Universality classes in Rank-3 Tensor models

Johannes Lumma

OIST, 2018

In collaboration with A. Eichhorn, T. Koslowski and A. D. Pereira

arXiv: 1811.XXXX

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

MOTIVATION

- Connections to Quantum Gravity
- Melons are branched polymers [Gurau, Ryan, 2013]
- Different continuum limits might exist (?)

- Connections to Quantum Gravity
- Melons are branched polymers (?) [Gurau, Ryan, 2013]
- Different continuum limits might exist



FRG as a tool to discover universality classes

Outline

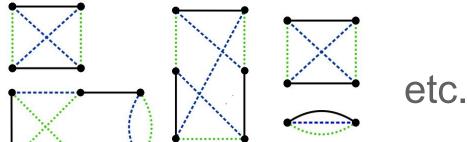
- The stage a.k.a. the model
- Apply the FRG
- Results
- Conclusion

The Model

• Consider a real rank-3 Tensor model s.t.

$$T_{a_1 a_2 a_3} \to O_{a_1 b_1}^{(1)} O_{a_2 b_2}^{(2)} O_{a_3 b_3}^{(3)} T_{b_1 b_2 b_3}$$

• Enlarged Theory space compared to $U(N)^{\bigotimes 3}$



Let's find out using the FRG

Applying the FRG

• Coarse-graining in N [Eichhorn, Koslowski, 2013]

$$\partial_t \Gamma_N = rac{1}{2} {
m Tr} \left(\Gamma_N^{(2)} + R_N
ight)^{-1} \partial_t R_N$$

Flow of the Effective Action Γ_N

Alternative to path-integral formulation

Applying the FRG

• Coarse-graining in N [Eichhorn, Koslowski, 2013]

$$\partial_t \Gamma_N = rac{1}{2} {
m Tr} \left(\Gamma_N^{(2)} + R_N
ight)^{-1} \partial_t R_N$$
 $\Gamma_N^{(2)} = rac{\delta^2 \Gamma_N}{\delta T_{total} \delta T_{total}}$ IR-Regulator

How to cook with the FRG - A recipe

Ingredients:

- A truncation of the effective action
 - Amount: Already small truncations can yield viable results
- ullet A regulator R_N

1)
$$a_1 + a_2 + a_3 < N$$
: $R_N > 0$

2)
$$N < a_1 + a_2 + a_3$$
: $R_N = 0$

3) $N \to N' \to \infty$: $R_N \to \infty$

Instructions:

