Are locality and renormalisation reconcilable?

Sylvie Paycha
University of Potsdam
On leave from the University Clermont-Auvergne
joint work with Pierre Clavier, Li Guo and Bin Zhang

OIST, Okinawa, July 26th 2019

What does the harmonic sum

$$S := "1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots " = \sum_{k=1}^{\infty} k^{-1}"$$

have in common with a

What does the harmonic sum

$$S := "1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots " = \sum_{k=1}^{\infty} k^{-1}"$$

have in common with a particle accelerator?

What does Bernhardt Riemann (1826-1866)

What does Bernhardt Riemann (1826-1866)

have in common with Richard Feynman (1918-1988)?

Occurence of singularities/ divergences

• at s = 1 in the Riemann ζ -function $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$;

Occurence of singularities/ divergences

- at s = 1 in the Riemann ζ -function $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$;
- at ∞ in the ill-defined Feynman integral " $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

Occurence of singularities/ divergences

- at s = 1 in the Riemann ζ -function $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$;
- at ∞ in the ill-defined Feynman integral " $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

Extracting divergences

Occurence of singularities/ divergences

- at s = 1 in the Riemann ζ -function $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$;
- at ∞ in the ill-defined Feynman integral " $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

Extracting divergences

•
$$\zeta$$
-function: $\zeta(s) - \underbrace{\frac{1}{s-1}}_{\text{counterterm}} = \gamma + O(|s-1|) \xrightarrow[s \to 1]{} \gamma =: \zeta^{\text{reg}}(1)$

Occurence of singularities/ divergences

- at s = 1 in the Riemann ζ -function $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$;
- at ∞ in the ill-defined Feynman integral " $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

Extracting divergences

•
$$\zeta$$
-function: $\zeta(s) - \underbrace{\frac{1}{s-1}}_{\text{counterterm}} = \gamma + O(|s-1|) \xrightarrow[s \to 1]{} \gamma =: \zeta^{\text{reg}}(1)$

• Feynman integrals:
$$\int_0^R \frac{r^3}{r^2 + m^2} dr - \underbrace{\left(\frac{R^2}{2} + m^2 \log R\right)}_{\text{counterterm}}$$

$$\underset{R\to\infty}{\longrightarrow} m^2 \log m =: \int_0^\infty \frac{r^3}{r^2+m^2} dr.$$

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms } \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms } \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Sums and integrals associated with higher algebraic structures

• multiple integrals associated with Feynman diagrams.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to
 - conical zeta functions associated with cones;

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 – counterterms $\xrightarrow{?}_{s\to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2$;

$$\left(\int_0^R \frac{r^3}{r^2+m^2} dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\overset{?}{\longrightarrow}} \left(\int_0^\infty \frac{r^3}{r^2+m^2} dr\right)^2.$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to
 - conical zeta functions associated with cones;
 - branched zeta functions associated with trees.

A first naive approach	

A first naive approach

• $f_i(z) = a_i z^{-1} + h_i(z) \in \mathcal{M}$, the set of meromorphic germs in one variable with a simple pole at zero;

A first naive approach

- $f_i(z) = a_i z^{-1} + h_i(z) \in \mathcal{M}$, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero

pole:
$$f_i^{\text{reg}}(0) = \lim_{z \to 0} \left(f_i(z) - \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$$

A first naive approach

- $f_i(z) = a_i z^{-1} + h_i(z) \in \mathcal{M}$, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero

pole:
$$f_i^{\text{reg}}(0) = \lim_{z \to 0} \left(f_i(z) - \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$$

• Loss of multiplicativity : $(f_1(z) f_2(z) - \text{counterterms}) \xrightarrow[z \to 0]{} (f_1 f_2)^{\text{reg}}(0) := f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) + \underbrace{a_1 \cdot h_2'(0) + a_2 \cdot h_1'(0)}_{} \neq f_1^{\text{reg}}(0) f_2^{\text{reg}}(0).$

extra terms

A first naive approach

- $f_i(z) = a_i z^{-1} + h_i(z) \in \mathcal{M}$, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero

pole:
$$f_i^{\text{reg}}(0) = \lim_{z \to 0} \left(f_i(z) - \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$$

• Loss of multiplicativity : $(f_1(z) f_2(z) - \text{counterterms}) \xrightarrow[z \to 0]{} (f_1 f_2)^{\text{reg}}(0) := f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) + \underbrace{a_1 \cdot h_2'(0) + a_2 \cdot h_1'(0)}_{} \neq f_1^{\text{reg}}(0) f_2^{\text{reg}}(0).$

extra terms

Example

$$(f_1(z) = z \land f_2(z) = \frac{1}{z}) \Longrightarrow f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) = 0 \neq 1 = (f_1 f_2)^{\text{reg}}(0).$$

Alternative approach: a multivariate point of view	

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h_2'(0) \frac{z_2}{z_1} + a_2 h_1'(0) \frac{z_1}{z_2}}_{+h_1(z_1) h_2(z_2);$$

counterterms

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h_2'(0) \frac{z_2}{z_1} + a_2 h_1'(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$$

• independence/ locality/ orthogonality relation: $\frac{1}{z_1} \perp z_2$; $\frac{1}{z_2} \perp z_1$;

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{+h_1(z_1) h_2(z_2);$$

counterterms

- independence/ locality/ orthogonality relation: $\frac{1}{z_1} \perp z_2$; $\frac{1}{z_2} \perp z_1$;
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow[z_1 \to 0]{} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h_2'(0) \frac{z_2}{z_1} + a_2 h_1'(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$$

- independence/ locality/ orthogonality relation: $\frac{1}{z_1} \perp z_2$; $\frac{1}{z_2} \perp z_1$;
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow[z_i \to 0]{} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

