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In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the
turbulent energy spectra, α, may theoretically take either of two distinct values, 3 or 5=3, but measurements
downstream of obstacles have invariably revealed α ¼ 3. Here we report experiments on soap-film flows
where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5=3 for the
streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually
independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of
turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted
theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
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Turbulence sculpts clouds. By examining the ever-
changing patterns in rising cumulus clouds, Richardson
[1] postulated the concept of an energy cascade: the mean
flow supplies turbulent kinetic energy to the large-scale
fluctuations, or large eddies, which split to engender
smaller eddies, which, in turn, engender even smaller
eddies, and so forth. This progressive spawning of smaller
eddies cascades the energy from larger to smaller scales.
The smallest eddies of the cascade dissipate the energy
viscously.
In 1941, Kolmogorov [2] casted the energy cascade in a

mathematical form. In this celebrated theory—the phe-
nomenological theory of turbulence—Kolmogorov intro-
duced the notion of local isotropy. Physically, local
isotropy is based on the idea that as larger eddies spawn
smaller eddies, the smaller eddies progressively lose any
sense of orientation. While the large eddies (of size L) are
anisotropic, the small eddies (of size l ≪ L) are isotropic.
Assuming local isotropy, Kolmogorov argued that the
energy is transferred without dissipation for a range of
small eddies, L ≫ l ≫ η, where η is the size of the smallest
eddies that effect viscous dissipation. These are the eddies
of the “inertial range.” In the inertial range, the turbulent
energy spectrum EðkÞ takes a self-similar form EðkÞ ∼ k−α,
where k is the wave number (k ∼ 1=l) and α the “spectral
exponent.” Invoking dimensional analysis, the phenom-
enological theory predicts α ¼ 5=3 [3].
Consider two-dimensional turbulent flows. In the 1960s,

Kraichnan [4], Leith [5], and Batchelor [6] adapted the
phenomenological theory to 2D turbulent flows. This theory
predicts two distinct cascades in the locally isotropic small
scales. In the “direct enstrophy cascade,” enstrophy is
transferred without dissipation from larger to smaller scales,
and in the “inverse energy cascade,” energy is transferred
without dissipation from smaller to larger scales, the inverse
of the 3D energy cascade.

The cascades can be identified via EðkÞ. In the inertial
range, EðkÞ ∼ k−α. Each cascade pairs with a specific value
of α. Instead of EðkÞ, experiments typically measure a
closely related quantity, the one-dimensional turbulent
energy spectra [7]: the streamwise energy spectrum
EuuðkxÞ and the transverse energy spectrum EvvðkxÞ; u is
the streamwise velocity fluctuation, v the transverse velocity
fluctuation,x the streamwise direction, andkx the streamwise
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FIG. 1. Log-log plots of typical turbulent energy spectra in 2D
turbulence. (a) Direct enstrophy cascade (experimental setup of
Ref. [8]). (b) Inverse energy cascade (experimental setup of
Ref. [8]). (c) Double cascade (from Ref. [9]; α ¼ αu ¼ αv is
implicit in this plot; α > 3 in the span of the direct enstrophy
cascade is attributed to finite-size effects). (d) Atmospheric
cascade (from Ref. [10]). Plots of EvvðkxÞ (red) are shifted from
those of EuuðkxÞ (green) for clarity. In all cases, αu ≈ αv.
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wave number. In the inertial range EuuðkxÞ ∼ k−αux and
EvvðkxÞ ∼ k−αvx . Local isotropy mandates αu ¼ αv ¼ α.
Invoking dimensional analysis, the phenomenological

theory of 2D turbulence predicts α ¼ 3 for the direct
enstrophy cascade and α ¼ 5=3 for the inverse energy
cascade [3]. In Figs. 1(a) and 1(b) we show plots of typical
experimental data exhibiting the direct enstrophy cascade
and the inverse energy cascade, respectively. These two
canonical cascades of 2D turbulence combine to engender
two other well-known cascades. In the “double cascade”
[Fig. 1(c)], α ¼ 5=3 at low k (inverse energy cascade) and
α ¼ 3 at high k (direct enstrophy cascade). Large-scale
atmospheric flows exhibit a transposed variant of the
double cascade [Fig. 1(d)].
In all the cases shown in Fig. 1, we note, in accord with