• Compute $\Gamma_N^{(2)}$

ullet Specify R_N

- Cook β -fcts (or compute) using FRG
- Fix scaling of couplings

Ingredient I: TRUNCATION

• FRGE cannot be solved exactly

Need approximation/ truncation

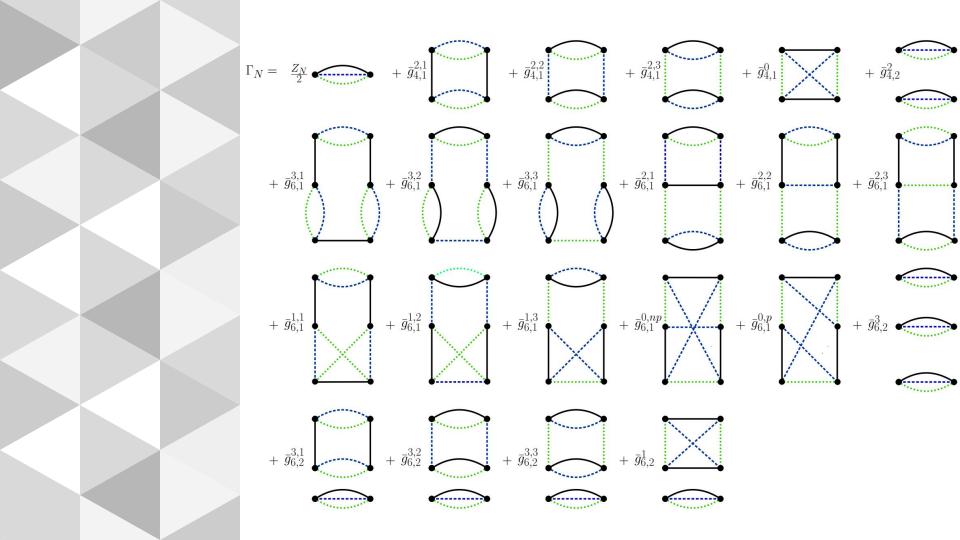
Ingredient I: TRUNCATION

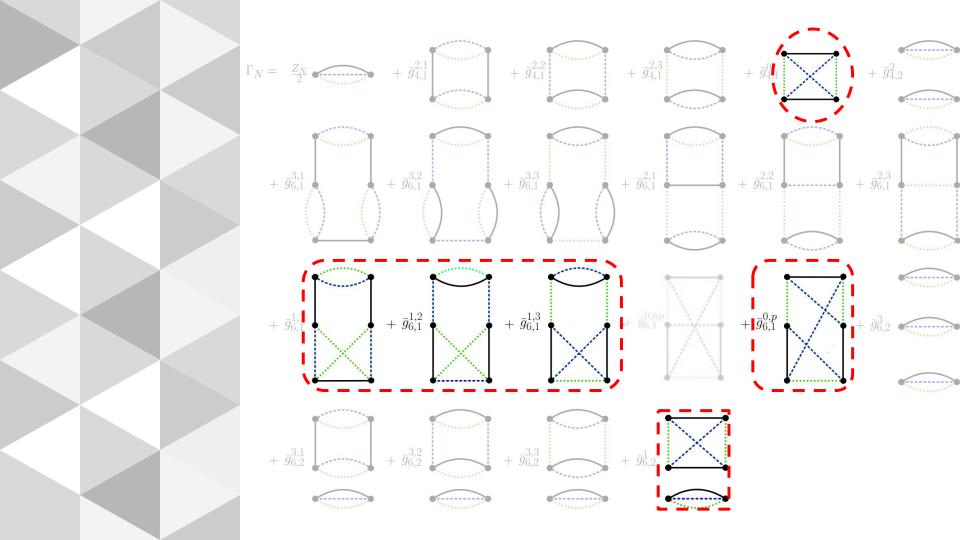
FRGE cannot be solved exactly

Need approximation/ truncation

 Include ALL interactions allowed by symmetry up to 6th order in T

Dinstinguish interactions by prefered color





Ingredient II: Regulator

$$\left\{R_N(\left\{a_i
ight\},\left\{b_i
ight\}
ight)=Z_N\,\delta_{a_1b_1}\delta_{a_2b_2}\delta_{a_3b_3}\left(rac{N^r}{a_1+a_2+a_3}-1
ight) heta\left(rac{N^r}{a_1+a_2+a_3}-1
ight)
ight\}$$

 $a_1 + a_2 + a_3 < N: \quad R_N > 0$

 $N < a_1 + a_2 + a_3 : \quad R_N = 0$

 $N o N' o\infty: \quad R_N o\infty$

No notion of mass dimensionality

All choices $\,r>0\,$ seem to be allowed

Hundreds of zeros of the beta functions are generated

How to distinguish Physical FP from Unphysical zero?

Trusting the Fixed Point?

Ensure stability of results by successively increasing truncation

```
1. Starting Scheme: Quartic Order with -rac{N\partial_N Z_N}{Z_N}\equiv \eta=0
```

2. Quartic Order with polynomial approximation for η

3. Quartic Order with full non-polynomial η

4. Sixth Order, same procedure for η

- Regulator bound $\eta < r$
- Assumption: Canonical guiding principle

Trusting the Fixed Point?