Partial multiplicativity in a locality set up (yet to be defined)

Multiplicativity holds for independent functions:

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$$

- independence/ locality/ orthogonality relation: $\frac{1}{z_1} \perp z_2$; $\frac{1}{z_2} \perp z_1$;
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow[z_i \to 0]{} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

Partial multiplicativity in a locality set up (yet to be defined)

Multiplicativity holds for independent functions:

$$f_1 \perp f_2 \Longrightarrow f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) = (f_1 f_2)^{\text{reg}}(0).$$

Alternative approach: a multivariate point of view

• multivariate meromorphic germ:

$$f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$$

- independence/ locality/ orthogonality relation: $\frac{1}{z_1} \perp z_2$; $\frac{1}{z_2} \perp z_1$;
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow[z_i \to 0]{} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

Partial multiplicativity in a locality set up (yet to be defined)

Multiplicativity holds for independent functions:

$$f_1 \perp f_2 \Longrightarrow f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) = (f_1 f_2)^{\text{reg}}(0).$$

Renormalisation methods

are used when

Renormalisation methods

are used when

• evaluating Feynman integrals in quantum field theory,

Renormalisation methods

are used when

- evaluating Feynman integrals in quantum field theory,
- evaluating multizeta functions at poles and their generalisations higher zeta functions,

Renormalisation methods

are used when

- evaluating Feynman integrals in quantum field theory,
- evaluating multizeta functions at poles and their generalisations higher zeta functions,
 - counting integer points on cones and evaluating conical zeta functions at poles,

Renormalisation methods

are used when

- evaluating Feynman integrals in quantum field theory,
- evaluating multizeta functions at poles and their generalisations higher zeta functions,
 - counting integer points on cones and evaluating conical zeta functions at poles,
 - evaluating at poles branched zeta functions associated with trees,

Renormalisation methods

are used when

- evaluating Feynman integrals in quantum field theory,
- evaluating multizeta functions at poles and their generalisations higher zeta functions,
 - counting integer points on cones and evaluating conical zeta functions at poles,
 - evaluating at poles branched zeta functions associated with trees,

while preserving locality / multiplicativity.

The data	

The data

• a (commutative) algebra (A, m_A) ,

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

Aim

The data

- a (commutative) algebra (A, m_A) ,
- ullet the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

Aim

Build a character $\phi^{\text{ren}}: (\mathcal{A}, m_A) \longrightarrow (\mathbb{C}, \cdot)$.

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 \ a_2) = \phi(a_1) \ \phi(a_2).$

Aim

Build a character $\phi^{\mathrm{ren}}: (\mathcal{A}, m_A) \longrightarrow (\mathbb{C}, \cdot)$.

A first naive approach

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

Aim

Build a character $\phi^{\mathrm{ren}}: (\mathcal{A}, m_A) \longrightarrow (\mathbb{C}, \cdot)$.

A first naive approach

Use the regularised evaluation to build $\phi^{\text{reg}} := \text{ev}_0^{\text{reg}} \circ \phi$.

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

Aim

Build a character $\phi^{\mathrm{ren}}: (\mathcal{A}, m_A) \longrightarrow (\mathbb{C}, \cdot)$.

A first naive approach

Use the regularised evaluation to build $\phi^{\rm reg} := {\rm ev_0}^{\rm reg} \circ \phi$. Yet the "multiplicativity" (and hence the locality) is spoiled:

The data

- a (commutative) algebra (A, m_A) ,
- the algebra of univariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}),\cdot)$,
- a morphism $\phi: (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2)$.

Aim

Build a character $\phi^{\mathrm{ren}}: (\mathcal{A}, m_A) \longrightarrow (\mathbb{C}, \cdot)$.

A first naive approach

Use the regularised evaluation to build $\phi^{\mathrm{reg}} := \mathrm{ev_0}^{\mathrm{reg}} \circ \phi$. Yet the "multiplicativity" (and hence the locality) is spoiled:

$$\phi^{\text{reg}}(a_1 a_2) \neq \phi^{\text{reg}}(a_1) \phi^{\text{reg}}(a_2).$$

A second coalgebraic approach

A second coalgebraic approach

A second coalgebraic approach

The data

• A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .

The data

- A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .
- A coproduct Δ_A on A and a related convolution product $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$ of maps $\phi_i : (A, m_A) \longrightarrow (B, m_B)$.

The data

- A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .
- A coproduct Δ_A on A and a related convolution product $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$ of maps $\phi_i : (A, m_A) \longrightarrow (B, m_B)$.

The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences: $\phi = \phi_-^{\star - 1} \star \phi_+$.

The data

- A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .
- A coproduct Δ_A on A and a related convolution product $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$ of maps $\phi_i : (A, m_A) \longrightarrow (B, m_B)$.

The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences: $\phi = \phi_-^{\star - 1} \star \phi_+$.

Forest formula [BPHZ] 57-68

The data

- A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .
- A coproduct Δ_A on A and a related convolution product $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$ of maps $\phi_i : (A, m_A) \longrightarrow (B, m_B)$.

The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences: $\phi = \phi_-^{\star - 1} \star \phi_+$.

Forest formula [BPHZ] 57-68

The renormalised map $\phi^{\rm ren} := \operatorname{ev}_0 \circ \phi_+$ is multiplicative:

$$\phi^{\text{ren}}(a_1 a_2) = \phi^{\text{ren}}(a_1) \phi^{\text{ren}}(a_2).$$

The data

- A graded algebra $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$ and a target algebra (\mathcal{B}, m_B) .
- A coproduct Δ_A on A and a related convolution product $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$ of maps $\phi_i : (A, m_A) \longrightarrow (B, m_B)$.

