Mixed Global Anomaly and

Boundary Conformal Field Theories

Satoshi Yamaguchi (Osaka U.)

Based on a work with Tokiro Numasawa

arXiv:1712.09361 [hep-th] (Osaka U., McGill U.)

3d SPT phase

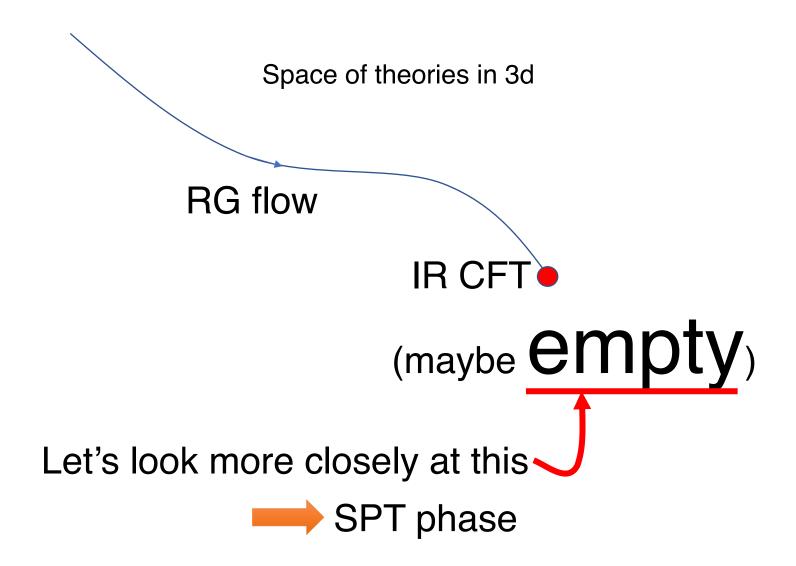
Motivation

't Hooft anomaly in 2d CFT

New interesting observation!

2d boundary CFT

RG flow



SPT phases

(symmetry protected topological)

(In my impression)
Asking

Is this "empty theory" really empty?

No particle, no massless excitation, no spontaneous symmetry breaking, but there is still some non-trivial phase structure.

Example: 3d massive free Dirac fermion

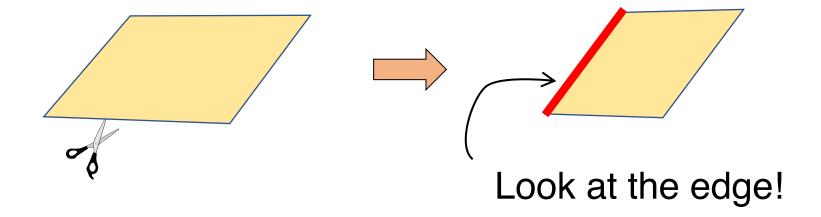
$$S = \int d^3x \left(i\bar{\psi}\gamma^\mu \partial_\mu \psi + m\bar{\psi}\psi \right. - \frac{1}{\Lambda}\bar{\psi}\partial^2\psi \right.$$
 Different
$$S = \int d^3x \left(i\bar{\psi}\gamma^\mu \partial_\mu \psi - m\bar{\psi}\psi \right. - \frac{1}{\Lambda}\bar{\psi}\partial^2\psi \right.)$$

$$m > 0$$
 Remnant of the regulariza

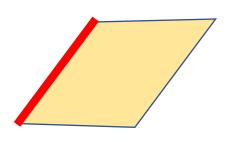
Remnant of the regularization Eg. Pauli-Villars Wilson term in lattice

How to distinguish?

How to distinguish?



Example: 3d massive Dirac fermion

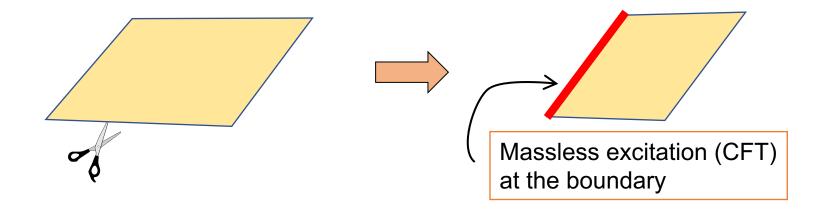


$$S = \int d^3x \left(i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + m\bar{\psi}\psi - \frac{1}{\Lambda}\bar{\psi}\partial^2\psi \right)$$