Ensure stability of results by successively increasing truncation

```
1. Starting Scheme: Quartic Order with -rac{N\partial_N Z_N}{Z_N}\equiv \eta=0
```

2. Quartic Order with polynomial approximation for η

3. Quartic Order with full non-polynomial η

4. Sixth Order, same procedure for η

- Regulator bound $\eta < r$
- Assumption: Canonical guiding principle

Regulator Bound($\eta < r$) [Meibohm, Pawlowski, Reichert, 2015]

Rewrite anomalous dimension

$$ightarrow \ \eta = rac{-N\partial_N Z_N}{Z_N} \Longrightarrow Z_N \sim N^{-\eta}$$

Consider now our regulator

$$>R_{N}(\left\{ a_{i}
ight\} ,\left\{ b_{i}
ight\})=Z_{N}\,\delta_{a_{1}b_{1}}\delta_{a_{2}b_{2}}\delta_{a_{3}b_{3}}\left(rac{N^{r}}{a_{1}+a_{2}+a_{3}}-1
ight) heta\left(rac{N^{r}}{a_{1}+a_{2}+a_{3}}-1
ight)$$

Consider $N \to N' \to \infty$

N: IR-cutoff

$$> \lim_{N o N' o \infty} R_N \sim Z_N \, N^r \sim N^{r-\eta}$$

N': UV-cutoff

Regulator needs to diverge in that limit

Trusting the Fixed Point?

Ensure stability of results by successively increasing truncation

```
1. Starting Scheme: Quartic Order with -rac{N\partial_N Z_N}{Z_N}\equiv \eta=0
```

2. Quartic Order with polynomial approximation for η

3. Quartic Order with full non-polynomial η

4. Sixth Order, same procedure for η

- Regulator bound $\eta < r$
- Assumption: Canonical guiding principle

Trusting the Fixed Point?

Ensure stability of results by successively increasing truncation

```
1. Starting Scheme: Quartic Order with -rac{N\partial_N Z_N}{Z_N}\equiv \eta=0
```

2. Quartic Order with polynomial approximation for η

3. Quartic Order with full non-polynomial η

4. Sixth Order, same procedure for η

- Regulator bound $\eta < r$
- Assumption: Canonical guiding principle

Canonical Guiding Principle

Idea: Increasing truncation should not induce new relevant directions

$$\begin{split} \left[\bar{g}_{4,1}^{0}\right] &= -3/2 \quad \left[\bar{g}_{4,1}^{2,i}\right] = -2 \quad \left[\bar{g}_{4,2}^{2}\right] = -3 \\ \left[\bar{g}_{6,1}^{1,i}\right] &= -7/2 \quad \left[\bar{g}_{6,1}^{2,i}\right] = -4 \quad \left[\bar{g}_{6,1}^{3,i}\right] = -4 \\ \left[\bar{g}_{6,1}^{0,np}\right] &= -3 \quad \left[\bar{g}_{6,1}^{0,p}\right] = -3 \quad \left[\bar{g}_{6,2}^{3,i}\right] = -5 \\ \left[\bar{g}_{6,2}^{1}\right] &= -9/2 \quad \left[\bar{g}_{6,3}^{3}\right] = -6 \end{split}$$

$$\implies \max(\theta) - \max(d_{\bar{g}}) \leq 5$$

All couplings with scaling dimension $>-5\,$ are included

Next coupling with largest scaling dimension $[\bar{g}^0_{8.1}]=-5$

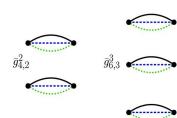
$$\max(d_{ ilde{g}}) = -3/2 \ iggrapha x (heta) \leq 3.5$$

Dimensionally-reduced universality classes

 Cyclic Melonic singletrace FP



 Multitrace Bubble FP



 Cyclic Melonic Multitrace FP Cyclic Melons & Multi-Trace $\neq 0$

Candidates for universality classes for 3d Quantum Gravity

• Isocolored FP with tetrahhedral $\bar{g}_{4,1}^0$ interaction

& No preferred color

Dimensionally-reduced universality

Cyclic Melonic Singletrace FP.