The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences: $\phi = \phi_-^{\star - 1} \star \phi_+$.

Forest formula [BPHZ] 57-68

The renormalised map $\phi^{\rm ren} := \operatorname{ev}_0 \circ \phi_+$ is multiplicative:

$$\phi^{\text{ren}}(a_1 a_2) = \phi^{\text{ren}}(a_1) \phi^{\text{ren}}(a_2).$$

A third multivariate approach

(with P. Clavier, L. Guo and B. Zhang)

using algebraic locality

Locality in quantum field theory

Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

Locality in quantum field theory

Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

Independence of measurements

Observable $\mathcal{O} \longrightarrow \mathsf{Measurement} \langle \mathcal{O} \rangle \in \mathbb{C}$

$$\mathcal{O}_1$$
 and \mathcal{O}_2

$$\underbrace{\mathcal{O}_1 \text{ and } \mathcal{O}_2}_{\text{independent}} \quad \Longrightarrow \quad \underbrace{\langle \mathcal{O}_1 \star \mathcal{O}_2 \rangle = \langle \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \rangle}_{\text{pultiplicativity}}.$$

Locality in quantum field theory

Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

Independence of measurements

Observable $\mathcal{O} \longrightarrow \mathsf{Measurement} \langle \mathcal{O} \rangle \in \mathbb{C}$

Analogy: separation of variables $(n = n_1 + n_2)$

$$\underbrace{\int_{\mathbb{R}^n} f_1(x_1) f_2(x_2) dx_1 dx_2}_{x_1 \text{ and } x_2 \text{ independent}} = \underbrace{\left(\int_{\mathbb{R}^{n_1}} f_1(x_1) dx_1\right) \cdot \left(\int_{\mathbb{R}^{n_2}} f_2(x_2) dx_2\right)}_{\text{multiplicativity}}.$$

Our plan

We want to swap

Our plan

We want to swap

• the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;

Our plan

We want to swap

- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$

Our plan

We want to swap

- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection $\phi_+ \rightsquigarrow \pi_+ \circ \phi$.

Our plan

We want to swap

- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection $\phi_+ \rightsquigarrow \pi_+ \circ \phi$.

What for

Our plan

We want to swap

- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection $\phi_+ \rightsquigarrow \pi_+ \circ \phi$.

What for?

It naturally encompasses the locality principle;

Our plan

We want to swap

- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space \mathcal{M} : $\Delta_A \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection $\phi_+ \rightsquigarrow \pi_+ \circ \phi$.

What for?

- It naturally encompasses the locality principle;
- Its universality: renormalisation π_+ takes place on the target space $\mathcal{M}(\mathbb{C}^{\infty})$ common to various problems.

A locality multivariate setup

Our plan

We want to swap

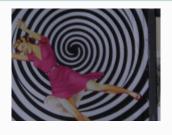
- the coproduct Δ on the source space \mathcal{A} for a locality relation $\top_{\mathcal{M}}$ on the target space $\mathcal{M}: \Delta_{\mathcal{A}} \leadsto \top_{\mathcal{M}}$;
- univariate for multivariate meromorphic functions: $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection $\phi_+ \rightsquigarrow \pi_+ \circ \phi$.

What for?

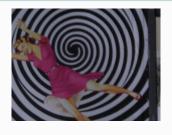
- It naturally encompasses the locality principle;
- Its universality: renormalisation π_+ takes place on the target space $\mathcal{M}(\mathbb{C}^{\infty})$ common to various problems.



LOCALITY



LOCALITY



LOCALITY

Definition of locality

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \top x_2 \Longleftrightarrow (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$$

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \mathsf{T} x_2 \iff (x_1, x_2) \in \mathsf{T}, \quad \forall x_1, x_2 \in X.$$

Examples of locality

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \mathsf{T} x_2 \iff (x_1, x_2) \in \mathsf{T}, \quad \forall x_1, x_2 \in X.$$

Examples of locality

• $X \top Y \iff X \cap Y = \emptyset$ on subsets X, Y of a set Z.

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \mathsf{T} x_2 \Longleftrightarrow (x_1, x_2) \in \mathsf{T}, \quad \forall x_1, x_2 \in X.$$

Examples of locality

- $X \top Y \iff X \cap Y = \emptyset$ on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$ on subsets X, Y of an euclidean vector space V.

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$$

Examples of locality

- $X \top Y \iff X \cap Y = \emptyset$ on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$ on subsets X, Y of an euclidean vector space V.

(almost-)Separation of supports

Let $U \subset \mathbb{R}^n$ be an open subset and $\epsilon \geq 0$. Two functions $\phi, \psi \in \mathcal{D}(U)$ are independent i.e., $\phi \top \psi$ whenever $d\left(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi)\right) > \epsilon$.

Definition of locality

A **locality set** is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called **locality relation** (or **independence relation**) of the locality set.

$$x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$$

Examples of locality

- $X \top Y \iff X \cap Y = \emptyset$ on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$ on subsets X, Y of an euclidean vector space V.

(almost-)Separation of supports

Let $U \subset \mathbb{R}^n$ be an open subset and $\epsilon \geq 0$. Two functions $\phi, \psi \in \mathcal{D}(U)$ are independent i.e., $\phi \top \psi$ whenever $d\left(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi)\right) > \epsilon$. For $\epsilon = 0$, this amounts to disjointness of supports, otherwise to ϵ -separation of supports.

