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Notation

(1) X Noetherian topological space.
(2) (Σ,≥) ordered.
(3) f : X → Σ upper-semi-continuos. (σ ∈ Σ, Fσ = { x ∈ X/f(x) ≥ σ} is closed.
(4) Max(f) maximum value achieved.
(5) Max(f) = {x ∈ X; f(x) = Max(f)}.

1. Introduction

Let X be an algebraic variety over a perfect field. The goal is to the study of the singular locus
of X via the multiplicity. We shall explain how this leads to the resolution of singularities of X in
the case of characteristic zero and describe some problems that arise in the positive characteristic
case.

The multiplicity defines a function

multX : X → N,

which assigns to each point x ∈ X the multiplicity of the local ring OX,x. This function is upper
semi-continuous when N is given the natural order, and hence it stratifies X as a finite union of
locally closed subsets, the level sets

Fn(X) := {x ∈ X : multX(x) = n}.
The variety X is regular if and only if multX(x) = 1 for all x ∈ X. If not, we denote by

n(X) : the maximum value of the function multX = MaxmultX .

For n = n(X), the level set

Fn(X) = MaxmultX

which is the highest multiplicity locus, is closed. We shall give a description of this closed set Fn(X)
which could lead, ultimately, to a simplification of it via blow-ups in a sense to be specified later
on.

A remarkable fact, stated in the following theorem, is that the multiplicity does not increase
when blowing up at equimultiple centers:
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Theorem 1.1 (Dade). If X
π←− X1 is the blow up at a smooth center included in a level set Fn(X),

then

multX(π(x1)) ≥ multX1(x1) for all x1 ∈ X1.

In particular, n(X1) ≤ n(X). If n(X1) < n(X), we say shall that X
π←− X1 is a reduction of the

multiplicity of X. More generally,

Definition 1.2. A reduction of the multiplicity of X is a sequence of morphisms

X X1
oo . . .oo Xr−1oo Xr

oo ,

where Xi ← Xi+1 is a blow up at a smooth center included in the maximal multiplicity locus of Xi

and n(X) = n(X1) = · · · = n(Xr−1) > n(Xr).

Note that if any singular variety over a field k admits a reduction of the multiplicity, any variety
over k will admit a resolution of singularities.

Theorem 1.3. (Adv. 2014). Let X be a singular variety over a field k of characteristic zero, then
X admits a reduction of the multiplicity.

There are various ways in which one can present a singular variety X, and one of them is to view
it as a ramified cover of a regular one. In this approach one defines a finite morphism say X → V ,
where V is a smooth variety. Very classical notions, such as the discriminant, are defined in this
context. It is natural to ask if we can extract information from the discriminant so as to simplify
the singularities of X.

This is the perspective in this approach to resolution of singularities. For example, assume that
V is affine, say with (regular) ring of functions S, and suppose that the ring of functions of X is
given by S[Z]/〈Z2 + a1Z + a2〉, where Z is a variable over S. This is a particular case in which X
is viewed as a two fold cover of V , and in this case the discriminant, namely a21 − 4a2 will allow
us to describe the singular locus of X, and ultimately to resolve the singularity at least if the
characteristic is zero.

Pairs, transformations of pairs and closed subsets.

Fix a smooth algebraic variety V over a perfect field k. Given a coherent ideal J on V (OV -ideal
for short) and a positive integer b, we call (J, b) a pair. There is a closed subset of V associated
with this pair, namely

Sing(J, b) := {x ∈ V : νx(J) ≥ b} ⊂ V.

Here νx(J) denotes the order of Jx at the regular local ring OV,x. If Sing(J, b) 6= ∅, a smooth
subscheme included in Sing(J, b) is said to be a permissible center for (J, b). If

V
πY←−− V1 ⊃ H1

is the blow-up of V at a permissible center Y for (J, b), the fact that Y is included in Sing(J, b)
ensures the existence of a factorization

JOV1 = I(H1)
bJ1,

where J1 is an OV1-ideal and H1 ⊂ V1 is the exceptional hypersurface. V1 is regular and the new pair
(J1, b) is called the transform of (J, b). Again, there is a closed subset Sing(J1, b) ⊂ V1 associated
with (J1, b), and if this set is not empty, we can repeat the above construction again. This leads
us to the following definition.

Definition 1.4. Fix a pair (J, b) on V such that Sing(J, b) 6= ∅.
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(1) A permissible sequence of blow-ups for (J, b) is a sequence of the form

V = V0 V1
π1oo . . .