Edge Weyl fermion (non-empty 2d CFT)

$$S = \int d^3x \left(i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi - \frac{1}{\Lambda}\bar{\psi}\partial^2\psi \right)$$

A way to find SPT phases

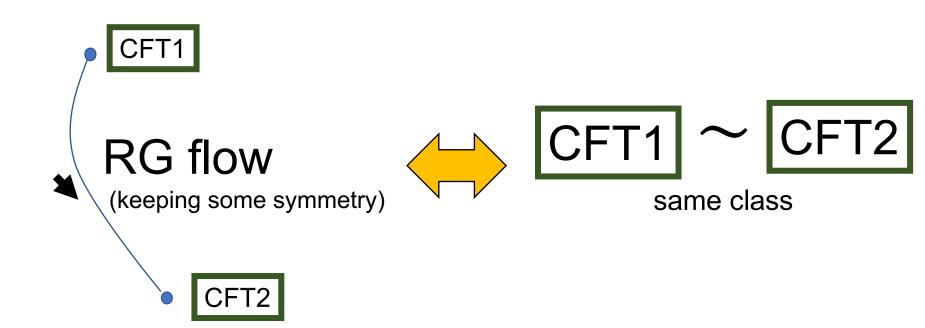


SPT phase in 3 dim

"classification" of 2-dim **CFT**

"Classification"

(should not depends on small perturbation)



Need "RG invariants"

't Hooft anomaly is an RG invariant

Obstruction to gauge a global symmetry of the theory

(Gauge non-invariance in the presence of backgound gauge field)

Example: 2d Weyl fermion (appear at the edge of SPT phase)

$$S = \int d^2x i \bar{\psi}_+ (\partial_0 - \partial_1) \psi_+$$

cannot go to empty by perturbation since U(1) symmetry

$$\psi_+ \rightarrow e^{i\alpha} \psi_+$$

is anomalous (when you introduce background gauge field).

SPT phase in 3 dim

"classification" of the anomaly of 2-dim CFT

In particular

this CFT is called "gappable" (no anomaly)

3d SPT phase

Motivation

Done

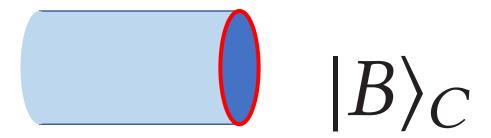
't Hooft anomaly in 2d CFT

New interesting observation!

2d boundary CFT

2d boundary CFT

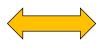
[Ishibashi], [Ishibashi-Onogi], [Cardy]



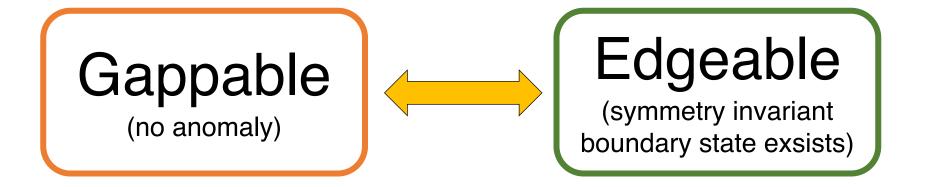
Described by a boundary state

If one can introduce a boundary without breaking the symmetry

 $\exists |B\rangle_C$ symmetry invariant



CFT is called "Edgeable"



closely related

[Han, Tiwari, Hsieh, Ryu 17]

Examples

2d Weyl fermion

- Ungappable(anomaly)
- Unedgeable(boundary cannot exist)

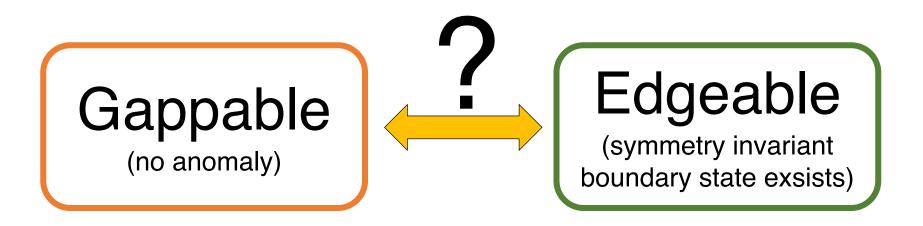
cannot be reflected

2d Dirac fermion

- Gappable(no anomaly and mass term is possible)
- Edgeable(Boundary can exist)