Multitrace **Bubble FP**

Rersality Cyclic Melon Classes

Multi-Tra-

Multi-Trace \neq

Cyclic Melonic Multitrace FP

Candidates for universality classes for

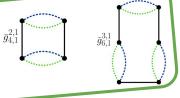
Isocolored FP With tetrahedral Cinteraction

& No preferred color

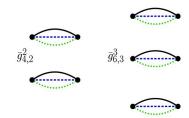
Dimensionally-reduced universality

classes

 Cyclic Melonic singletrace FP



 Multitrace Bubble FP

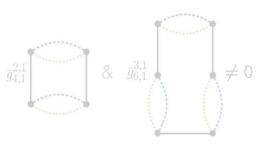


 Cyclic Melonic Multitrace FP Cyclic Melons & Multi-Trace $\neq 0$

Candidates for universality classes for 3d Quantum Gravity

Isocolored FP
 With tetrahedral
 interaction

& No preferred color



Cyclic Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1}^{*} = -1$$

$$\theta_1 = 2$$

$$g_{4.1}^{2,1*} = -0.46$$

(except @ All Orders, $\eta = 0$ —

$$g_{6.1}^{3,1*} = -0.50$$

$$\theta_1 = 0$$

$$\theta_2 =$$

Regulator Bound $_{\eta}$

$$^{2,1*}_{4,1} = -0.43$$

$$\theta_1 = 2$$

$$g_{4,1}^{2,1*} = -0.43$$
 $\theta_1 = 2$ $g_{4,1}^{2,1*} = -0.30$ Canonical Guiding Principle $e_1^{2,1*} = -0.18$

$$g_{4,1}^{2,1*} = -0.38$$

$$heta_1=2.27$$

$$\theta_2 = -0.16$$

$$g_{4,1}^{2,1*} = -0.30$$

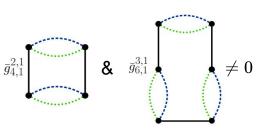
$$Q_{0,1}^{3^{1*}} = -0.18$$

$$g_{4.1}^{2,1*} = -0.28$$

$$g_{6,1}^{3,1*} = -0.15$$

$$\theta_1 = 2.19$$

$$\theta_2 = -0.03$$

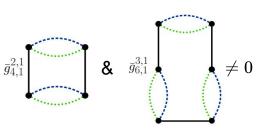


Cyclic Melonic Singletrace FP

• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

```
Starting Scheme: Quartic Order with \eta=0 g_{4,1}^{2,1*}=-1 \theta_1=2 \theta_2=1 Quartic Order with polyn. \eta g_{4,1}^{2,1*}=-0.43 \theta_1=2 \theta_2=-0.14 Quartic Order with full \eta g_{4,1}^{2,1*}=-0.38 \theta_1=2.27 \theta_2=-0.16
```



Cyclic Melonic Singletrace FP

ullet 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

Starting Scheme: Quartic Order with $\eta=0$						
${g_{4,1}^{2,1}}^{\ast}=-1$	$\theta_1=2$					
	$\theta_2 = 1$					
2)	Quartic Order with polyn. η					
${g_{4,1}^{2,1}}^{\ast}=-0.43$	$egin{aligned} heta_1 &= 2 \ heta_2 &= -0.14 \end{aligned}$					
3)	Quartic Order with full η					
${g_{4,1}^{2,1}}^{st}=-0.38$	$\theta_1=2.27$					
	$ heta_2 = -0.16$					

4) Hexic Order with
$$\eta=0$$

$$g_{4,1}^{2,1*}=-0.46 \qquad \theta_1=2$$

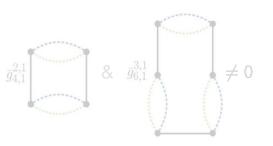
$$g_{6,1}^{3,1*}=-0.50 \qquad \theta_2=0.53$$
5) Hexic Order with polyn. η

