2.1 Canonical decomposition of the metric

The canonical decomposition of a D-dimensional metric gµν (often referred to as
“bulk metric”) into a (D−1)-dimensional metric hµν (often referred to as “boundary
metric”, “induced metric” or “first fundamental form”), and a normal vector nµ

normalized to unity, nµnµ = +1, reads

gµν = hµν + nµnν . (4)

Recall that the boundary metric is still a D-dimensional symmetric tensor, but
projects out the normal component,

hµνn
ν = 0 hµµ = D − 1 . (5)

The projected velocity with which the normal vector changes (often referred to as
“extrinsic curvature” or “second fundamental form”),

Kµν = hαµh
β
ν ∇αnβ =

1

2

(
Lnh

)
µν

(6)

also is a symmetric tensor and has vanishing contraction with the normal vector,

Kµν = Kνµ Kµνn
µ = 0 . (7)

The trace of extrinsic curvature is denoted by K,

K = Kµ
µ = ∇µnµ . (8)

Projection with the boundary metric yields a boundary-covariant derivative

Dµ = hνµ∇ν (9)

that leads to standard (pseudo-)Riemann tensor calculus at the boundary when
acting on tensors projected to the boundary.

2.2 Gaussian normal coordinates

Sometimes it is convenient to introduce Gaussian normal coordinates when dis-
cussing boundaries. Let us assume that the boundary can be characterized as a
ρ = const. hypersurface, where ρ is one of the coordinates. In so-called ADM
variables the metric reads [i, j run from 0 to (D − 2)]

gµν dxµ dxν = N2 dρ2 + γij
(

dxi +N i dρ
) (

dxj +N j dρ
)

(10)

where the “lapse function” N and the “shift-vector” N i are functions of all coor-
dinates. Gaussian normal coordinates mean that one chooses a gauge where the
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lapse function is set to unity and the shift vector to zero. Thus, in Gaussian normal
coordinates with respect to the coordinate ρ, the metric simplifies to

gGNC

µν dxµ dxν = dρ2 + γij dxi dxj . (11)

Note that the quantity γij is nothing but the boundary metric, which obeys hij = γij
and hiρ = hρρ = 0.

One advantage of Gaussian normal coordinates is that the normal vector is
rather simple, nρ = nρ = 1, ni = ni = 0, implying that extrinsic curvature can be
calculated quickly by hand,

KGNC

ij =
1

2
∂ργij KGNC

iρ = KGNC

ρρ = 0 . (12)

2.3 Variation of Einstein–Hilbert action with boundary terms

The full action for Einstein gravity (compatible with a Dirichlet boundary value
problem consists of the bulk action IEH plus a boundary action IGHY, known as
Gibbons–Hawking–York boundary term.

I = IEH + IGHY =
1

16πG

∫
M

dDx
√
−g
(
R− 2Λ

)
+

1

8πG

∫
∂M

dD−1x
√
−hK (13)

Its first variation (assuming a smooth boundary) is given by

δI = − 1

16πG

∫
M

dDx
√
−g
(
Rµν − 1

2
gµνR+ Λgµν

)
δgµν

− 1

16πG

∫
∂M

dD−1x
√
−h
(
Kµν − hµνK

)
δgµν (14)

The tensor multiplying the variation δgµν at the boundary is known as Brown–
York stress tensor,

TµνBY :=
1

8πG

(
Kµν − hµνK

)
. (15)

It is important to recall that further boundary terms can be added to the action
(13) without spoiling the Dirichlet boundary value problem, for instance by adding
further boundary terms that depend only on curvature invariants constructed from
the boundary metric. As you should know already, these terms are actually nec-
essary in many applications. The reason for this is that even though we have a
well-defined Dirichlet boundary value problem we still may not have a well-defined
action principle, in the sense that there could be allowed variations of the metric
that do not lead to a vanishing first variation (14) on some solutions of the equations
of motion.

An example that we discussed in section 11 of Black Holes II is AdS3 gravity
with Brown–Henneaux boundary conditions,

ds2
∣∣
aAdS

= dρ2 +
(
e2ρ/` γ(0)µν (xα) + γ(2)µν (xα) + . . .

)
dxµ dxν (16)

with variations
δγ(0)µν = 0 δγ(2)µν 6= 0 . (17)

The full action compatible with these boundary conditions is given by

ΓAdS3
=

1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
+

1

8πG

∫
∂M

d2x
√
−h
(
K − 1

`

)
(18)

which leads to a finite (“holographically renormalized”) Brown–York stress tensor.