local isotropy, αu ≈ αv ≈ 3 or αu ≈ αv ≈ 5=3. By contrast,
here we report experiments on turbulent soap-film flows in
which local isotropy is manifestly violated; over a sizable
interval of space and over a shared span of wave numbers,
we find αu ≈ 5=3 (corresponding to the inverse energy
cascade) and αv ≈ 3 (corresponding to the direct enstrophy

cascade). We term this “two-faced” turbulent energy
spectra, the Janus spectra (after Janus, the two-faced
Roman deity). To our knowledge, any report of such a
species of turbulent energy spectra is unprecedented in 2D
turbulent flows [11].
Let us briefly consider, for context, the well-studied case

of decaying 2D turbulence without a mean flow [12,13].
Here the turbulence decays in time. Initially, the flow
exhibits the direct enstrophy cascade, αu ≈ αv ≈ 3. Later,
the flow evolves to markedly steeper inertial-range energy
spectra, αu ≈ αv ∼ 4–5. Local isotropy prevails throughout
the evolution of the flow.
We conduct experiments in a soap-film channel, a well-

known setup for studying quasi-2D turbulent flows
[Fig. 2(a)]. To induce turbulence in the soap film, we
pierce it with two rods nonsymmetrically about the
center line. (This setup emulates an atmospheric flow;
see the Supplemental Material [14] Fig. S-1.) The rods shed
eddies as the film squeezes past them. The eddies render the
flow turbulent, which decays downstream of the rods. A
decaying 2D turbulent flow is a canonical case for the direct
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FIG. 2. Route to the Janus spectra in turbulence induced by two rods (also, see the Supplemental Material [14] Fig. S-2). (a) Schematic
of the experimental setup [20]. The ≈5 μm thick falling soap film hangs vertically from two steel blades that are 1.6 m long and
w ¼ 12 mm apart from each other. The soap film is sustained by recirculating a Newtonian soap-water solution (1% commercial
detergent in water) via a pump P and through a valve V (to control the flow rate). The soap film is pierced with two rods (of diameter
1 mm, placed 2 and 4 mm transversely away from the center line, and 25 mm vertically staggered from each other). The mean velocity at
the center line spans 1.60–2.10 m=s. (b),(c) Evolution of EuuðkxÞ and EvvðkxÞwith downstream distance. (d) Janus spectra at x=w ¼ 15.
The shaded regions in EuuðkxÞ and EvvðkxÞ represent error bars (see the Supplemental Material [14] Sec. S-2). Note that in the inertial
region, the errors are negligible. (e) Evolution of turbulent vorticity (ω) and mean shear (S) with downstream distance (see the
Supplemental Material [14] Sec. S-3). The best-fit lines are to guide the eye.
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enstrophy cascade [6]. Indeed, numerous experiments of
soap films flowing downstream of obstacles attest to αu ≈
αv ≈ 3 (see, e.g., Ref. [19]).
To interrogate the turbulent flow, we turn to laser

Doppler velocimetry (LDV). We use LDV to measure
the time series of u and v along the center line of the
channel, downstream of the rods and well upstream
(>15w) of the Marangoni shock [21]. Using Taylor’s
[22] hypothesis, we transform this time-series data to
spatial data in the streamwise direction, from which we
compute EuuðkxÞ and EvvðkxÞ. As can be seen from the
decrease in the amplitude of the energy spectra [Figs. 2(b)
and 2(c)] or from the decay of the turbulent vorticity
[Fig. 2(e)], the turbulence decays downstream of the rods.
Not far downstream (x=w≲ 10), αu ≈ αv ≈ 3 [Figs. 2(b)
and 2(c)], in accord with previous experiments (and also
consistent with the initial phase of decaying 2D turbulence
without a mean flow). Note that the mechanisms that
sustain the direct enstrophy cascade entail strong eddy-
eddy interactions [13,23]. Therefore, experiments targeted
at the direct enstrophy cascade focus on the region where

the eddies have not decayed significantly—the region near
the obstacles. Here we depart from these experiments in an
unremarkable way: we continue to measure the energy
spectra farther downstream. And yet, this unveils a series of
remarkable features.
Extrapolating from the later phase of decaying 2D