$$g_{4,1}^{2,1*}=-0.30 \qquad \theta_1=2$$

$$g_{6,1}^{3,1*}=-0.18$$
6) Hexic Order with full η

$$g_{4,1}^{2,1*}=-0.28 \qquad \theta_1=2.19$$

$$g_{6,1}^{3,1*}=-0.15 \qquad \theta_2=-0.03$$



Cyclic Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1*} = -1$$

$$\theta_1 = 2$$

$$\theta_2 = 1$$

Quartic Order with polyn. η

$$g_{4,1}^{2,1*} = -0.43$$

$$\theta_1 = 2$$

$$heta_2 = -0.14$$

Quartic Order with full η

$$g_{4,1}^{2,1*} = -0.38 \theta_1 = 2.27$$

$$\theta_1 = 2.27$$

$$\theta_2 = -0.16$$

$$g_{4.1}^{2,1*} = -0.46$$

$$\theta_1 = 2$$

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. d

$$g_{6.1}^{3,1*} = -0.50$$

$$\theta_2 = 0.53$$

Hexic Order with polyn. η

$$g_{4,1}^{2,1*} = -0.30$$

$$P_1 = 2$$

$$g_{6.1}^{3,1*} = -0.18$$

$$heta_2 = -0.03$$

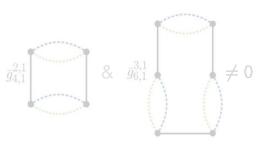
Hexic Order with full η

$$g_{4,1}^{2,1*} = -0.28$$
 $\theta_1 = 2.19$

$$\theta_1=2.19$$

$$g_{6.1}^{3,1*} = -0.15$$
 $\theta_2 = -0.03$

$$\theta_2 = -0.03$$



Cyclic Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1}^{*} = -1$$

$$\theta_1 = 2$$

$$\theta_2 = 1$$

$$g_{4,1}^{2,1*} = -0.46$$

$$g_{6,1}^{3,1*} = -0.50$$

$$\theta_1 =$$

(except @ All Orders, $\eta = 0 \longrightarrow 2 \text{ rel. d}$

Regulator Bound $_{\eta}$

$$g_{4,1}^{2,1*} = -0.43$$

$$\theta_1 = 2$$

$$g_{4,1}^{2,1*} = -0.43$$
 $\theta_1 = 2$ $g_{4,1}^{2,1*} = -0.30$ Canonical Guiding Principle $\mathbf{\hat{e}}_1^{1*} = -0.18$

$$g_{4,1}^{2,1*} = -0.38$$

$$heta_1=2.27$$

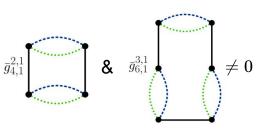
$$\theta_2 = -0.16$$

$$g_{41}^{2,1*} = -0.28$$

$$g_{6.1}^{3,1*} = -0.15$$

$$\theta_1 = 2.19$$

$$\theta_2 = -0.03$$

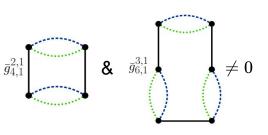


Cyclic Melonic Singletrace FP

• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

Starting Scheme: Quartic Order with $\eta=0$		4)		Hexic Order with $\eta=0$
$g_{4,1}^{2,1*}=-1$	$^{ heta_1=2}$ $\eta=0<1$		$g_{4,1}^{2,1*}=-0.46$	$\theta_1 = 2$
	$ heta_2=1$		$g_{6,1}^{3,1}{}^{st} = -0.50$	$ heta_2 = 0.53$
2)	Quartic Order with polyn. η	5)		Hexic Order with polyn. η
$g_{4,1}^{2,1*}=-0.43$	$ heta_{\scriptscriptstyle 1}$ = 2 $\eta = -0.57 < 1$		${g_{4,1}^{2,1}}^{st}=-0.30$	
	$ heta_2 = -0.14$		$g_{6,1}^{3,1*}=-0.18$	$ heta_2 = -0.03$
3)	Quartic Order with full η	6)		Hexic Order with full η
$g_{4,1}^{2,1*}=-0.38$	$ heta_{\scriptscriptstyle 1}$ = 2.27 $ oldsymbol{\eta} = -0.58 < 1$		$g_{4,1}^{2,1*}=-0.28$	$\theta_1=2.19$
	$ heta_2 = -0.16$		${g_{6,1}^{3,1}}^st=-0.15$	$ heta_2 = -0.03$