TBY-ren

µν =
1

8πG

(
Kµν − hµνK + hµν

1

`

)
= − 1

8πG `
γ(2)µν (19)
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3 Asymptotic Killing vectors

Killing vectors generate isometries of metrics and preserve a given metric, in the
sense that the Lie variation along a Killing vector vanishes when acting on the
metric (see section 6.11 in Black Holes I). Killing vectors lead to conserved charges,
defined by Komar integrals (see section 8.4 in Black Holes I). The main purpose
of this section is to generalize this notion to situations where the metric is not
necessarily preserved, but only its asymptotic structure. We discuss general aspects
of asymptotic Killing vectors and consider also a few examples.

3.1 Definition of asymptotic Killing vectors

Asymptotic Killing vectors do not necessarily preserve any given metric, but they
preserve the asymptotic structure, so when acting with a Lie derivative along an
asymptotic Killing vector on a metric that obeys some specified set of boundary
conditions the result is not necessarily zero but rather can be a fluctuation allowed
by these boundary conditions. The defining equation for asymptotic Killing vectors

Lξgµν = O
(
δgµν

)
(20)

has on the left-hand side the Lie derivative along the asymptotic Killing vector ξ
of a metric g compatible with some given set of boundary conditions, and on the
right-hand side some metric fluctuation allowed by the boundary conditions.

Once the asymptotic Killing vectors are determined it is also of interest to check
their Lie brackets, since this will eventually lead to the asymptotic symmetry algebra
discussed in the next subsection.

In many practical applications, one introduces a (partial) gauge fixing and then
requires additionally that the fluctuations δg also preserve the gauge conditions, for
instance, a gauge fixing to Gaussian normal coordinates.

Example. Let us consider a baby example to make the notion of asymptotic
Killing vectors in the presence of partial gauge fixing more concrete. Take the
two-dimensional class of metrics defined near the asymptotic boundary at r → ∞
by

gµν dxµ dxν =

∞∑
n=−1

gn(u)r−n du2 − 2 dudr (21)

where all coefficients gn are allowed to vary so that the allowed metric variations
are given by

δguu = O(r) +O(1) +O(1/r) + . . . δgur = δgrr = 0 . (22)

The allowed fluctuations (22) preserve Eddington–Finkelstein gauge to all orders in
the radial coordinate r (a condition which could be relaxed without changing the
physics) and lead to asymptotically flat metrics, in the sense that the Ricci-scalar
tends to zero as r tends to infinity (at least like 1/r3). Let us now construct the
associated asymptotic Killing vectors. The rr-component of (20) yields

ξµ∂µgrr + 2grµ∂rξ
µ = −2∂rξ

u = 0 (23)

from which we conclude that the u-component of ξ is r-independent. The ru-
component of (20) is more complicated,

ξµ∂µgru + grµ∂uξ
µ + guµ∂rξ

µ = −∂uξu − ∂rξr + guu∂rξ
u = 0 (24)
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and together with the previous condition (23) allows to deduce the following results
for the asymptotic Killing vectors,

ξ = ε(u) ∂u +
(
− ε′(u) r + η(u)

)
∂r (25)

where prime denotes derivative with respect to u. The uu-component of (20) does
not lead to any new constraint on the asymptotic Killing vectors,

ξµ∂µguu + 2guµ∂uξ
µ = O(r) +O(1) +O(1/r) + . . . . (26)

Since the asymptotic Killing vectors (25) of the metric (21) are parametrized by
two arbitrary functions, ε(u) and η(u), we have infinitely many asymptotic Killing
vectors for this example. As we shall see in the next subsection it is of interest to
calculate the algebra of Lie brackets between the asymptotic Killing vectors; for the
present examples we obtain after a small calculation[

ξ(ε1, η1), ξ(ε2, η2)
]
Lie

= ξ
(
ε1ε
′
2 − ε2ε′1, (ε1η2 − ε2η1)′

)
. (27)

The result (27) shows that we have a linear algebra, the Lie bracket algebra of the
asymptotic Killing vectors. This algebra generates the asymptotic symmetries for
our example.

3.2 Asymptotic symmetries

Noether’s theorem relates the conservation of the asymptotic structure of the metric
(and possibly other fields that might be present) to a set of symmetries known as
asymptotic symmetries.

