
The Canonical Transformation Generated by the
Area Operator

Edward Witten, IAS

OIST workshop, October 21, 2024



Roughly speaking, any (gauge-invariant) function on phase space
can be used to generate a canonical transformation by Poisson
brackets. An interesting example is the area A of an extremal
surface S such as the bifurcate horizon of a black hole:

The most relevant paper for my talk is this one (where it is
introduced differently and called the “kink transform”)

Bousso, Chandrasekharan Rath, and Shabhazi-Moghaddam
(BCRS) “Gravity Dual of Connes Cocycle Flow” arxiv:2007.00230

One of the much older papers is

S. Carlip and C. Teitelboim, “The Off-Shell Black Hole,”
gr-qc/9312002.



A key fact is that the extremal surface S is a well-defined,
diffeomorphism invariant notion

so its area A(S) is a well-defined function on phase space, and it
make sense to ask what is the symmetry that this function
generates by Poisson brackets.



As in BCRS, to learn about the new spacetime that we get if we
act with a canonical transformation generated by A(S), one way is
to think about what happens on an initial value surface C that
passes through S :

The canonical variables are the metric hij on C and the canonical
momentum Πij . The canonical momentum is expressed in terms of
the “extrinsic curvature” of C in the full spacetime M by

Πij =
1

8πG

√
det h (Kij − Khij) ,

where K = hijKij is the trace of the extrinsic curvature.



Obviously A(S), since it is only a function of the metric, commutes
with hij everywhere. And since it only depends on the metric on S ,
it commutes with Πij everywhere except along S , where we get

Πab = 8πG · ε · habδS , Π⊥a = Π⊥⊥ = 0.

Here ε is a small parameter which I included because we want to
look at the infinitesimal action of a symmetry generator; δS is a
delta function supported on S ; indices a, b are tangent to S and ⊥
is the normal direction, as I tried to show:

.



Remembering that Πij = − 1
8πG

√
det h (Kij − Khij) , we can turn

the formula for Π into a formula for K :

K⊥⊥ = εδS , Kab = Ka⊥ = 0.

So now we need to know what it means, in D spacetime
dimensions, if the D − 1-geometry of an initial value surface is
smooth but its extrinsic curvature has this kind of delta function
on a codimension one surface.



The basic model for this is just an initial value surface in R1,1

(two-dimensional Minkowski space) with a delta function in its
intrinsic curvature. If C is an initial value surface with a “kink” or
bend at a point p – but otherwise geodesically embedded –

then its extrinsic curvature has a delta function at p

K = εδp,

where ε is the “boost angle” associated to the kink.



In higher dimensions, an extremal surface S is not just a point p
but is of dimension D − 2. But the local structure is the same:
near S , the initial value hypersurface C looks like S × R and the
full spacetime M looks like S × R1,1. The effect of the delta
function is to put a “kink” in the second factor of C ∼= S × R
while doing nothing to S .



Since we found this by acting with a canonical transformation
generated by the area A(S), the “kink transformed” initial value
surface C satisfies the Einstein constraint equations (as shown
explicitly by BCRS) and therefore it provides valid initial data for a
“kink transformed spacetime.” I was curious for a more explicit
description of the kink-transformed spacetime. For example, what
kind of singularity is there on the “horizon”? A more explicit
answer to such questions is really all that I have to report today.



The extremal surface S divides the initial value surface C into a “right”
Cr and “left” Cl :

The kink transform does not change Cl or Cr , only the way they are
joined. Locally near the extremal surface S , the two “congruences” of
orthogonal null geodesic divide the spacetime M into four wedges:

Since the left wedge is the domain of
dependence of Cl and the right wedge is the domain of dependence of
Cr , the kink transform does not affect either of them. But (as noted by
BCRS) it does change the future and past wedges.



To understand how the kink transform changes the future and past
wedges, we will first practice in Minkowski space with a scalar field
theory, say φ4 theory. It is convenient to use what is called the
characteristic initial value problem, in which a solution is predicted
in a future wedge given initial data on the past boundary of the
wedge:



For a scalar the characteristic initial value problem is easy to
describe. One just specifies initial data φ(u, 0, ~y) at v = 0 and
φ(0, v , ~y) at u = 0, constrained to agree at u = v = 0. To see that
this data suffices to determine a solution, note that the equation is

∂2φ

∂u∂v
−
(
∂

∂~y

)2

φ− λφ3 = 0.