turbulence without a mean flow, downstream of the direct
enstrophy cascade we expect steeper energy spectra with
αu ≈ αv > 3. The mean flow in the experiment, however,
effects a strikingly different fate. (We return to the role of
the mean flow later.) For x=w≳ 12, αu begins to decrease
but αv remains ≈3 [Figs. 2(b) and 2(c)]. The regime of local
isotropy is broken. Farther downstream (15≲ x=w≲ 20),
αu reaches a plateau ≈5=3, suggesting an unexpected
transition to the inverse energy cascade for EuuðkxÞ. In
this region, remarkably, αv is still ≈3, suggesting the
persistence of the direct enstrophy cascade for EvvðkxÞ.
That is, over a sizable interval (≈5w) and over a shared
span of wave numbers, αu ≈ 5=3 but concurrently αv ≈ 3
[Fig. 2(d)]. This is the domain of the Janus spectra.
(Even farther downstream, both αu and αv decrease

kx [m-1]

E
(k

x)
[m

3
s-2

]

101 102 103

10-7

10-6

10-5

Euu

Evv

kx
-3

x/w = 27

kx
-5/3

kx [m-1]

E
(k

x)
[m

3
s-2

]

101 102 103

10-7

10-6

10-5

Euu

Evv

kx
-3

x/w = 11

kx
-5/3

kx [m-1]

E
vv

(k
x)

[m
3

s-2
]

102 10310-7

10-6

10-5

kx
-3

Wall-normal

kx
-5/3

kx [m-1]

E
uu

(k
x)

[m
3

s-2
]

102 10310-7

10-6

10-5

kx
-3

kx
-5/3

kx [m-1]

E
vv

(k
x)

[m
3

s-2
]

102 103

10-7

10-6

10-5

10-4

kx
-3

kx
-5/3

kx [m-1]

E
uu

(k
x)

[m
3

s-2
]

102 103

10-7

10-6

10-5

10-4

kx
-3

kx
-5/3(a) (b)

(d) (e)

(c)

(f)

FIG. 3. Route to the Janus spectra in turbulence induced by one rod (a)–(c) and comb (d)–(f) (also, see the Supplemental Material [14]
Figs. S-3 and S-4). One rod: The soap film (w ¼ 23 mm) is pierced at the center line with a rod of diameter 0.5 mm; the mean velocity at
the center line spans 2.10–2.40 m=s. Comb: The soap film (w ¼ 17 mm) is pierced symmetrically about the center line with a comb
(five rods of diameter 1 mm, spaced 3 mm apart from each other); the mean velocity at the center line spans 2.07–2.60 m=s. (a),(b);
(d),(e) The evolution of EuuðkxÞ and EvvðkxÞ with downstream distance is similar to the case of the two rods (Fig. 2). We show the Janus
spectra in (c) for one rod (x=w ¼ 11) and in (f) for the comb (x=w ¼ 27); the errors (the shaded regions) are negligible in the inertial
range. Note that even though the wave number span of the inertial region of EvvðkxÞ in (f) is relatively small, we can infer αv ≈ 3 by
comparing with the energy spectra measured upstream (e). Upstream, αv is the same, but the span of the inertial region is considerably
broader. [Similar considerations also apply to the EvvðkxÞ for two rods and one rod.]
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monotonically.) We note, for contrast, that previous experi-
ments in soap-film channels have reported the inverse
energy cascade for turbulence forced by rough blades [[8];
Fig. 1(b)]. This roughness-induced turbulent flow exhibits
αu ≈ αv ≈ 5=3, in accord with local isotropy. Our experi-
ments, on the other hand, have smooth blades, and we find
αu ≈ 5=3 but without local isotropy αu ≠ αv.
Because the dynamics of decaying 2D turbulence is

sensitive to the mode of forcing turbulence [13], we test if
the Janus spectra are unique to the nonsymmetric forcing
by the two rods. To that end, we conduct experiments with
two different obstacles: one rod and comb. (A comb, the
standard choice of forcing in soap-film experiments, is a
row of rods.) We place the obstacle symmetrically about the
center line of the soap-film channel. Proceeding down-
stream from the obstacle, we first see αu ≈ αv ≈ 3; farther
downstream, we note that αu transitions to a plateau ≈5=3
but αv remains≈3—the Janus spectra (Fig. 3). We conclude
that the Janus spectra are a robust phenomenon unaffected
by the symmetry (or lack thereof) of the forcing.
The existence of the Janus spectra suggests that the