It seems tempting to define asymptotic symmetries as the set of all transforma-
tions generated by the asymptotic Killing vectors. However, we have a lot of (gauge)
redundancy, and not every asymptotic Killing vector generates an interesting sym-
metry near the boundary; instead, some of the asymptotic Killing vectors may be
just pure gauge transformations that remain sufficiently small at the boundary so
that they have no physical effect other than changing the coordinate system. We
are going to be precise about what “sufficiently small” means in later sections. For
now, we simply assume that there is a well-defined notion of “sufficiently small” so
that the asymptotic Killing vectors can be classified into “proper gauge transfor-
mations” (those which remain sufficiently small; they are also called “trivial gauge
transformations”) and “improper gauge transformations” (sometimes also called
“large gauge transformations; they are not pure gauge at the boundary).

The asymptotic symmetry algebra is the set of all boundary-condition
preserving transformations modulo trivial gauge transformations. The
asymptotic symmetry group is the group associated with the asymptotic symmetry
algebra. The asymptotic symmetries are generated by elements of the asymptotic
symmetry group.

Back to the example. Let us reconsider the baby example above, but now take
instead of (21) the ansatz

ds2 =

∞∑
n=−1

gn(u)r−n du2 − 2 dudr
(

1 +

∞∑
n=1

fn(u)r−n
)

+

∞∑
n=1

hn(u)r−n dr2 (28)

where all functions gn, fn, hn are allowed to fluctuate. The Ricci scalar still vanishes
as r tends to infinity (albeit only with 1/r), so in this sense, the metric is still
asymptotically flat. However, instead of the result (25) we find an infinitely larger
set of asymptotic Killing vectors,

ξ =
(
ε(u) +O(1/r)

)
∂u +

(
− ε′(u) r + η(u) +O(1/r)

)
∂r . (29)

6



Since all we did in comparison to (21) was to drop the assumption of strict gauge-
fixing to Eddington–Finkelstein gauge, it is plausible that the additional Killing
vectors contained in (29), i.e., the terms of order O(1/r), generate trivial gauge
transformations associated with coordinate change to Eddington–Finkelstein. Ap-
plying the definition above the asymptotic symmetries are then generated by all
Killing vectors (29) where the O(1/r) part is modded out — this yields precisely
the set of asymptotic Killing vectors (25). Thus, we expect for this example that the
asymptotic symmetries are generated by (25) and hence the asymptotic symmetry
algebra is given by (27).

3.3 Asymptotically AdS3 as simple example

Let us investigate the asymptotic symmetries of AdS3, which is a slightly more
physical example than the baby example considered above. In fact, we studied this
scenario already in section 11.4 of the lecture notes for Black Holes II. We found
there that the boundary (plus gauge) conditions

ds2 = dρ2 +
(
e2ρ/` γ(0)µν + γ(2)µν + . . .

)
dxµ dxν δγ(0)µν = 0 (30)

are preserved by the asymptotic Killing vectors

ξ = ε+(x+)∂+ + ε−(x−)∂− −
`

2

(
∂+ε

+ + ∂−ε
−)∂ρ +O

(
e−2ρ/`

)
(31)

where xµ = {x+, x−}. As we shall see later, the asymptotic symmetries are again
generated by theO(1) part of the asymptotic Killing vectors, whereas the subleading
terms generate trivial gauge symmetries. One consistency check you can perform is
to slightly relax our gauge-fixing to Gaussian normal coordinates in (30) by allowing
fluctuations gρρ ∼ O(e−2ρ/`) and gρ± ∼ O(e−2ρ/`). You should find the same
asymptotic Killing vectors as given below, up to subleading corrections.

In this example, the asymptotic symmetry algebra consists of two copies of the
Witt algebra

[ξ(ε±1 ), ξ(ε±2 )]Lie = ξ
(
ε±1 ε

±
2
′ − ε±2 ε

±
1
′) . (32)

If the theory is defined such that x± ∼ x± + 2π then introducing Fourier modes
ε±n = ieinx

±
∂± brings the Witt algebra (32) into a rather useful form,

[ε±n , ε
±
m] = (n−m) ε±n+m . (33)

From a purely algebraic perspective (and, as we shall see later, also for physical
reasons) it is of interest to ask whether a given asymptotic symmetry algebra has
a non-trivial central extension. In the present case, the answer is yes, and the
centrally extended version of the Witt algebra (33) is known as Virasoro algebra
with central charge c.