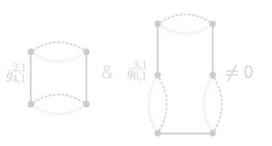


Cyclic Melonic Singletrace FP

ullet 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

```
Starting Scheme: Quartic Order with \eta = 0
                                                                                    Hexic Order with \eta = 0
                                                                     g_{4,1}^{2,1*} = -1 	heta_1 = 2 \eta = 0 < 1
                                                                     g_{6.1}^{3,1*} = -0.50
                          \theta_2 = 1
2)
                  Quartic Order with polyn. \eta
                                                                                    Hexic Order with polyn. \eta
                                                                                              	heta_{\scriptscriptstyle 1} = 2 \eta = -0.40
 g_{4.1}^{2,1*} = -0.43 	heta_1 = 2 oldsymbol{\eta} = -0.57 < 1
                                                                     {g_{4.1}^{2,1}}^{st} = -0.30
                                                                                              \theta_2 = -0.03
                          \theta_2 = -0.14
                                                                      q_{e,1}^{3,1*} = -0.18
3)
                  Quartic Order with full \eta
                                                                                    Hexic Order with full \eta
                                                                 g_{4,1}^{2,1*} = -0.28 	heta_1 = 2.19 oldsymbol{\eta} = -0.41
 g_{4.1}^{2,1*} = -0.38 	heta_1 = 2.27 m{\eta} = -0.58 < 1
                                                                      g_{6,1}^{3,1*} = -0.15
                                                                                     	heta_2 = -0.03
                          \theta_2 = -0.16
```



Cyclic-Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1*} = -1$$

$$\theta_1 = 2$$

$$\theta_2 = 1$$

Regulator Bound

$$g_{4,1}^{2,1*} = -0.43$$

$$\theta_1 = 2$$

$$heta_2 = -0.14$$

Quartic Order with full η

$$g_{4,1}^{2,1*} = -0.38$$
 $\theta_1 = 2.27$

$$\theta_1 = 2.25$$

$$\theta_2 = -0.16$$

$$g_{41}^{2,1*} = -0.46$$

$$g_{4,1}^{3,1*} = -0.40$$

 $g_{6,1}^{3,1*} = -0.50$

$$\theta_0 = 0.59$$

(except @ All Orders, $\eta = 0 \longrightarrow 2 \text{ rel. d}$

$$\theta_2 = 0.53$$

$$g_{4,1}^{2,1*} = -0.30$$

$$\theta_1 = 2$$
$$\theta_2 = -0.03$$

$$g_{6,1}^{3,1*} = -0.18$$

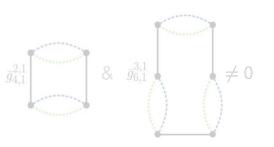
Hexic Order with full
$$\eta$$

$$g_{4\,1}^{2,1\,*} = -0.28$$

$$heta_1=2.19$$

$$g_{6.1}^{3,1*} = -0.15$$

$$heta_2 = -0.03$$



Cyclic-Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1*} = -1$$

$$\theta_1 = 2$$

$$g_{4,1}^{2,1*} = -0.46$$

(except @ All Orders, $\eta = 0 \longrightarrow 2 \text{ rel. d}$

$$g_{4,1}^{z,1} = -1$$

$$\theta_2 = 1$$

$$g_{6,1}^{3,1*} = -0.50$$

$$=0.53$$

Regulator Bound $_{n}$

$$g_{41}^{2,1*} = -0.43$$

$$\theta_1 = 2$$

$$g_{4,1}^{2,1*} = -0.30$$

$g_{4,1}^{2,1*} = -0.43$ $\theta_1 = 2$ $g_{4,1}^{2,1*} = -0.30$ Canonical Guiding Principle $\mathbf{\hat{e}}_1^{1*} = -0.18$

$$g_{4,1}^{2,1*} = -0.38$$

$$heta_1=2.27$$

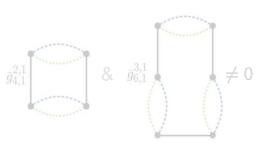
$$\theta_2 = -0.16$$

$$g_{4\,1}^{2,1\,*} = -0.28$$

$$g_{6.1}^{3,1*} = -0.15$$

$$\theta_1 = 2.19$$

$$\theta_2 = -0.03$$



Cyclic-Melonic SingleRecall: $\max(\theta) \leq 3.5$

ullet 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

Starting Scheme: Quartic Order with
$$\eta = 0$$

$$g_{4,1}^{2,1*} = -1 \hspace{1.5cm} heta_1 = 2 \ heta_2 = 1$$

2) Quartic Order with polyn.
$$\eta$$

$$g_{4,1}^{2,1*} = -0.43$$
 $heta_1 = 2$ $heta_2 = -0.14$

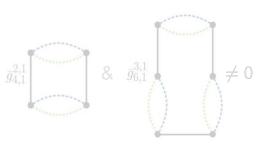
3) Quartic Order with full η

4) Hexic Order with
$$\eta = 0$$

$$g_{4,1}^{2,1}{}^* = -0.46 \hspace{1.5cm} heta_1 = 2 \ g_{6,1}^{3,1}{}^* = -0.50 \hspace{1.5cm} heta_2 = 0.53$$