Geometric data

- $\pi : E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- \bullet $D: C^{\infty}(M, E_{+}) \to C^{\infty}(M, E_{-})$ a Dirac-type operator;

Geometric data

- $\pi : E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- $D: C^{\infty}(M, \mathbb{E}_+) \to C^{\infty}(M, \mathbb{E}_-)$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \operatorname{Hom}(\mathbf{E}_+, \mathbf{E}_-))$, a Hom-valued potential function;

Geometric data

- $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- lacktriangledown $D: C^{\infty}(M, E_{+}) \rightarrow C^{\infty}(M, E_{-})$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\boldsymbol{E}_+, \boldsymbol{E}_-))$, a Hom-valued potential function;
- $V \ni V \leadsto D_V := D + V$ perturbed Dirac operator acting on $C^{\infty}(E)$.

Geometric data

- $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- lacktriangledown $D: C^{\infty}(M, E_{+}) \rightarrow C^{\infty}(M, E_{-})$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\underline{E}_+, \underline{E}_-))$, a Hom-valued potential function;
- $V \ni V \leadsto D_V := D + V$ perturbed Dirac operator acting on $C^{\infty}(E)$.

Curvature in the locality setup

• Determinant line bundle: $D_V \ni V \longrightarrow Det D_V \in DET$;

Geometric data

- $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- $D: C^{\infty}(M, E_{+}) \to C^{\infty}(M, E_{-})$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\boldsymbol{E}_+, \boldsymbol{E}_-))$, a Hom-valued potential function;
- $V \ni V \leadsto D_V := D + V$ perturbed Dirac operator acting on $C^{\infty}(E)$.

- Determinant line bundle: $D_V \ni V \longrightarrow Det D_V \in DET$;
- Bismut-Freed connection on DET:

$$\left(\operatorname{Det} D_V^{-1}\right) \nabla^{BF} \left(\operatorname{Det} D_V\right) := \operatorname{Tr}^{\operatorname{reg}} \left(D_V^{-1} d D_V\right);$$

Geometric data

- $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- $D: C^{\infty}(M, E_{+}) \rightarrow C^{\infty}(M, E_{-})$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\boldsymbol{E}_+, \boldsymbol{E}_-))$, a Hom-valued potential function;
- $\mathbf{O} \quad \mathcal{V} \ni V \leadsto D_V := D + V \text{ perturbed Dirac operator acting on } C^{\infty}(E).$

- Determinant line bundle: $D_V \ni V \longrightarrow Det D_V \in DET$;
- Bismut-Freed connection on DET: $(DetD_V^{-1}) \nabla^{BF}(DetD_V) := Tr^{reg}(D_V^{-1} dD_V);$
- Differentiation commutes with the regularised trace:

$$\underbrace{\operatorname{Supp}(V_1) \cap \operatorname{Supp}(V_2)}_{\text{independence}} = \emptyset$$

Geometric data

- \bullet $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- $D: C^{\infty}(M, E_+) \to C^{\infty}(M, E_-)$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\mathbf{E}_+, \mathbf{E}_-))$, a Hom-valued potential function;
- $V \ni V \leadsto D_V := D + V$ perturbed Dirac operator acting on $C^{\infty}(E)$.

- Determinant line bundle: $D_V \ni V \longrightarrow Det D_V \in DET$;
- Bismut-Freed connection on DET: $(DetD_V^{-1}) \nabla^{BF}(DetD_V) := Tr^{reg}(D_V^{-1} dD_V);$
- Differentiation commutes with the regularised trace:

$$\underbrace{\operatorname{Supp}(V_{1}) \cap \operatorname{Supp}(V_{2})}_{\text{Independence}} = \emptyset \Longrightarrow \overbrace{d \operatorname{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V})(V_{1}, V_{2})}_{\text{BF-curvature}} = \underbrace{\operatorname{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V})(V_{1}, V_{2})}_{\text{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V}, D_{V}^{-1} d D_{V})(V_{1}, V_{2})}.$$

Geometric data

- \bullet $\pi: E = E_+ \oplus E_- \to M$ a \mathbb{Z}_2 -graded vector bundle on a closed manifold M;
- $D: C^{\infty}(M, E_+) \to C^{\infty}(M, E_-)$ a Dirac-type operator;
- $V \in \mathcal{V} := C^{\infty}(M, \text{Hom}(\mathbf{E}_+, \mathbf{E}_-))$, a Hom-valued potential function;
- $V \ni V \leadsto D_V := D + V$ perturbed Dirac operator acting on $C^{\infty}(E)$.

- Determinant line bundle: $D_V \ni V \longrightarrow Det D_V \in DET$;
- Bismut-Freed connection on DET: $(DetD_V^{-1}) \nabla^{BF}(DetD_V) := Tr^{reg}(D_V^{-1} dD_V);$
- Differentiation commutes with the regularised trace:

$$\underbrace{\operatorname{Supp}(V_{1}) \cap \operatorname{Supp}(V_{2})}_{\text{Independence}} = \emptyset \Longrightarrow \overbrace{d \operatorname{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V})(V_{1}, V_{2})}_{\text{BF-curvature}} = \underbrace{\operatorname{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V})(V_{1}, V_{2})}_{\text{Tr}^{\operatorname{reg}}(D_{V}^{-1} d D_{V}, D_{V}^{-1} d D_{V})(V_{1}, V_{2})}.$$

Operation on the graph of a locality relation

• Locality set: (X, T),

Operation on the graph of a locality relation

- Locality set: (X, \top) ,
- Graph: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$

Operation on the graph of a locality relation

- Locality set: (X, T),
- Graph: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product: $m_X: X \times X \supset \top \longrightarrow X$.

Operation on the graph of a locality relation

- Locality set: (X, \top) ,
- Graph: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product: $m_X : X \times X \supset \top \longrightarrow X$.

(X, T, m_X) locality semi-group

$$U^{\mathsf{T}} := \{ x \in \mathsf{X}, x \,\mathsf{T} \,u \ \forall u \in U \} \text{ for } U \subseteq \mathsf{X}.$$

Operation on the graph of a locality relation

- Locality set: (X, \top) ,
- Graph: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product: $m_X: X \times X \supset \top \longrightarrow X$.