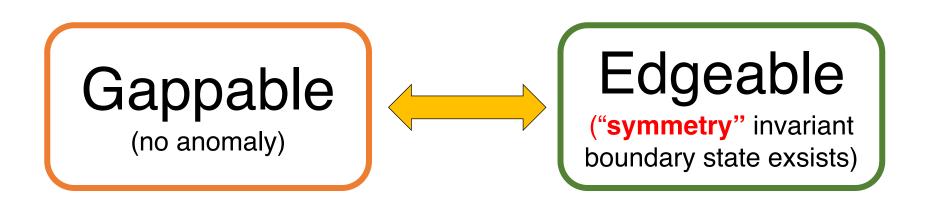
Gappable = edgeable work nicely.

We want to look at



in WZW model keeping center symmetry and diffeomorphism.

We find



holds in a rather nontrivial way.

(involving the charge conjugation)

WZW model

(non-chiral) Wess-Zumino-Witten model

Field:
$$g(x) \in SU(N)$$

Action:
$$S = \frac{k}{8\pi} \int_{\Sigma_2} d^2x \operatorname{tr}(\partial_{\mu}g \partial^{\mu}g^{-1}) + \frac{k}{12\pi} \int_{M_3} \operatorname{tr}(g^{-1}dg)^3$$
$$\partial_{M_3} = \Sigma_2$$

Parameter:

$$k \in \mathbb{Z}_{\geq 0}$$
 "Level" $k \sim \frac{1}{\hbar}$

$$k \sim \frac{1}{\hbar}$$

$$SU(N)_k$$

*Different from Chiral WZW model that appear at the boundary of Chern-Simons theory

WZW model has affine Lie algebra symmetry

highest weight states $|\hat{\lambda},\hat{\lambda}
angle$ (for diagonal theory)

$$\hat{\lambda} = [\lambda_0, \lambda_1, \cdots, \lambda_{N-1}] \qquad \lambda_j \in \mathbb{Z}_{\geq 0}$$

Affine Dynkin label

Level: $k = \lambda_0 + \lambda_1 + \cdots + \lambda_{N-1}$

(non-chiral) WZW model
$$S = \frac{k}{8\pi} \int_{\Sigma_2} d^2x \operatorname{tr}(\partial_{\mu}g \partial^{\mu}g^{-1}) + \frac{k}{12\pi} \int_{M_3} \operatorname{tr}(g^{-1}dg)^3$$

$$g(x) \in SU(N) \quad k \in \mathbb{Z}_{\geq 0}$$

We focus on

•center
$$g(x) \to hg(x), h \in \mathbb{Z}_N \subset SU(N)$$

•diffeo

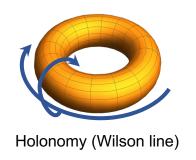
No perturbative anomaly

Global anomaly (anomaly for a large gauge transf.)

[Gepner, Witten 86]

WZW model on

- torus
- ullet gauge field for \mathbb{Z}_N



Large diffeo(modular transformation) invariant?

Metric

Coordinates
$$(x,y)$$
 $x \sim x + 2\pi$, $y \sim y + 2\pi$

$$ds^2 = |dx + \tau dy|^2$$

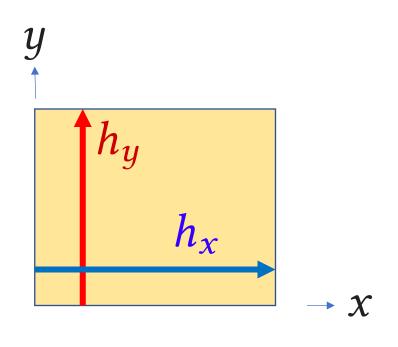
$$\tau = \tau_1 + i\tau_2 \quad \text{modular parameter}$$

Gauge field

$$h_x, h_y \in \mathbb{Z}_N$$
 (Wilson line)

Partition function

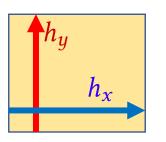
$$Z(\tau, h_x, h_y)$$



Large diffeo (modular transformation)

$$x \sim x + 2\pi$$
, $y \sim y + 2\pi$

$$ds^2 = |dx + \tau dy|^2$$



$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$

* This is not continuously connected to the identity

Background fields

$$(\tau, h_x, h_y) \to (\tau' = \frac{a\tau + b}{c\tau + d}, h'_x = h_x^d h_y^c, h'_y = h_x^b h_y^a)$$

No anomaly?

$$Z(\tau, h_x, h_y) = Z(\tau', h'_x, h'_y)$$

Fact:

[Gepner, Witten 86], [Freed, Vafa 87],...