π2oo Vr−1
πr−1oo Vr

πroo

(J, b) = (J0, b) (J1, b) . . . (Jr−1, b) (Jr, b)

,

where Vi ← Vi+1 is the blow up of Vi at a permissible centre for (Ji, b) and (Ji+1, b) is the
transform of (Ji, b).

(2) A permissible sequence as above is said to be a resolution for (J, b) if Sing(Jr, b) = ∅.

A fundamental result for resolution of singularities is that over fields of characteristic zero every
pair (J, b) admits a resolution. Moreover, there is an algorithm which produces such a resolution
in the sense that given V and (J, b), it provides the first center to blow up and produces V ← V1,
and one obtains a transform (J1, b) on V1. So either Sing(J1, b) is empty (in which case we have
produced a resolution for (J, b)), or this set is not empty and the algorithm produces a new center
to blow up, say V1 ← V2, and a transform (J2, b), and so on. The point is that for some index r,
Sing(Jr, b) = ∅. Detailed proofs can be found in literature. Let us indicate that this algorithm has
been implemented, and we refer here to

https://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup
https://www.singular.uni-kl.de/Manual/4-0-3/sing_1454.htmSEC1529

for a software that has been developed to implement this algorithm.

The crucial property of pairs is their role as an assignment of closed subsets. To clarify this
assertion let us fix a smooth variety V over a perfect field k and a pair (J, b) on V . We already
assigned to this pair the closed subset Sing(J, b) ⊂ V . We also defined when a blow-up V ← V1
is permissible for (J, b), and in such case we defined the transform (J1, b) of (J, b), which is a pair
on V1. In particular, a closed subset Sing(J1, b) in the variety V1 is obtained from (J, b) and the
permissible blow-up V ← V1.

Note that if a sequence of transformations of V as above is permissible for a pair (J, b), say

(1.4.1) V V1
π1oo . . .

π2oo Vr−1
πr−1oo Vr

πroo

(J, b) (J1, b) (Jr−1, b) (Jr, b)

,

Then the pairs (Ji, b), i = 1, . . . , r are determined by the sequence (and by the first pair (J, b)).
Hence so are the closed subsets Sing(Ji, b) ⊂ Vi. We shall say that the sequence of sets

(Sing(J0, b), Sing(J1, b), . . . ,Sing(Jr, b))

are the closed subsets defined by (J, b) and the permissible sequence of transformations (1.10.3).
Different sequences of transformations define different closed subsets. We will draw special

attention to the closed subsets defined by (J, b) via permissible sequences over V .
Let V ×A1 → V be the projection, and note that a pair (J, b) on V induces, by pull-back, a pair

(JOV×A1 , b) over V × A1.

Definition 1.5. Two pairs (J, b) and (J ′, b′) on a smooth variety V are said to be equivalent, say
(J, b) ∼ (J ′, b′), if:

(1) Every sequence of transformation of V that is permissible for one of them is also permissible
for the other, and both define the same closed sets.

(2) The same holds for the pull-backs of the pairs (J, b) and (J ′, b′) at V × A1

Example 1.6. Fix a pair (J, b) over V and a positive integer s. We claim that the two pairs (J, b)
and (Js, bs) over V are equivalent. In fact, note that

Sing(J, b) = {x ∈ V : νx(J) ≥ b} = {x ∈ V : νx(Js) ≥ br} = Sing(Js, bs).

https://www.singular.uni-kl.de/Manual/4-0-3/sing_1454.htm#SEC1529
https://www.singular.uni-kl.de/Manual/4-0-3/sing_1454.htmSEC1529
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In addition, if Y is a regular center in Sing(J, b) = Sing(Js, bs) we get two transforms :

V V1oo

(J, b) (J1, b)

V V1oo

(Js, bs) ((Js)1, bs)

which define two pairs on V1, and we finally check that (Js)1 = (J1)
s. In other words, the pairs

(J1, b) and ((Js)1, bs) are linked by the same relation as before. The same will happen if we multiply
V by a line A1. This shows that any sequence of transformation of V which is permissible for (J, b)
will be also permissible for (Js, sb) and viceversa.

1.7. Fix an étale morphism α : V ′ → V . For any sequence (1.4.1) we get, by taking fiber products

(1.7.1) V ′

α

��

V ′1
π′1oo

α1

��

V ′2
π′2oo

α2

��

· · · V ′r
π′roo

αr

��
V V1

π1oo V2
π2oo · · · Vr

πroo

and one can view the upper row as a sequence of transformations of the pullbacks of the pairs (J, b)
and (J ′, b′) to V ′. However, there could be other sequences of transformations over these pullbacks
defined over V ′ which do not arise in this way.