5) Hexic Order with polyn.
$$\eta$$

6) Hexic Order with full
$$\eta$$



Cyclic-Melonic Singletrace FP

1 relevant directions @ Quartic and @ Hexic order for all approx. of η

Stable under extension of truncation

$$g_{4,1}^{2,1*} = -1$$

$$\theta_1 = 2$$

$$g_{4,1}^{2,1} =$$

Regulator $\overset{\theta_2=1}{\text{Bound}}$

$$g_{4\,1}^{2,1*} = -0.43$$

$$\theta_1 = 2$$

$g_{4,1}^{2,1*} = -0.43$ $\theta_1 = 2$ $g_{4,1}^{2,1*} = -0.30$ Canonical Guiding Principle $\theta_1^{2,1*} = -0.18$

$$g_{4,1}^{2,1*} = -0.38$$

$$\theta_1=2.27$$

$$heta_2 = -0.16$$

$$g_{4.1}^{2,1*} = -0.46$$

$$g_{6.1}^{3,1*} = -0.50$$

 $g_{4,1}^{2,1*} = -0.28$

 $q_{e,1}^{3,1*} = -0.15$

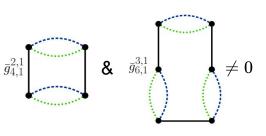
(except @ All Orders, $\eta = 0 \longrightarrow 2 \text{ rel. d}$

$$\theta_2 = 0.53$$

$$\theta_1 = 2$$

$$\theta_1=2.19$$

$$\theta_2 = -0.03$$

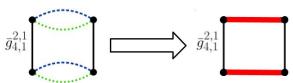


Cyclic Melonic Singletrace FP

Also found in complex model

• Distinguishing colours crucial in decoupling

• Dimensional Reduction



Multitrace Bubble FP

Starting Scheme: Quartic Order with $\eta = 0$

$${g_{4,2}^2}^* = -3.75$$

$$heta_1=3$$

$$heta_2 = -1.5$$

2)

Quartic Order with polyn. η

$${g_{4,2}^2}^st = -1.67$$

$$heta_1=3$$

$$\eta = -0.83$$

3)

Quartic Order with full η

 $\theta_2=0.17$

$${g_{4.2}^2}^* = -1.44$$

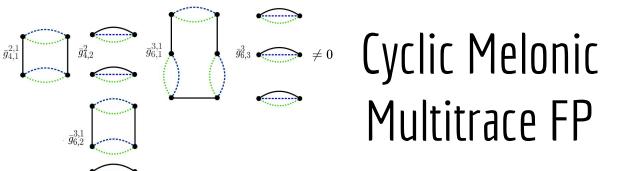
$$\theta_1=3.4$$

$$heta_1=3.47 \hspace{1cm} \eta=-0.84$$

$$heta_2=0.18$$

Multitrace Bubble FP

Starting Scheme: Quartic Order with
$$\eta=0$$
 4) Hexic Order with $\eta=0$ $g_{4,2}^{2}{}^{*}=-3.75$ $\theta_{1}=3$ $g_{6,3}^{2}{}^{*}=-1.73$ $\theta_{1}=3$ $\theta_{2}=-1.5$ $\theta_{2}=-1.5$ $\theta_{3,3}^{2}=-7.45$ $\theta_{2}=-1.5$ $\theta_{2}=-1.5$ 2) Quartic Order with polyn. η 5) Hexic Order with polyn. η $g_{4,2}^{2}{}^{*}=-1.67$ $\theta_{1}=3$ $\theta_{2}=0.17$ $\eta=-0.83$ $\theta_{3,3}^{2}=-2.82$ $\theta_{2}=-0.34$ $\eta=-0.58$ $\theta_{3,3}^{2}=-1.44$ $\theta_{1}=3.47$ $\theta_{2}=0.18$ $\theta_{3,3}^{2}=-1.05$ $\theta_{1}=3.32$ $\eta=-0.59$ $\theta_{2}=-0.33$