(X, T, m_X) locality semi-group

 $U^{\mathsf{T}} := \{ x \in X, x \, \mathsf{T} \, u \mid \forall u \in U \} \text{ for } U \subseteq X.$

Locality semi-group condition: $\forall U \subseteq X$, $m_X ((U^\top \times U^\top) \cap \top) \subseteq U^\top$.

Operation on the graph of a locality relation

- Locality set: (X, \top) ,
- Graph: $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product: $m_X: X \times X \supset \top \longrightarrow X$.

(X, T, m_X) locality semi-group

 $U^{\mathsf{T}} := \{ x \in X, x \, \mathsf{T} \, u \mid \forall u \in U \} \text{ for } U \subseteq X.$

Locality semi-group condition: $\forall U \subseteq X$, $m_X ((U^\top \times U^\top) \cap \top) \subseteq U^\top$.

Counterexample

Equip \mathbb{R} with the locality relation $x \top y \iff x + y \notin \mathbb{Z}$.

 $(\mathbb{R}, \mathsf{T}, +)$ is NOT a locality semi-group: for $U = \{1/3\}$ we have

$$(1/3, 1/3) \in (U^{\top} \times U^{\top}) \cap \top \text{ but } 1/3 + 1/3 = 2/3 \notin U^{\top}.$$

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$ is moreover a locality morphism of locality semi-groups if $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$.

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$ is moreover a locality morphism of locality semi-groups if $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$.

From causality to locality: abstract S matrices (K. Rejzner)

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$ is moreover a locality morphism of locality semi-groups if $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$.

From causality to locality: abstract 5 matrices (K. Rejzner)

Causal relation $\dashv \underset{\text{symmetrisation}}{\leadsto} \text{Locality} \text{ relation } \top.$

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$ is moreover a locality morphism of locality semi-groups if $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$.

From causality to locality: abstract S matrices (K. Rejzner)

Causal relation $\dashv \underset{\text{symmetrisation}}{\leadsto} \text{Locality relation } \top$.

An S-matrix is a map
$$S: (G, T, +) \longrightarrow U(\mathfrak{A})$$

group with locality unitary elements of an algebra $\mathfrak A$ which is locality multiplicative (as a result of the Hammerstein property):

Locality maps

 $\Phi: (X, T_X) \longmapsto (Y, T_Y)$ is a locality map if $\Phi \otimes \Phi(T_X) \subset T_Y$.

Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$ is moreover a locality morphism of locality semi-groups if $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$.

From causality to locality: abstract S matrices (K. Rejzner)

Causal relation $\dashv \underset{\text{symmetrisation}}{\leadsto} \text{Locality relation} \top$.

An S-matrix is a map
$$S: (G, T, +) \longrightarrow U(\mathfrak{A})$$

 $\begin{array}{ccc} & \text{group with localityT} & \text{unitary elements of an algebra} \ \mathfrak{A} \\ \text{which is locality} & \text{multiplicative (as a result of the Hammerstein prop-} \end{array}$

erty):
$$f_1 \top f_2 \Longrightarrow \mathcal{S}(f_1 + f_2) = \mathcal{S}(f_1) \cdot \mathcal{S}(f_2).$$

MULTIVARIATE GERMS

Brain teaser 2

Brain teaser 2

Evaluating a fraction with a linear pole at zero

Brain teaser 2

Evaluating a fraction with a linear pole at zero

$$\frac{z_1 - z_2}{z_1 + z_2} \Big|_{z_1 = 0, z_2 = 0} = \begin{cases} 1? \\ 0? \\ 10000? \end{cases}$$

Brain teaser 2

Evaluating a fraction with a linear pole at zero

$$\frac{z_1 - z_2}{z_1 + z_2}\Big|_{z_1 = 0, z_2 = 0} = \begin{cases} 1? \\ 0? \\ 10000? \end{cases}$$

In our approach, a given choice of locality fixes the value 0.

Multivariate meromorphic germs with linear poles

•
$$\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$$
, h holomorphic germ, $s_i \in \mathbb{Z}_{\geq 0}$,

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_n)}{L_n^{s_1} \cdots L_n^{s_n}}$, h holomorphic germ, $s_i \in \mathbb{Z}_{\geq 0}$,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}$, $L_i : \mathbb{C}^k \to \mathbb{C}$ linear forms.

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$, h holomorphic germ, $s_i \in \mathbb{Z}_{\geq 0}$,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}$, $L_i : \mathbb{C}^k \to \mathbb{C}$ linear forms.
- Dependence set $Dep(f) := \langle \ell_1, \dots, \ell_m, L_1, \dots, L_n \rangle$.

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_n)}{L_n^{s_1} \cdots L_n^{s_n}}$, h holomorphic germ, $s_i \in \mathbb{Z}_{\geq 0}$,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}$, $L_i : \mathbb{C}^k \to \mathbb{C}$ linear forms.
- Dependence set $Dep(f) := \langle \ell_1, \dots, \ell_m, L_1, \dots, L_n \rangle$.

Locality: separation of variables

On
$$\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$$
, $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$.

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \cdots, \ell_n)}{L_n^{s_1} \cdots L_n^{s_n}}$, h holomorphic germ, $s_i \in \mathbb{Z}_{\geq 0}$,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}$, $L_i : \mathbb{C}^k \to \mathbb{C}$ linear forms.
- Dependence set $Dep(f) := \langle \ell_1, \dots, \ell_m, L_1, \dots, L_n \rangle$.