[Sule, Chen, Ryu 13], [Furuya and Oshikawa 15],...

[Numasawa, SY 17],

[Di Francesco; Mathieu, Sénéchal "CFT" book]

N: odd

N: even

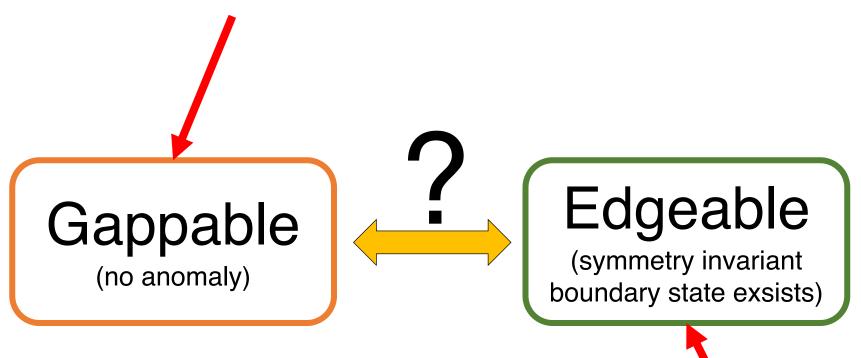
k:even

k:odd

no anomaly (gappable)

anomaly(ungappable)

We have seen this



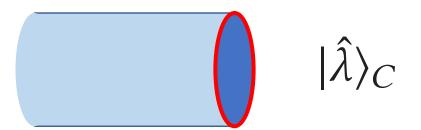
in WZW model keeping center symmetry and diffeomorphism.

Next we want to look at this

Boundary WZW model

Boundary state in WZW model

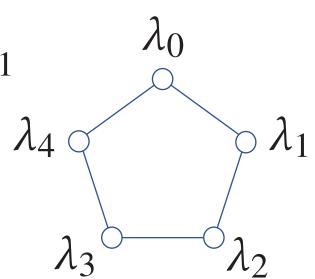
[Ishibashi], [Ishibashi-Onogi], [Cardy]



$$\hat{\lambda} = [\lambda_0, \lambda_1, \dots, \lambda_{N-1}]$$
 Affine Dynkin label (same label as the highest weight state)

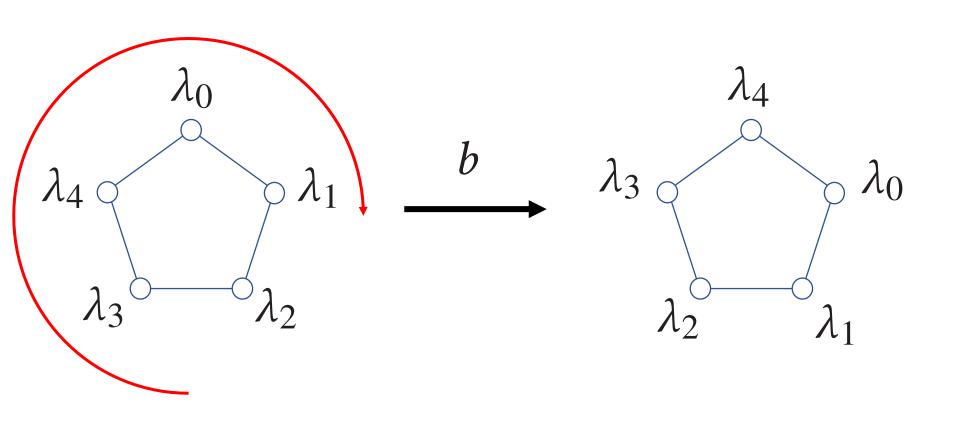
level
$$k = \lambda_0 + \lambda_1 + \cdots + \lambda_{N-1}$$

Extended Dynkin diagram



Action of the center \mathbb{Z}_N to the boundary state

 $b \in \mathbb{Z}_N$ the generator



Action of modular transformation to boundary states

I have no idea

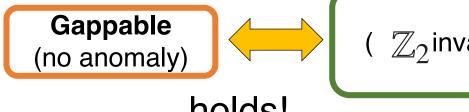
(Does modular transformation act on elements of the Hilbert space?)

