

OIST SEED PROGRAM ACTIVITY MENU BOOK

BIOLOGY

COMPUTER SCIENCE

1. 果実から DNA 抽出

DNA がどのようにして細胞から分離されるかの原理を、身近な果物を用いて実験しましょう。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

2. 酵素反応について学ぶ

あなたはタンパク質をどうイメージしますか?タンパク質は、さまざまな生命現象において基本的かつ多様な機能を持つ重要な生体分子です。

このセッションでは、DNA メチラーゼや制限酵素などを使って、提供する特定の DNA メチラーゼを同定します。酵素の重要な特徴である「基質特異性」について学びましょう。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

3. オタマボヤの受精について

オタマボヤは、世界中の海の外洋域に住む尾索動物です。

この実験では、オタマボヤの生態について学び、研究することのメリットを 紹介します。ラボでは、オタマボヤの培養の見学、受精の実践などを行いま す。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

1. ロボティクス活動

ロボットが自分で動くようになるには、どうしたらいいのでしょうか?ロボットには豊富なセンサーやアクチュエーターがありますが、それらをどのようにつなげ連携させ、何かを達成するようにできるのでしょうか。あなたが作ったロボットがイメージ通りに行動するようになるかどうか、ぜひ試してみてください。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

ECOLOGY AND EVOLUTION

ENGINNEERING AND APPLIED SCIENCE

1. 生物多様性を測定する

生物多様性とは何でしょう?どうすれば測定できるでしょうか?そして現在 どのような研究が行われているのでしょうか?

昆虫のサンプル等を用い、研究機器を使って生物多様性の計測を試みます。 生物多様性の測定方法を比較検討してみましょう。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

2. 進化をシミュレーションしよう

生命が 1 つの孤立した出来事からどのように進化し、最終的に私たちの身の回りにある多くの複雑な生物に発展していったのかについて学びましょう。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 :OIST キャンパス

1. エレクトロニクス活動

テクノロジーは日常生活の大きな部分を占めていますが、電子デバイスを機能させる根本的なメカニズムは何なのでしょうか?

まずアナログ電子回路の基本的な構成要素について簡単に紹介し、一般的な 回路を使い、わずかな部品でも非常に便利な回路を作ることができること を、実際に回路を作るデモを通じて紹介します。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

2. 粒状物質の挙動展示

粒状物質は、外力を受けると破壊や分断を起こす性質があるため、魅力的な研究対象です。このユニークな挙動は、地質学、材料科学、土木工学などの分野で重要な研究テーマとなっています。

粒状物質の研究に斬新な方法でアプローチする実験を実演し、粒状物質がさまざまな種類の応力にどのように反応するかを議論します。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

MARINE SCIENCE

NEUROSCIENCE

1. 海洋実験

実験を通してマリンサイエンスを学びましょう。

OIST のマリンサイエンスステーションにて、OIST の科学者が行っている 様々な種類の実験をお見せします。

様々な生物と間近に接することができるほか、最新鋭のフリュームタンクを 実際に体験することができます。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST マリンサイエンスステーション

2. 海洋酸性化実験

海水の pH を調べてみましょう。

この実験では、弱アルカリ性の海水が CO2 を吸収することにより、pH が酸性に変化することを実験を通して学びます。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

3. 環境中のマイクロプラスチックを検出しよう

海洋のマイクロプラスチック汚染に関連する問題について学び、海洋に流入したマイクロプラスチックを検出してみましょう。

分析用に採取した海水を持ち帰り、OIST の化学研究室で処理し、赤外(IR)分光法を用いて、水中の環境マイクロプラスチックの検出を試みます。

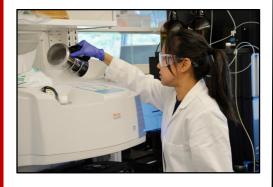
所要時間 : 60 分~ 最大受入数: 20 名

開催場所 :OIST キャンパス

1. 脳の可塑性


脳の可塑性と学習について、知覚シフトゴーグルを使って探求しましょう。 この活動では、実験結果をどのように測定し、収集し、分析するかを考えていきます。参加者自身で実験計画をたてて、実践しています。

所要時間 : 60 分~ 最大受入数: 20 名


開催場所 : OIST キャンパス

PHYSICS

1. 超電導活動

量子現象である超伝導について学び、マイスナー効果によって肉眼で見える 物体を浮遊させる手段として、超電導がどのように利用できるかを学びま す。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

2. ワージントンジェットを学ぶ

簡単な流体現象を調べてみましょう。

バケツの水の中に水滴を落とす高さによって、さまざまなものが見えてきます。十分に高いところから落とすと、ワージントンジェットと呼ばれる現象や、小さな水滴が噴き出す様子を見ることができます。この現象を観察、モデル化し、正確なモデルを作るために必要な基礎物理学を学びます。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

3. 光学ピンセット

光が運動量を持つという事実は、多くの人が知っているでしょう。つまり、 光は物質が通過する際に「押す」ことができるということです。しかし、実際に光を使って小さな粒子を捕らえ、空間を通して操作することができるなんて信じられますか?高度な光ピンセットのセットアップを使ってビーズを 捕捉し操作してみましょう。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

4.顕微鏡のしくみ

顕微鏡の仕組みはどうなっているのでしょうか?

光学テーブルの上で、レンズと光学機械要素から簡単な顕微鏡を組み立てます。そして、設計したレンズの強度と弱度をテストすることで、光学と光学 収差について学びます。

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 : OIST キャンパス

5. 顕微鏡の世界

電子顕微鏡を使った試料作製や観察のさまざまなテクニックを学びます。ミクロの世界の探検しつつ最大限に学んでいきましょう!

所要時間 : 60 分~ 最大受入数: 20 名

開催場所 :OIST キャンパス