Locality: separation of variables

On
$$\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$$
, $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$.

$$\begin{array}{l} \ell := z_1 \perp z_2 =: L \Longrightarrow \frac{z_1}{z_2} \in \mathcal{M}_-(\mathbb{C}^2) \\ (\ell := z_1 - z_2) \perp (z_1 + z_2 =: L) \Longrightarrow \frac{z_1 - z_2}{z_1 + z_2} \in \mathcal{M}_-(\mathbb{C}^2). \end{array}$$

The partial product on $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$:

The partial product on
$$\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^{k})$$
:
$$\mathcal{M}(\mathbb{C}^{\infty}) \times \mathcal{M}(\mathbb{C}^{\infty}) \supset \top \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$$

$$\left(f = \frac{h(\vec{\ell})}{\vec{L}^{\vec{s}}}, \tilde{f} = \frac{\tilde{h}(\tilde{\ell})}{\tilde{\vec{L}}^{\vec{s}}}\right) \longmapsto f \cdot \tilde{f} = \frac{h(\vec{\ell}) \cdot \tilde{h}(\tilde{\ell})}{\vec{L}^{\vec{s}} \cdot \tilde{\vec{L}}^{\vec{s}}}.$$

The partial product on
$$\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^{k})$$
:
$$\mathcal{M}(\mathbb{C}^{\infty}) \times \mathcal{M}(\mathbb{C}^{\infty}) \supset \top \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$$

$$\left(f = \frac{h(\vec{\ell})}{\vec{L}^{\vec{s}}}, \tilde{f} = \frac{\tilde{h}(\tilde{\ell})}{\tilde{\tilde{L}}^{\vec{s}}}\right) \longmapsto f \cdot \tilde{f} = \frac{h(\vec{\ell}) \cdot \tilde{h}(\tilde{\ell})}{\vec{L}^{\vec{s}} \cdot \tilde{\tilde{L}}^{\vec{s}}}.$$

Back again to the brain teaser

$$((z_1-z_2)\perp(z_1+z_2))\Longrightarrow \frac{z_1-z_2}{z_1+z_2}=(z_1-z_2)\cdot \frac{1}{z_1+z_2}.$$

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)

$$\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k)$$
, where $\mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \dots L_n^{s_n}}$ with $\operatorname{Dep}(h) \perp \langle L_1, \dots, L_n \rangle$ and $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$.

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)

$$\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k)$$
, where $\mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \cdots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$ with $\operatorname{Dep}(h) \perp \langle L_1, \cdots, L_n \rangle$ and $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$.

Our protagonists

• Orthogonal projection $\mathcal{M}(\mathbb{C}^k) \xrightarrow{\pi_+} \mathcal{M}_+(\mathbb{C}^k)$.

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)

$$\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \cdots, \ell_n)}{L_n^{\frac{s_1}{1}} \cdots L_n^{s_n}} \text{ with } \operatorname{Dep}(h) \perp \langle L_1, \cdots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$$

Our protagonists

- Orthogonal projection $\mathcal{M}(\mathbb{C}^k) \xrightarrow[\pi_+]{} \mathcal{M}_+(\mathbb{C}^k)$.
- Evaluator $\mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{} \mathbb{C}$.

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)

$$\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \cdots, \ell_n)}{L_n^{\frac{s_1}{1}} \cdots L_n^{s_n}} \text{ with } \operatorname{Dep}(h) \perp \langle L_1, \cdots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$$

Our protagonists

- Orthogonal projection $\mathcal{M}(\mathbb{C}^k) \xrightarrow[\pi_+]{} \mathcal{M}_+(\mathbb{C}^k)$.
- Evaluator $\mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{} \mathbb{C}$.
- Regularised evaluator $\operatorname{ev_0}^{\operatorname{reg}}: \mathcal{M}(\mathbb{C}^k) \xrightarrow[\pi_+]{} \mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{} \mathbb{C}$

$$f \longmapsto f^{\text{reg}}(0) := \text{ev}_0^{\text{reg}}(f)$$

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multivariate minimal substraction as a locality morphism

• The orthogonal projection $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow[\pi_{+}]{} (\mathcal{M}_{+}(\mathbb{C}^{\infty}), \bot)$ is a locality morphism of locality semi-groups;

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multivariate minimal substraction as a locality morphism

- The orthogonal projection $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow{\pi_{+}} (\mathcal{M}_{+}(\mathbb{C}^{\infty}), \bot)$ is a locality morphism of locality semi-groups;
- The regularised evaluator $ev_0^{\mathrm{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$ is a locality character.

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multivariate minimal substraction as a locality morphism

- The orthogonal projection $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow{\pi_{+}} (\mathcal{M}_{+}(\mathbb{C}^{\infty}), \bot)$ is a locality morphism of locality semi-groups;
- The regularised evaluator $ev_0^{\mathrm{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$ is a locality character.

•
$$\operatorname{ev_0}^{\operatorname{reg}}\left(\frac{z_1}{z_2}\right) = 0 = \operatorname{ev_0}^{\operatorname{reg}}\left(z_1\right) \operatorname{ev_0}^{\operatorname{reg}}\left(\frac{1}{z_2}\right);$$

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multivariate minimal substraction as a locality morphism-

- The orthogonal projection $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow{\pi_{+}} (\mathcal{M}_{+}(\mathbb{C}^{\infty}), \bot)$ is a locality morphism of locality semi-groups;
- The regularised evaluator $ev_0^{\mathrm{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$ is a locality character.

•
$$\operatorname{ev_0}^{\operatorname{reg}}\left(\frac{z_1}{z_2}\right) = 0 = \operatorname{ev_0}^{\operatorname{reg}}\left(z_1\right) \operatorname{ev_0}^{\operatorname{reg}}\left(\frac{1}{z_2}\right);$$

Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs: $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$.