[L±n , L
±
m] = (n−m)L±n+m +

c

12

(
n3 − n

)
δn+m, 0 . (34)

We shall see later that such central charges can arise when realizing canonically
an asymptotic symmetry algebra. The central extension from Witt to Virasoro
does indeed arise in three-dimensional gravity. The interpretation of the canonical
realization of the asymptotic symmetries is that the physical phase space (or in the
quantum theory the physical Hilbert space) falls into representations of two copies of
the Virasoro algebra. On the other hand, the defining property of a conformal field
theory (CFT) in two dimensions is that the physical phase space (or in the quantum
theory the physical Hilbert space) falls into representations of the two-dimensional
conformal algebra — which is precisely two copies of the Virasoro algebra. Thus,
this example provides a glimpse into AdS/CFT and suggests that quantum gravity
on AdS3 (if it exists) is equivalent to some CFT2.
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3.4 Asymptotically flat space as complicated example

You may wonder why we did not consider as baby example (asymptotically) flat
space, since a natural guess is that the asymptotic symmetries of asymptotically
flat space are equivalent to the symmetries of Minkowski space and that overall
asymptotically flat space should provide the simplest example. However, depending
on the precise boundary conditions there can be a much larger set of asymptotic
symmetries than just the one given by the Poincaré group, and asymptotically flat
space can be intriguingly complicated.

Following the spirit of these lectures, let us consider asymptotically flat space
in three spacetime dimensions. Due to the null structure of asymptotic infinity in
Minkowski space (I ± are null hypersurfaces), it is convenient to focus on one half
of the asymptotic boundary (e.g. I +) and formulate the boundary conditions in a
gauge adapted to this situation, e.g. Eddington–Finkelstein or Bondi coordinates.

ds2 =
(
huu +O(1/r)

)
du2 − 2 dudr

(
1 +O(1/r)

)
+
(
huϕ +O(1/r)

)
dudϕ

+ r2 dϕ2
(
1 +O(1/r)

)
(35)

With some anticipation we fixed grr = grϕ = 0 by exploiting small diffeomorphisms;
it is not necessary to do this, but it makes our calculations shorter which is why
we made the choice (35). The functions huu and huϕ are allowed to vary and
to depend on retarded time u and angular coordinate ϕ ∼ ϕ + 2π, but not on the
radial coordinate r. You can convince yourself that the metric (35) is asymptotically
flat in the sense that the independent polynomial curvature invariants behave as
R ∼ O(1/r2), RµνR

µν ∼ O(1/r4), and RµνR
νλRµλ ∼ O(1/r6).

The boundary (plus gauge) conditions (35) are preserved by the asymptotic
Killing vectors

ξ =
(
M(ϕ) + uL′(ϕ)

)
∂u +

(
L(ϕ)− u

r
L′′(ϕ)− 1

r
M ′(ϕ)

)
∂ϕ−

(
rL′(ϕ) +O(1/r)

)
∂r .

(36)
The results above look quite complicated, but simplify if we restrict to leading
order in a large-r expansion and split the asymptotic Killing vectors (36) into L-
and M -dependent pieces,

ξL = uL′(ϕ) ∂u +
(
L(ϕ)− u

r
L′′(ϕ)

)
∂ϕ −

(
rL′(ϕ) +O(1/r)

)
∂r (37)

ξM = M(ϕ) ∂u +O(1/r) . (38)

Their Lie bracket algebra has again infinitely many generators and reads

[ξL(L1), ξL(L2)]Lie = ξL
(
L1L

′
2 − L2L

′
1

)
+O(1/r) (39)

[ξL(L1), ξM (M2)]Lie = ξM
(
L1M

′
2 −M2L

′
1

)
+O(1/r) (40)

[ξM (M1), ξM (M2)]Lie = O(1/r) . (41)

Comparing the first line (39) with (32) we see that the Witt algebra is recovered as
subalgebra. Geometrically, this makes sense since to leading order the asymptotic
Killing vector ξL generates diffeomorphisms of the celestial S1. The last line (41)
shows that the asymptotic Killing vectors ξM commute with each other to leading
order. Since their zero mode, ξM0 = ∂u, generates time-translations (which are part
of Poincaré) the asymptotic Killing vectors ξM are known as “supertranslations”
(note: no relation to supersymmetry). To have suggestive names, sometimes the
Witt algebra generators ξL are called “superrotations”, as the zero mode ξL0 = ∂ϕ
generates rotations. Superrotations and supertranslations do not commute (40),
but instead, yield something reminiscent of a Witt algebra.

All central extensions of the algebra (39)-(41) are known and will be discussed
once we address aspects of flat space holography in three bulk dimensions.

OIST Lectures on Asymptotic Symmetries, Daniel Grumiller, July 2023
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