Definition 1.8. Two pairs (J, b) and (J ′, b′) on a smooth variety V are strongly equivalent if

(1) they are equivalent over V (as in 1.5).
(2) The same holds for the pull-backs of the pairs (J, b) and (J ′, b′) at α : V ′ → V for any étale

morphism.

1.9. On constructive resolution. For each integer d ≥ 1 there is a totally ordered set (Γd,≤),
and for any pair (J, b) over a smooth variety V of dimension d , or say for F = (V, (J, b)), there are

”functions ” {f (0), f (1), . . . } and sequences say:

• f (0)F : Sing(J, b)→ Γd such that Maxf
(0)
F is regular.

• Setting

V V1oo

(J, b) (J1, b)

as above, then either Sing(J1, b) is empty or a function f
(1)
F : Sing(J, b) → Γd is defined,

and it is such that Max(f
(1)
F ) is regular.

• Setting

V V1oo V2oo

(J, b) (J1, b) (J2, b)

as in the previous step then either Sing(J2, b) is empty or a function f
(2)
F : Sing(J2, b)→ Γd

is defined, and it is such that Max(f
(2)
F ) is regular.

• . . . .
We say that the previous procedure is a constructive resolution of pairs in dimension d if

(1) For each pair (J, b) over a smooth scheme V of dimension d there is an integer r so that
setting

V V1oo V2oo . . .oo Vr−1oo Vroo

(J, b) (J1, b) (J2, b) (Jr−1, b) (Jr, b)



SOME PROPERTIES OF THE MULTIPLICITY AND OF BLOW UPS AT EQUIMULTIPLE CENTERS. (I) 5

then Sing(Jr, b) is empty.
(2) If (J, b) and (J ′, b′) are equivalent over V , set F = (V, (J, b)) and F ′ = (V, (J ′, b′)). We

require that the functions f
(i)
F : Sing(Ji, b)→ Γd and f

(i)
F ′ : Sing(J ′i , b)→ Γd be the same.

(3) If (J, b) and (J ′, b′) are strongly equivalent and if α : V ′ → V is étale, then the statement
in (2) holds for the pullbacks of the pairs over V ′.

1.10. More on closed sets: Intersections. Fix (J, b) and (I, d) two pairs over V . Then there
is a natural notion of intersection, denoted here by

(J, b) ∩ (I, d) = (K, c)

where K = 〈Jc, Ib〉 and c = bd.

(1) Sing(K, c) = Sing(J, b) ∩ Sing(I, d) at V
(2) A sequence

(1.10.1) V V1
π1oo . . .

π2oo Vr−1
πr−1oo Vr

πroo

(K, c) (K1, c) (Kr−1, b) (Kr, b)

induces two sequences

(1.10.2) V V1
π1oo . . .

π2oo Vr−1
πr−1oo Vr

πroo

(J, b) (J1, c) (Jr−1, b) (Jr, b)

and

(1.10.3) V V1
π1oo . . .

π2oo Vr−1
πr−1oo Vr

πroo

(I, d) (I1, d) (Ir−1, d) (Ir, d)

Moreover

Sing(Ki, c) = Sing(Ji, b) ∩ Sing(Ii, d) at Vi, i = 1, . . . , r

The role of pairs in the simplification of singularities. Hironaka’s approach.

Pairs were introduced by Hironaka, and used to prove resolution of singularities in characteristic
zero. He shows that if we know how to resolve pairs, in the sense of 1.4, one can improve the highest
Hilbert Samuel function. He also proves that resolution is achieved by successive improvements of
the Hilbert Samuel function. This will be formulated in Theorem 1.13.

Hironaka proves that a similar result holds for the Samuel stratification. Recall that a variety
X can be stratified by the Hilbert-Samuel function

HSX : X → NN.

σ ∈ NN if and only if σ : N→ N
HSX(x)(n) = length(OX,x/mn).

The value of this function at a closed point x ∈ X is the Hilbert function of the local ring OX,x.

When NN is ordered lexicographically, it turns out that HSX is upper semi-continuous. Let

S = S(X) ∈ NN = Max(HSX)

denote the highest value achieved by HSX , that is, the highest Hilbert function, and let

FS(X) = MaxHSX(⊂ X)

be the stratum of highest value. Hironaka gives different characterizations for a regular center Y
to be included in FS(X) (permissible centers in his notation). He also proves the following:

Theorem 1.11. Let X ← X1 be the blow up at a regular center Y ⊂ FS(X). Then S(X) ≥ S(X1).
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It is therefore natural to formulate now a reduction in the following terms.

Definition 1.12. We say that a sequence of blow ups X ← X1 ← . . . Xr ← Xr+1 defined as above
is a reduction of the Hilbert-Samuel function if S(X) = S(X1) = · · · = S(Xr) > S(Xr+1).