Let's consider \mathbb{Z}_N invariant boundary state

Example: SU(2)

$$\mathbb{Z}_2$$
 invariance $\longrightarrow \lambda_0 = \lambda_1$ $\longrightarrow k = \lambda_0 + \lambda_1 = 2\lambda_0$

 \mathbb{Z}_2 invariant boundary state exist if and only if k is an even integer.

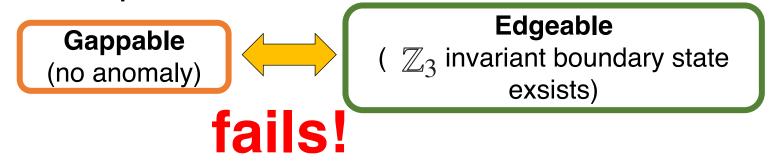


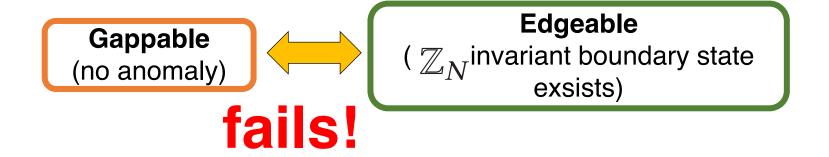
Edgeable (\mathbb{Z}_2 invariant boundary state exsists)

Example: SU(3) $\lambda_0 \qquad b \qquad \lambda_2 \\
\lambda_1 \qquad \lambda_1 \qquad \lambda_1 \qquad \lambda_0$

$$\mathbb{Z}_3$$
 invariance $\longrightarrow \lambda_0 = \lambda_1 = \lambda_2$ $\longrightarrow k = \lambda_0 + \lambda_1 + \lambda_2 = 3\lambda_0$

 \mathbb{Z}_3 invariant boundary state exist if and only if k is a multiple of 3.





for N>2

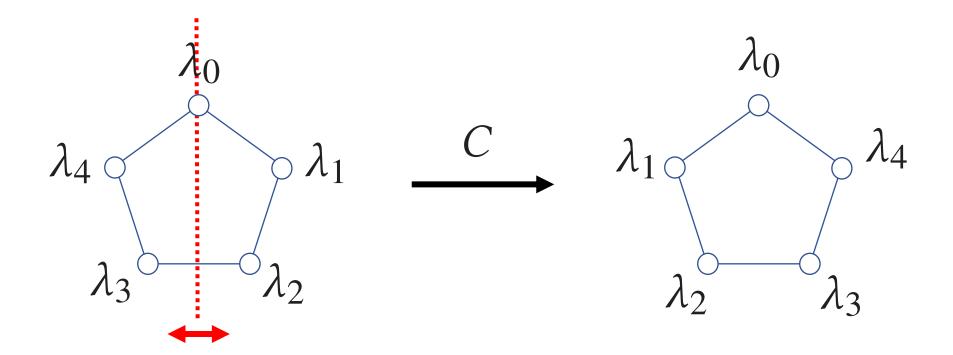
Gappable theory is not always edgeable.

Question:

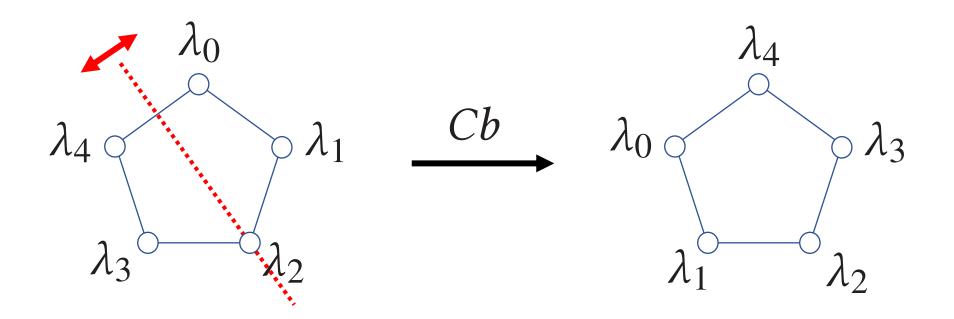
Can we modify the "edgeability" such that the gappability \(\) edgeability relation holds?