Multivariate minimal substraction as a locality morphism-

- The orthogonal projection $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow{\pi_{+}} (\mathcal{M}_{+}(\mathbb{C}^{\infty}), \bot)$ is a locality morphism of locality semi-groups;
- The regularised evaluator $ev_0^{\mathrm{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$ is a locality character.

•
$$\operatorname{ev_0}^{\operatorname{reg}}\left(\frac{z_1}{z_2}\right) = 0 = \operatorname{ev_0}^{\operatorname{reg}}\left(z_1\right) \operatorname{ev_0}^{\operatorname{reg}}\left(\frac{1}{z_2}\right);$$

RENORMALISATION and LOCALITY reconciled

Data: the multivariate framework

• a (commutative) locality algebra (A, T_A, m_A) ,

Data: the multivariate framework

- a (commutative) locality algebra (A, T_A, m_A) ,
- the algebra of multivariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}^{\infty}), \perp, \cdot)$,

Data: the multivariate framework

- a (commutative) locality algebra (A, T_A, m_A) ,
- the algebra of multivariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}^{\infty}), \perp, \cdot)$,
- a locality morphism

$$\Phi: (\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$$

Data: the multivariate framework

- a (commutative) locality algebra (A, T_A, m_A) ,
- the algebra of multivariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}^{\infty}), \perp, \cdot)$,
- a locality morphism

$$\Phi: (\mathcal{A}, \top_{A}, m_{A}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$$

So Φ is partially multiplicative:

$$a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = \Phi(a_1) \cdot \Phi(a_2).$$

Data: the multivariate framework

- a (commutative) locality algebra (A, T_A, m_A) ,
- the algebra of multivariate meromorphic germs at zero $(\mathcal{M}(\mathbb{C}^{\infty}), \perp, \cdot)$,
- a locality morphism

$$\Phi: (\mathcal{A}, \top_{A}, m_{A}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$$

So Φ is partially multiplicative:

$$a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = \Phi(a_1) \cdot \Phi(a_2).$$

Our task

Build a locality character $\Phi^{\text{reg}}: (A, \top_A, m_A) \longrightarrow (\mathbb{C}, \cdot)$

$$a_1 \top_A a_2 \Longrightarrow \Phi^{\operatorname{reg}}(m_A(a_1, a_2)) = \Phi^{\operatorname{reg}}(a_1) \cdot \Phi^{\operatorname{reg}}(a_2).$$
 (1)

The renormalised map is partially multiplicative

The renormalised map is partially multiplicative

Back to our main protagonist

The regularised evaluator

```
ev_0^{\operatorname{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C} is a locality character.
```

The renormalised map is partially multiplicative

Back to our main protagonist

• The regularised evaluator $ev_0^{\mathrm{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^{\infty}), \bot) \longrightarrow \mathbb{C}$ is a locality character.

Theorem

A locality morphism $\Phi: (\mathcal{A}, \top) \longrightarrow (\mathcal{M}(\mathbb{C}^k), \bot)$ gives rise to a locality character

$$\Phi^{\mathrm{reg}} := ev_0^{\mathrm{reg}} \circ \Phi : (\mathcal{A}, \top) \longrightarrow \mathbb{C}.$$

Summary

A multivariate regularisation provides a renormalisation scheme which respects locality .

Applications

The algebra 🔏

Applications

The algebra \mathcal{A}

① pointed convex cones C in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);

Applications

The algebra A

- pointed convex cones C in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- 2 rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);

The algebra \mathcal{A}

- pointed convex cones C in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- 2 rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

The algebra A

- pointed convex cones C in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- Prooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

1 exponential integrals/sums on a cone **C**: $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{x} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx$ and $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle}$;

The algebra \mathcal{A}

- **1** pointed convex cones **C** in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- Prooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

- **1** exponential integrals/sums on a cone **C**: $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{r} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx$ and $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle}$;
- 2 branched zeta functions $s_F \mapsto \zeta_F(s_F)$ indexed by forests F;

The algebra \mathcal{A}

- ① pointed convex cones C in \mathbb{R}^{∞} equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- 2 rooted forests **F** equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- 3 Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

- **1** exponential integrals/sums on a cone **C**: $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{c} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx \text{ and } \check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle};$
- ② branched zeta functions $s_F \mapsto \zeta_F(s_F)$ indexed by forests F;
- **3** Feynman amplitudes $(z_e, e \in \mathcal{E}(\Gamma)) \longmapsto \prod_e G(z_e)$, with $G(z_e)$ the kernel of $(\Delta + m^2)^{-1+z_e}$, on each edge e of the graph Γ .

Conclusions

One can renormalise at poles while preserving locality

 Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);

Conclusions

One can renormalise at poles while preserving locality

- Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);
- Branched zeta functions equipped with an orthogonality independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);

Conclusions

One can renormalise at poles while preserving locality

- Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);
- Branched zeta functions equipped with an orthogonality independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);
- **Solution** Feynman integrals on manifolds with a disjointness independence relation (N.-V. Dang, B. Zhang 2017).

Univariate versus univariate

Can a univariate locality renormalisation scheme $\phi: (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$ factorise through a multivariate scheme? Does there exist

Univariate versus univariate

Can a univariate locality renormalisation scheme

 $\phi: (\mathcal{A}, m_{\mathcal{A}}, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$ factorise through a multivariate scheme? Does there exist

ullet $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$ and

Univariate versus univariate

Can a univariate locality renormalisation scheme

 $\phi: (\mathcal{A}, m_{\mathcal{A}}, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$ factorise through a multivariate scheme? Does there exist

- ullet $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$ and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that $\phi = \eta \circ \Phi$.

Univariate versus univariate

Can a univariate locality renormalisation scheme $\phi: (A, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$ factorise through a multivariate scheme? Does there exist

- \bullet $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$ and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that $\phi = \eta \circ \Phi$.