Suppose now that X ← X1 is any blow-up at a regular center Y (not necessarily in the conditions
of Theorem 1.11), and fix a closed immersion X ⊂ V , where V is regular. Then one can blow up
of V at Y , say V ← V1, and there is a closed immersion, say X1 ⊂ V1, and the restriction of the
latter blow-up to X1 is X ← X1. Usually, once we fix Y ⊂ X ⊂ V , it is said that X1(⊂ V1) is the
strict transform of X ⊂ V . In other words, closed immersions X ⊂ V are preserved by blowing up
at regular centers Y ⊂ X. Therefore, once we fix X ⊂ V , a sequence of blow-ups at regular centers
over X, say X ← X1 ← . . . Xs induces a sequence a blow-ups V ← V1 ← . . . Vs, together with
closed immersions Xi ⊂ Vi 1 ≤ i ≤ s. We are finally prepared to present the role of pairs within
Hironaka’s approach.

Theorem 1.13. Fix a variety X over a perfect field with highest Hilbert-Samuel function S = S(X).
If X ⊂ V , where V is a regular variety, there is a pair (J, b) over V which describes the Hilbert-
Samuel stratum FS(X) as follows:

(1) Sing(J, b) = FS(X) in V .
(2) For any sequence

(1.13.1) X X1
oo . . .oo Xr

oo Xr+1
oo

defined by blowing up regular centers Yi ⊂ FS(X) and such that

S := S(X) = S(X1) = · · · = S(Xr) ≥ S(Xr+1)

we get a permissible sequence of blow-ups for the pair (J, b) in the sense of (1.4), say

(1.13.2) V V1
π1oo . . .

π2oo Vr
πroo Vr+1

πroo

(J, b) (J1, b) . . . (Jr, b) (Jr+1, b)

and

(1.13.3) Sing(Ji, b) = FS(Xi) ⊂ Xi ⊂ Vi for i = 1, . . . , r + 1.

(3) Conversely, for a permissible sequence of blow-ups for the pair (J, b), say (1.13.2), we get
a sequence (1.13.1) and the equalities (1.13.3) hold.

Remark 1.14. 1) The pair (J, b) is constructed in terms of the inclusion X ⊂ V in a very explicit
manner, Theorem 1.13 states that the closed sets defined by (J, b) corresponds naturally to a
Hilbert-Samuel stratum. The construction of (J, b) is not unique, but if another pair (J ′, b′) fulfills
the previous conditions then (J, b) and (J ′, b′) are strongly equivalent over V .

Conversely if (J, b) and (J ′, b′) are strongly equivalent over V one can replace (J, b) by (J ′, b′) in
the theorem.

2) The theorem also shows that the following two conditions are equivalent:

• Sing(Jr+1, b) = ∅
• S = S(Xr) > S(Xr+1)

and that Sing(Jr+1, b) = FS(Xr+1) if S = S(Xr+1). This leads to the following:

Corollary 1.15. 1) A resolution of the pair (J, b) in Theorem 1.13 defines a reduction of the
highest Hilbert-Samuel function of X (1.12).

2) If (1.13.2) is the constructive resolution of (J, b), and if (J ′, b′) is another pair that fulfills the
theorem, then (1.13.2) is also the constructive resolution of (J ′, b′).

3) If (1.13.1) is the reduction of the Hilbert Samuel function defined by the algorithmic resolution
(1.13.2), then (1.13.1) does not depend on the choice of (J, b) in the Theorem.
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Some comments are in order as regarding the formulation of Theorem 1.13. In the first place,
the existence of a pair (J, b) over V (defined in terms of X ⊂ V ) is only local. To be precise, one
can cover X by finitely many open sets so that, after replacing X by such restrictions, there are
closed immersions X ⊂ V and pairs (J, b) which fulfils the conditions of the theorem. Moreover,
these restrictions are, strictly speaking, restrictions in the sense of étale topology. As for the
construction of (J, b), let us indicate that it is defined in terms of the equations defining X ⊂ V ,
using techniques of division at the henselization of OV,x, and finally descending the results to a
suitable étale neighbourhood (a Theorem of Aroca).

The role of pairs in the simplification of the multiplicity.

Consider a finite a dominant morphism of varieties δ : X → V such that V is regular. In the case
that both varieties are affine, if S is the coordinate ring of V and B is that of X, the morphism δ
induces a finite extension of rings S ⊂ B such that S is a regular domain. If K denotes the quotient
field of S, we call

n := [B ⊗S K : K].

the generic rank of δ. This definition extends also to the case where V and X are not necessarily
affine. Given an arbitrary variety X over a field of characteristic zero, the goal is to resolve its
singularities by looking at the multiplicity as main invariant. The following two results introduce
the roll played by finite and dominant morphisms in this task.