We would like to determine ∂v |v=0 φ(u, v , ~y). The equation tells
us ∂u of this, so we integrate in u down to u = 0, where we know
∂vφ(0, v , ~y) for all v . The same works for higher derivatives with
respect to v at v = 0. Likewise we have enough information to
compute derivatives with respect to u at v = 0. So we have a
well-defined initial value problem.



Now let us go back to our problem:

What will we choose for φ(u, 0, ~y) and φ(0, v , ~y)? The answer is
determined by the fact that the solution should be continuous on
the future horizon (or there would be an infinite energy flux). Since
the metric in the future wedge is also supposed to the Minkowski
metric, juat as in the left and right wedge, it might seem that
there is no way for the kink transform to give us a new solution.



Actually, there is. One way to describe it is by using different
coordinate systems in different patches with various rescalings of u
and v in going from patch to patch. However, there is a simpler
way: use the same u and v coordinates everywhere but take
different normalizations of the dudv part of the Lorentz metric in
different patches:

In this description, we just choose the characteristic initial data in
the future wedge (and also in the past wedge) so that φ is
continuous over all past and future horizons. So we get a solution
in which φ is continuous on both horizons, and it depends on a
parameter t which is the parameter of the kink transform.



But is this a solution in Minkowski space?

Yes, as one can see by replacing u, v with new coordinates u′, v ′

defined by

v =

{
v ′ if v < 0

e−tv ′ if v > 0.

u =

{
u′ if u > 0

etu′ ifu < 0.
(1)

The metric is now du′dv ′ − (d~y)2 in all four wedges. So we’ve
found the right data for the characteristic initial value problem in
the future and past wedges.



From this one can read off the nature of the shock wave along the
past and future horizons. φ is continuous everywhere, but ∂vφ is
discontinuous across v = 0 and ∂uφ is discontinuous across u = 0.



A very similar construction is possible for gravity (possibly coupled
to matter fields, but I’ll omit them). The characteristic initial value
problem was first described by Sachs (1962). The metric near any
codimension 2 surface S can be put in the form

ds2 = −e2qdudv + gAB(dxA + CAdu)(dxB + CBdu)

with some conditions q = 0 if u or v = 0, CA = 0 if v = 0. Good
initial data for to find the solution in the future wedge u, v > 0 are
the following:

(1) one must be given gAB at u = v = 0, and gAB up to a Weyl
transformation if u = 0, v > 0 or u > 0, v = 0

(2) one also needs ∂u det gAB and ∂v det gAB = 0 at u = v = 0 for
all xA (Raychaudhuri’s equation plus conditions (1) and (2) then
determine gAB on the future horizon, u = 0 or v = 0).

(3) finally one needs ∂vCA at u = v = 0.



What set of data do we want on the past of the future wedge, and
on the future of the past wedge, so as to determine the
kink-transformed solution? We want to pick the characteristic
initial data so that the metric will be continuous (not smooth!) on
all past and future horizons. Since the starting point was that the
metric in left and right wedges was given, this actually tells us, up
to a coordinate choice, what should be the initial data on the
boundaries of the past and future wedges. But if we choose gAB
on the future and past horizons to make the metric continuous,
then what freedom do we have to introduce a kink parameter?



As in the discussion of the scalar, it is possible to give an answer
by using different coordinate systems in different patches, but
there is a simpler way. We use the same null coordinates
everywhere, and we fix the initial data on the past of the future
wedge and the future of the past wedge so that the metric is
continuous along all horizons:

However, we depart slightly from Sachs’s conventions.



In the metric

ds2 = −e2qdudv + gAB(dxA + CAdu)(dxB + CBdu)

instead of saying that q = 0 if u or v vanishes, we say that if u or
v vanishes on the boundary of the future wedge then

e2q = et

and if u or v vanishes on the boundary of the past wedge, then

e2q = e−t .

(One also does something similar for ∂vC
A
∣∣
u=v=0

.)



This way we get a solution of Einstein’s equations in all four
wedges

and the metric is continuous across all horizons except for the
discontinuity involving guv (and some similar details involving CA).
This can be undone with the same redefinition of u, v as in the
scalar case.



In our starting point, we assumed that the intersection S of the
various horizons is an extremal surface:

Otherwise, we couldn’t define the kink transform, since we did not
have a diffeomorphism invariant function A(S) on the classical
phase space to use as the generator of a canonical transformation.
The problem is, what is S? If S isn’t an extremal surface, we don’t
have a diffeomorphism way to characterize it and to say which
surface we are taking the area of.