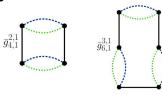


2 relevant directions @ all orders except quartic order, $\eta=0$

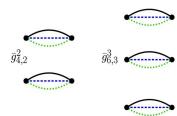
Sixth order, full
$$\eta$$
 $heta_1=2.23$ $heta_2=0.03$

Dimensionally-reduced universality classes

 Cyclic Melonic singletrace FP



 Multitrace Bubble FP

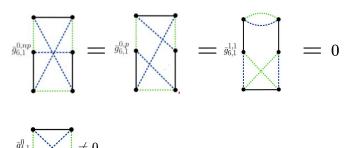


 Cyclic Melonic Multitrace FP Cyclic Melons & Multi-Trace $\neq 0$

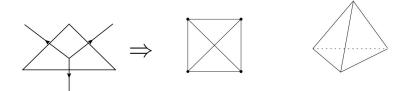
Candidates for universality classes for 3d Quantum Gravity

Isocolored FP with tetrahedral interaction

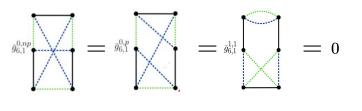
& No preferred color



Isocolored FP with tetrahedral interaction



NEW!!! Not featured in the complex model



Isocolored FP with tetrahedral interaction

Starting Scheme: Quartic Order with $\eta = 0$

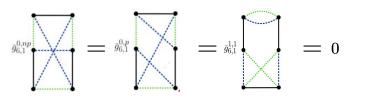
Not present (
$$eta_{g^0_{4,1}}=(rac{3}{2}+2\eta)g^0_{4,1}$$
)

2) Quartic Order with polyn. η

$$egin{aligned} heta_1 &= 2.98 \ heta_{2.3} &= -0.28 \,\pm\, 0.22 \,i \end{aligned} \qquad \eta = -0.75$$

Quartic Order with full η $heta_1=2.60$ $\eta=-0.75$

$$heta_{2.3} = -0.27\,\pm\,0.21\,i$$



Isocolored FP with tetrahedral interaction

4)

5)

Starting Scheme: Quartic Order with
$$\eta = 0$$

Not present (
$$eta_{g^0_{4,1}}=(rac{3}{2}+2\eta)g^0_{4,1}$$
)

2) Quartic Order with polyn.
$$\eta$$

$$egin{aligned} heta_1 &= 2.98 \ heta_{2,3} &= -0.28 \,\pm\, 0.22 \,i \end{aligned} \qquad \eta = -0.75$$

Quartic Order with full
$$\eta$$
 6) $heta_1=2.60 \qquad \eta=-0.75 \ heta_{2,3}=-0.27\pm0.21\,i$

Hexic Order with
$$\eta=0$$

$$egin{aligned} heta_{1,2} &= 1.95 \,\pm\, 0.69 \, i \ heta_{3,4} &= 0.38 \ heta_{5,6} &= -0.03 \,\pm\, 5.96 \, i \end{aligned}$$

Hexic Order with polyn.
$$\eta$$

$$heta_{1,2}=1.46\,\pm\,1.39\,i \ heta_{3,4}=0.15 \ heta_{5,6}=-0.11\,\pm\,4.83\,i$$

Hexic Order with full
$$\eta$$

$$egin{aligned} heta_{1,2} &= 1.3 \pm 1.56 \, i \ heta_{3,4} &= 0.13 \end{aligned} \qquad \eta = -0.33$$

$$heta_{5,6} = -0.02\,\pm\,5.10\,i$$

Conclusions

- Indications for two types of universality classes
 - Dimensional Reduction
 - Candidate for 3d Quantum Gravity?

New universality class not featured in the complex model

• FRG is a very useful tool to discover new universality classes

ありがとうございます