Group actions

• Group G acting on A which induces an action on $\Phi(A) \subset \mathcal{M}(\mathbb{C}^{\infty})$

Univariate versus univariate

Can a univariate locality renormalisation scheme

 $\phi: (\mathcal{A}, m_{\mathcal{A}}, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$ factorise through a multivariate scheme? Does there exist

- ullet $\Phi: (\mathcal{A}, m_A, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$ and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that $\phi = \eta \circ \Phi$.

Group actions

- Group G acting on A which induces an action on $\Phi(A) \subset \mathcal{M}(\mathbb{C}^{\infty})$
- How does it act on $\Phi^{reg}(A)$?

- P. Clavier, L. Guo, B. Zhang and S. P., An algebraic formulation of the locality principle in renormalisation, *European Journal of Math.* **5** (2019), 356-394.
- P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation via locality morphisms, to appear in *Revista Colombiana de Matemáticas*, arXiv:1810.03210.
- P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation and locality: branched zeta values, to appear in a volume of the EMS Publishing House, arXiv:1807.07630.
- P. Clavier, L. Guo, B. Zhang and S. P., Locality and renormalisation: universal properties and integrals on trees, submitted
- L. Guo, B. Zhang and S.P., Renormalisation and the Euler-Maclaurin formula on cones, *Duke Math J.*, **166** (3) (2017) 537–571.

L. Guo, B. Zhang and S. P., A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles, arXiv:1501.00426v2 (2017).

D. Manchon and S. P., Nested Sums of Symbols and Renormalized Multiple Zeta Values, Int. Math. Res. Notices (2010) 4628-4697. arXiv: 0702135v3 [math.NT].

Locality and renormalisation

THE END

THANK YOU!

EXTRA SLIDES

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P} := (\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$: $A \top B \iff P(A \cap B) = P(A) P(B)$.

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P} := (\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$: $A \top B \iff P(A \cap B) = P(A) P(B)$.

Geometry: transversal manifolds

Given two submanifolds L_1 and L_2 of a manifold M:

$$L_1 \top L_2 \iff L_1 \pitchfork L_2 \iff T_x L_1 + T_x L_2 = T_x M \quad \forall x \in L_1 \cap L_2.$$

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P} := (\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$: $A \top B \iff P(A \cap B) = P(A) P(B)$.

Geometry: transversal manifolds

Given two submanifolds L_1 and L_2 of a manifold M:

$$L_1 \top L_2 \iff L_1 \cap L_2 \iff T_x L_1 + T_x L_2 = T_x M \quad \forall x \in L_1 \cap L_2.$$

Number theory: coprime numbers

Given two positive integers m, n in \mathbb{N} :

$$m \top n \iff m \land n = 1.$$

Local functionals in QFT

Functionals F on fields ϕ of the form $F(\phi) = \int_M f\left(j_x^k(\phi)\right) dx$, where $j_x^k(\phi)$ is the k-th jet of ϕ at x. Here, $\operatorname{Supp}\left(f\left(\psi\right)\right) \subset \operatorname{Supp}\left(\psi\right)$.

Local functionals in QFT

Functionals F on fields ϕ of the form $F(\phi) = \int_M f\left(j_x^k(\phi)\right) dx$, where $j_x^k(\phi)$ is the k-th jet of ϕ at x. Here, $\operatorname{Supp}\left(f\left(\psi\right)\right) \subset \operatorname{Supp}\left(\psi\right)$.

Locality also arises in

 Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)

Local functionals in QFT

Functionals F on fields ϕ of the form $F(\phi) = \int_M f\left(j_x^k(\phi)\right) dx$, where $j_x^k(\phi)$ is the k-th jet of ϕ at x. Here, $\operatorname{Supp}\left(f\left(\psi\right)\right) \subset \operatorname{Supp}\left(\psi\right)$.

Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

Local functionals in QFT

Functionals F on fields ϕ of the form $F(\phi) = \int_M f\left(j_x^k(\phi)\right) dx$, where $j_x^k(\phi)$ is the k-th jet of ϕ at x. Here, $\operatorname{Supp}\left(f\left(\psi\right)\right) \subset \operatorname{Supp}\left(\psi\right)$.

Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

Link between various concepts of locality

 $\Psi_{\mathrm{phg}}^{\Gamma}(M)$ polyhomog. pseudodiff. operators on M with order in $\Gamma \subset \mathbb{C}$: A linear form $\Lambda: \Psi_{\mathrm{phg}}^{\Gamma}(M) \longrightarrow \mathbb{C}$ with $A \longmapsto \Lambda(A)$, is local if and only if $\mathrm{Supp}(\chi) \cap \mathrm{Supp}(\chi') = \emptyset \Longrightarrow \Lambda(\chi \, A \, \chi') = 0$.

Local functionals in QFT

Functionals F on fields ϕ of the form $F(\phi) = \int_M f\left(j_x^k(\phi)\right) dx$, where $j_x^k(\phi)$ is the k-th jet of ϕ at x. Here, $\operatorname{Supp}\left(f\left(\psi\right)\right) \subset \operatorname{Supp}\left(\psi\right)$.

Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

Link between various concepts of locality

 $\Psi_{\mathrm{phg}}^{\Gamma}(M)$ polyhomog. pseudodiff. operators on M with order in $\Gamma \subset \mathbb{C}$: A linear form $\Lambda: \Psi_{\mathrm{phg}}^{\Gamma}(M) \longrightarrow \mathbb{C}$ with $A \longmapsto \Lambda(A)$, is local if and only if $\mathrm{Supp}(\chi) \cap \mathrm{Supp}(\chi') = \emptyset \Longrightarrow \Lambda(\chi \, A \, \chi') = 0$.