Theorem 1.16. Let X be a variety over a perfect field, and fix a point x ∈ X of multiplicity, say
n. After restricting X to an (étale) neighbourhood of x we can define a finite dominant morphism
δ : X → V of generic rank n, where V is regular.

The role of pairs in the study of the multiplicity.

Proposition 1.17. (A corollary of a theorem of Zariski.) Let δ : X → V be a finite and dominant
morphism of generic rank n, where V is regular.

(1) Points of X have at most multiplicity n. Let Fn(X) ⊂ X be the points of multiplicity n.
(2) If Fn(X) 6= ∅, then δ induces an homeomorphism Fn(X) ∼= δ(Fn(X)).
(3) Fix Y ⊂ X included in Fn(X), and assume that Y is irreducible.

(a) Y is regular in X if and only if δ(Y ) is regular in V .
(b) If Y is regular there is a finite and dominant morphism δ1 : X1 → V1 such that

(1.17.1) X

δ
��

X1
oo

δ1
��

V V1oo

is commutative, where X ← X1 is the blow-up of X at Y and V ← V1 is the blow-up of V
at δ(Y ). The generic rank of δ1 : X1 → V1 is again n.

1.18. It follows from Proposition 1.17 that given δ : X → V as above, of generic rank n, for any
sequence

(1.18.1) X = X0 X1
π1oo . . .

π2oo Xr
πroo

Fn(X0) Fn(X1) . . . Fn(Xr)
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where Xi ← Xi+1 is the blow-up at a regular center Yi ⊂ Fn(Xi), one has n = n(X) = n(X1) =
· · · = n(Xr−1) ≥ n(Xr), and (1.18.1) induces

(1.18.2) X

δ
��

X1
oo

δ1
��

· · ·oo Xr−1oo

δr−1

��

Xr
oo

δr
��

V V1oo · · ·oo Vr−1oo Vr,oo

where all vertical morphisms are finite, and

(1.18.3) Fn(Xi) ∼= δi(Fn(Xi)) for i = 1, . . . , r.

Theorem 1.19. Let δ : X → V be a finite and dominant morphism, say of generic rank n, between
affine varieties field of characteristic p ≥ 0, where V is regular. If p does not divide n, one can
attach to δ : X → V a pair (K, d) on the regular variety V so that

(1) Sing(K, d) = δ(Fn(X)).
(2) For any sequence (1.18.1), the lower row of (1.18.2) induces

(1.19.1) V = V0 V1
π1oo . . .

π2oo Vr
πroo

(K, d) (K1, d) . . . (Kr, d)

(1.19.2) Sing(Ki, d) = βi(Fn(Xi)) ⊂ Vi for i = 1, . . . , r.

(3) Conversely, any sequence (1.19.1) induces a sequence (1.18.2) and the equalities in (1.19.2)
hold.

Theorem 1.20. Let X ′ be a variety over a perfect field, and fix a point x′ ∈ X ′ of multiplicity
n. There is an étale neighborhood, say (X,x) → (X ′, x′), where we can define a finite dominant
morphism δ : X → V of generic rank n, where V is regular.

The Claim. The locally defined reductions of the multiplicity given by the algorithmic resolution.

1.21. We remark that the construction of the pair (K, d) given in the theorem is quite explicit.
For example in the hypersurface case: S ⊂ B = S[θ] ∼= S[Z]/〈f(Z)〉,

f(Z) = Xn + a1X
n−1 + · · ·+ a0 ∈ S[Z]

a monic polynomial. δ : Spec(B)→ Spec(S) has generic rank n.
We shall show how to construct a pair (K, d) by means of universal equations on the coefficients

of f that lead to the pair (K, d).

Example 1.22. For n = 2,
f(Z) = X2 + a1X + a2 ∈ S[Z],

and we set H(a1, a2) = a21 − 4a2. Then the pair

(K, d) = (H, 2) = (〈a21 − 4a〉, 2)

fulfills the theorem. So for n = 2 we consider the discriminant with ”weight 2”.

Example 1.23. For n = 3,

f(Z) = X3 + a1X
2 + a2X + a3 ∈ S[Z],

we set H(a1, a2, a3) = 3a2 − a21 and G(a1, a2, a3) = −9a1a2 + 2a31 + 27a3. In this case the pair

(K, d) = (〈H(a1, a2, a3)〉, 2) ∩ (〈G(a1, a2, a3)〉, 3)

fulfills the theorem.
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