phenomenological theory may be extended to flows with-
out local isotropy. Interestingly, in the Janus spectra, it is
not simply that αu ≠ αv, where αu and αv assume values
whose interpretation necessitates a new theoretical frame-
work. Instead, we find αu ≈ 5=3 and αv ≈ 3, the same
spectral exponents as those predicted by the phenomeno-
logical theory for locally isotropic 2D turbulent flows.
Based on our empirical results, we postulate a simple
generalization of the phenomenological theory for the
Janus spectra: the u component transfers energy without
dissipation, and the v component transfers enstrophy
without dissipation. Consequently, dimensional analysis
[3] yields αu ¼ 5=3 and αv ¼ 3.
To seek the physical mechanisms that underlie the Janus

spectra, we turn to flow visualization.We illuminate the soap
film with monochromatic light (wavelength ¼ 633 nm).
The resultant interference fringes render the turbulent eddies
visible (Fig. 4; Supplemental Material [14] Fig. S-5). The
shapes of the eddies bear witness to the influence of the
shearedmean flow in the soap-film channel. Just downstream
of the obstacle, the eddies are isotropic [Figs. 4(a) and 4(b)].
Farther downstream, however, the eddies become progres-
sively anisotropic [Figs. 4(c) and 4(d)]. This transition from
isotropy to anisotropy—and the accompanying transition
from the direct enstrophy cascade to the Janus spectra—can
be understood by comparing the magnitudes of the turbulent
vorticity and the mean shear.
As the flow evolves downstream, the turbulent vorticity

decays, but the mean shear remains roughly the same
[see, e.g., Fig. 2(e)]. Upstream, the turbulent eddies prevail.
Being relatively unaffected by the mean shear, the locally
isotropic flow exhibits the direct enstrophy cascade (similar
to the case of decaying 2D turbulence without a mean
flow).

Farther downstream, the turbulent eddies weaken. The
weak eddies are distorted by the mean shear [24], as is
evident in Figs. 4(c) and 4(d). This effects anisotropy across
the scales, large and small. To get to a heuristic picture of
the mechanisms that engender the Janus spectra, we
proceed by using the shapes of these anisotropic eddies
as a guide. Note that the anisotropic eddies of Figs. 4(c)
and 4(d) are preferentially elongated along the streamwise
direction (also, see Ref. [24]), thereby transferring energy
for the u component to larger scales (Supplemental
Material [14] Sec. S-5; [25]). We postulate that this energy
transfer initiates the inverse energy cascade for the u
component. The v component of these anisotropic eddies
exhibits different dynamics. Note that the enstrophy flux is
modulated by the vorticity gradient [23], which is oriented
along v for the streamwise-elongated eddies. We speculate
that the v-oriented vorticity gradient sustains the transfer of
enstrophy for the v component. These velocity-component-
dependent transfers of energy and of enstrophy manifest as
the Janus spectra.
While our discussion offers hints about the role of mean

shear [26,27], the interaction between mean flow and
turbulent vorticity remains poorly understood. This inter-
action dictates the fate not only of soap-film flows but also
of decaying flows in the atmosphere and the ocean, for
instance, the waning phase of tropical cyclones. In these
quasi-2D decaying turbulent flows that are inextricably
embedded in sheared mean flows, anisotropy is but the
norm. Our study suggests that the streamwise and
transverse fluctuations in these flows partake in mutually
independent dynamics and that the tools of the

FIG. 4. Turbulent eddies distorted by the sheared mean flow.
The soap film (w ¼ 22 mm) is pierced at the center line with a
rod of diameter 0.5 mm. The mean flow in each panel is from top
to bottom; from left to right, the panels document the downstream
evolution of the flow: x=w ≈ 1–4 (a), 6–9 (b), 25–28 (c),
and 29–32 (d).
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phenomenological theory can be invoked to predict their
behavior. That a theory built assuming local isotropy can
still elucidate a manifestly anisotropic turbulent flow strikes
us as an extraordinary testament to its generality. In closing,
we submit that the study of decaying 2D turbulence
embedded in a sheared mean flow is replete with unex-
pected insights, with implications on a broad range of
problems, from the understanding of turbulent cascades to
the forecasting of large-scale weather systems.

We thank Gustavo Gioia for helpful discussions and the
referees for constructive comments. This work was sup-
ported by the Okinawa Institute of Science and Technology
Graduate University.
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