YES

Charge conjugation



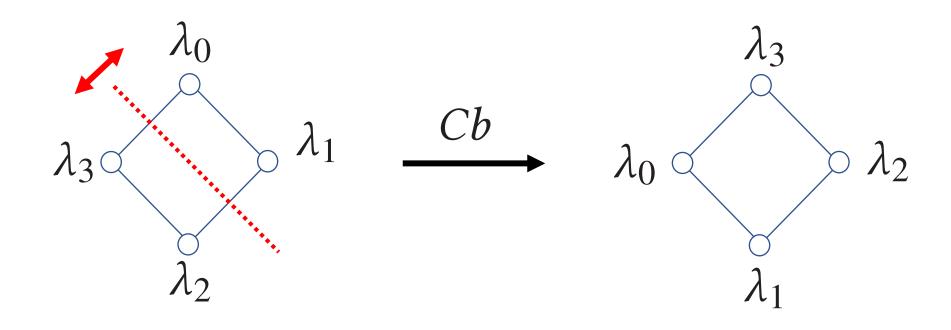
Action of Cb



For N:odd
$$\hat{\lambda} = [0; 0, \dots, k, \dots, 0]$$

is a Cb invariant boundary state for any k.

Action of Cb

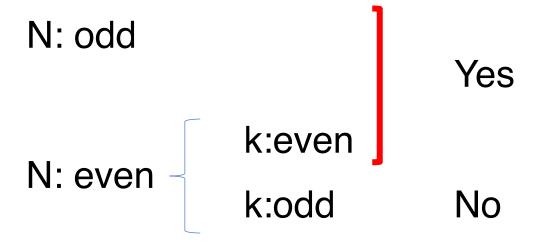


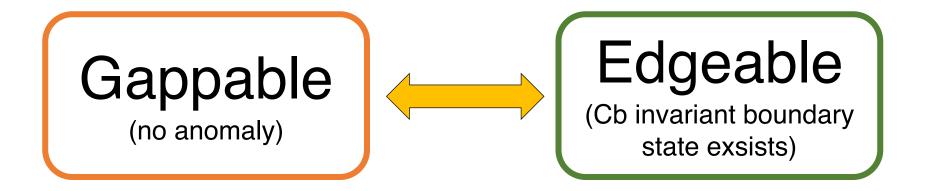
For N:even Cb invariance

$$\lambda_0 = \lambda_{N-1}, \lambda_1 = \lambda_{N-2}, \dots, \lambda_{N/2-1} = \lambda_{N/2}$$

$$k = \lambda_0 + \dots + \lambda_{N-1} = 2(\lambda_0 + \dots + \lambda_{N/2-1})$$
 is even.

Does a Cb invariant boundary state exists?





holds.

Summary

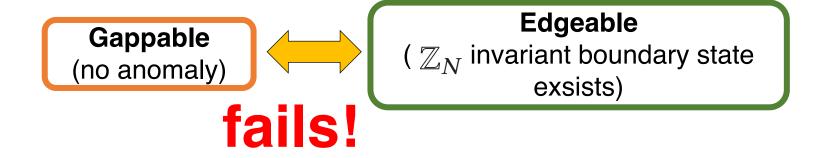
SU(N) WZW model

center and large diffeo

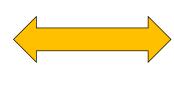
't Hooft anomaly in 2d CFT

New interesting observation!

2d boundary CFT



for N>2



Edgeable (Chipyariant boundary

(Cb invariant boundary state exsists)

holds.

generator of the center

charge conjugation

Comments

• This relation also holds for simple and simply connected compact group with center \mathbb{Z}_N

$$A_n, B_n, C_n, D_{2m+1}, E_6, E_7$$

- * centers of E_8, F_4, G_2 are trivial
- This relation also holds for subgroup of the center.
- This relation fails for product groups.

Special case of more general contition?

Discussion

Why involving the charge conjugation?

In the anomaly analysis, we consider mixed modular/center anomaly. However in the boundary state analysis, we did not consider modular invariance.

$$C=S^2$$
 A part of modular transformation is included

Modular S transformation

Original edgeability condition

An edgeable theory is always gappable, though an gappable theory is not always edgeable.

2d SPT phase ?