OIST Exercises on Asymptotic symmetries

(1.1) Variational principle for Euclidean AdS_{3}

Show that the (Euclidean) action

$$
\Gamma=-\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\alpha K+\frac{\beta}{\ell}\right)
$$

with the boundary conditions

$$
\begin{aligned}
g_{r r} & =\frac{\ell^{2}}{r^{2}}+\mathcal{O}\left(1 / r^{4}\right) & g_{r t} & =\mathcal{O}\left(1 / r^{3}\right) \\
g_{t t} & =\frac{r^{2}}{\ell^{2}}+\mathcal{O}(1) & g_{r \varphi} & =\mathcal{O}\left(1 / r^{3}\right) \\
g_{\varphi \varphi} & =r^{2}+\mathcal{O}(1) & g_{t \varphi} & =\mathcal{O}(1)+O(1 / r)
\end{aligned}
$$

for the metric has a well-defined variational principle only if $2 \alpha=1-\beta$.
(1.2) Asymptotic Killing vectors in asymptotically AdS $_{3}$

Derive the asymptotic Killing vectors as well as their Lie-bracket algebra for asymptotically AdS_{3} boundary conditions

$$
\mathrm{d} s^{2}=\mathrm{d} \rho^{2}+\left(e^{2 \rho / \ell} \gamma_{\mu \nu}^{(0)}+\gamma_{\mu \nu}^{(2)}+\mathcal{O}\left(e^{-2 \rho / \ell}\right)\right) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

with $\gamma_{\mu \nu}^{(0)}=\eta_{\mu \nu}$ and $\delta \gamma_{\mu \nu}^{(2)} \neq 0$. (Use lightcone gauge $\eta_{+-}=1, \eta_{ \pm \pm}=0$.)

(1.3) Anomalous transformation of boundary stress tensor

Take some asymptotic AdS_{3} line-element (you can think of a BTZ BH),

$$
\mathrm{d} s^{2}=\mathrm{d} \rho^{2}+4 L\left(x^{+}\right)\left(\mathrm{d} x^{+}\right)^{2}+4 \bar{L}\left(x^{-}\right)\left(\mathrm{d} x^{-}\right)^{2}-e^{2 \rho} \mathrm{~d} x^{+} \mathrm{d} x^{-}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

and determine the Lie-variation of L and \bar{L} generated by a vector field $\xi=\xi^{+} \partial_{+}+\xi^{-} \partial_{-}+\xi^{\rho} \partial_{\rho}$ with

$$
\begin{aligned}
\xi^{+} & =\varepsilon^{+}\left(x^{+}\right)+\frac{1}{2} e^{-2 \rho} \partial_{-}^{2} \varepsilon^{-}\left(x^{-}\right)+\mathcal{O}\left(e^{-4 \rho}\right) \\
\xi^{-} & =\varepsilon^{-}\left(x^{-}\right)+\frac{1}{2} e^{-2 \rho} \partial_{+}^{2} \varepsilon^{+}\left(x^{+}\right)+\mathcal{O}\left(e^{-4 \rho}\right) \\
\xi^{\rho} & =-\frac{1}{2}\left(\partial_{+} \varepsilon^{+}\left(x^{+}\right)+\partial_{-} \varepsilon^{-}\left(x^{-}\right)\right)+\mathcal{O}\left(e^{-2 \rho}\right)
\end{aligned}
$$

that preserves the asymptoic AdS_{3} line-element above.

Hints/comments:

- Recall that "well-defined variational principle" is synonymous with "the first variation of the full action vanishes on-shell (including all boundary contributions) for all variations that preserve the specified boundary conditions". Solving this exercise is lengthy, but useful - not just to build your character, but to recollect some of the required tools. If you get stuck you find guidance in Eqs. (1)-(14) of 1402.3687. For comparison, here are the results for normal vector n_{μ}, induced volume form $\sqrt{\gamma}$ and trace of extrinsic curvature K :

$$
\begin{aligned}
n_{\mu} & =\delta_{\mu}^{r} \frac{\ell}{r}+\mathcal{O}\left(1 / r^{3}\right) \\
\sqrt{\gamma} & =\frac{r^{2}}{\ell}+\mathcal{O}(1) \\
K & =\frac{2}{\ell}+\mathcal{O}\left(1 / r^{2}\right)
\end{aligned}
$$

- Solve the asymptotic Killing equations, starting with the components that are fixed $\left(g_{\rho \rho}\right)$ or vanish $\left(g_{\rho \mu}\right)$ to determine various constraints on the asymptotic Killing vectors (keeping only the leading order at large $\rho)$. You should find the result

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}-\frac{\ell}{2}\left(\partial_{+} \varepsilon^{+}\left(x^{+}\right)+\partial_{-} \varepsilon^{-}\left(x^{-}\right)\right) \partial_{\rho}+\mathcal{O}\left(e^{-2 \rho / \ell}\right)
$$

Their Lie-bracket algebra follows straightforwardly. In case you want to introduce Fourier modes $\varepsilon_{n}^{ \pm}$you should find two Witt algebras,

$$
\left[\varepsilon_{n}^{ \pm}, \varepsilon_{m}^{ \pm}\right]=(n-m) \varepsilon_{n+m}^{ \pm}
$$

- To obtain the variation δL note that $4 \delta L=\delta g_{++}$, where δg is the Lie variation of the metric along the vector field ξ. The final result that you find should be of the form

$$
\delta L=\varepsilon^{+} \partial_{+} L+2 L \partial_{+} \varepsilon^{+}+\# \partial_{+}^{3} \varepsilon^{+}
$$

where \# is some number (that you should determine). Analogous considerations apply to the other chirality \bar{L}. [Note: the first two terms in the transformation law of L are the expected transformation law for a conformal primary of conformal dimension 2 ; the last term is an anomalous contribution and matches with the central term in the Virasoro algebra, the symmetry algebra of a CFT_{2}.]