But in the approach that I’ve explained with the characteristic
initial value problem, why does S have to be extremal? Actually
there is no trouble constructing the solution in the future wedge
even if S isn’t extremal

and there is no trouble in the past wedge. But when we combine
the past and future wedges both, what happens is that if S isn’t
extremal, then Raychaudhuri’s equation (which is part of the
Einstein equations) has a delta function at u = v = 0 and so
Einstein’s equations aren’t satisfied.



From this point, it is straightforward to understand what sort of
singularity the solution has on the past and future horizons. The
metric is continuous, but its u derivative is discontinuous at u = 0
and its v derivative is discontinuous at v = 0. As a result, RuAuB

has a delta function at u = 0 and RvAvB has a delta function at
v = 0. So there is a curvature singularity but it is a “null”
singularity which does not show up in any curvature invariants.



This is all I will say about the classical kink transform. Now let us
discuss the situation quantum mechanically. We go back to
Minkowski space, without gravity. The kink transform is trying to
be a “one-sided boost.” The boost operator in the x − t plane can
be defined as an integral on the initial value hypersurface t = 0:

K =

∫
t=0

dxd~y x T00(x , ~y).

Naively, if we want to make a boost only on the x > 0 half of the
hypersurface, we use

KR =

∫
t=0,x>0

dx d~y x T00(x , ~y).

Classically this can be viewed as the generator of the kink
transform: it boosts half of the initial value surface, producing a
kink:



Quantum mechanically, KR isn’t a good operator. The basic way
to see this is to ask if KR |Ω〉 is normalizable (where Ω is the
vacuum vector). It isn’t; a straightforward calculation gives

〈Ω|K 2
R |Ω〉 =∞

due to fluctuations near x = 0. Since every state looks like the
vacuum at short distances, the same divergent fluctuations are
present for every state so KR |Ψ〉 is unnormalizable for every Ψ;
thus KR does not make sense as an operator.



Here we considered a kink transform where the surface S is the
boundary of the Rindler wedge (which made it possible to write
explicit an explicit formal expression for the kink generator KR) but
the story is the same in ordinary quantum field theory for any S in
any spacetime:

That is because the would-be kink transform generator near S
suffers from the same short distance fluctuations near S that KR

suffers from near x = 0 in the Rindler example.



There is, however, a partial substitute for KR : a state-dependent
operator that I will call KR,Ψ which has the property that if O is
an operator (or product of operators) in either the left or the right
Rindler wedge, then

〈Ψ|e iαKR,ΨOe−iαKR,Ψ |Ψ〉

depends on α as one would formally expect if KR,Ψ is a one-sided
boost operator:

(1) If O is in the left Rindler wedge, this correlator is independent
of α.

(2) If O is in the right Rindler wedge, this correlator depends on α
exactly as one would expect for a boost generator.



The catch is that the operator that does this depends on the state
Ψ. It is the (generator of) the Connes cocycle flow. This partial
substitute for the one-sided boost was important in the paper
BCRS and in various other papers (such as the proof of the QNEC
by Ceyhan and Faulker).



BCRS considered a holographic situation and asked what is the
holographic dual of the Connes cocycle flow generator (i.e. the
generalization of what in Rindler space is the one-sided boost) in the
bulk. In other words in the usual holographic setup,

where we could define the Connes cocycle flow for the boundary region
W , they asked what is the bulk dual of this flow. They argued that to
leading order as G → 0, the dual is the kink transform, in other words in
the classical limit of the bulk theory, the dual is the flow generated by

A

4G
.



Since the Connes cocycle flow generator is a rigorously defined
operator in the boundary theory, its bulk dual must be something
that also makes sense quantum mechanically. As I’ve explained,
A/4G doesn’t quality, but something that does qualify is the
operator associated to the generalized entropy

A

4G
− log ρ

where ρ is a formal density matrix for the bulk state reduced to the
entanglement wedge. As we know from the example of Rindler
space (where − log ρ is 2πKR), log ρ is also not a well-defined
operator quantum mechanically, but the sum is. Roughly, A/4G
generates a one-sided boost of the geometry in the sense that I
explained. By itself this isn’t a good quantum operation. But
− log ρ generates a compensating operation on the bulk quantum
fields in the entanglement wedge.



Anyway, what I’ve explained is the result of my attempt to
understand the kink transform more explicitly.


