
Schedule for OIST/RIMS workshop

Monday, June 10

Morning Session

9:00 AM - 10:30 AM

Speaker: Kenji Matsuki
Affiliation: Purdue University/KUIAS
Title of the talk: Introduction to the Idealistic Filtration Program toward resolution of singularities
in positive characteristic I
Abstract of the talk: Look for the abstract and content of the talks by Matsuki at the end of the
schedule.

10:45 AM - 12:15 AM

Speaker: Diego Sulca and Orlando Villamayor
Affiliation: Universidad Nacional de Córdoba (Sulca) and Universidad Autónoma de Madrid (Vil-
lamayor)
Title of the talk: Multiplicity, blow ups of finte morphisms, and applications to radicial coverings
of a regular variety I
Abstract of the talk: Look for the abstract and content of the talks by Sulca and Villamayor at
the end of the schedule.

Afternoon Session

2:00 PM - 3:00 PM

Speaker: Takehiko Yasuda
Affiliation: Tohoku University
Title of the talk: The wild McKay correspondence for an arbitrary finite group
Abstract of the talk: I will speak about the wild McKay correspondence for an arbitrary finite
group, which I recently proved. After proving the case of cyclic group of prime order, I formulated a
conjectural generalization to an arbitrary finite groups. An important step towards this conjecture
was to construct the moduli space of torsors over the punctured formal disk for the given finite group.
This has been done in my joint work with Fabio Tonini, generalizing an earlier work of Harbater.
Based on this work, I have developed the motivic integration theory over wild Deligne-Mumford
stacks. The wild McKay correspondence is obtained as an application of this theory.

3:15 PM - 4:15 PM

Speaker: Shunsuke Takagi
Affiliation: University of Tokyo
Title of the talk: Test ideals and valuations
Abstract of the talk: It is one of the major open problems in tight closure theory whether the
finitistic test ideal coincides with the big test ideal. In this talk, we give an affirmative answer to
this question when the ring is numerically Q-Gorenstein.

4:30 PM - 5:30 PM

Speaker: Herwig Hauser
Affiliation: University of Vienna, Austria
Title of the talk: Surfing on singular curves.
Abstract of the talk: We wish to present a recent approach of Hana Melánová towards a more
geometrically inspired resolution process.
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Tuesday, June 11

Morning Session

9:00 AM - 10:30 AM

Speaker: Diego Sulca and Orlando Villamayor
Affiliation: Universidad Nacional de Córdoba (Sulca) and Universidad Autónoma de Madrid (Vil-
lamayor)
Title of the talk: Multiplicity, blow ups of finte morphisms, and applications to radicial coverings
of a regular variety II
Abstract of the talk: Look for the abstract and content of the talks by Sulca and Villamayor at
the end of the schedule.

10:45 AM - 12:15 AM

Speaker: Kenji Matsuki
Affiliation: Purdue University/KUIAS
Title of the talk: Introduction to the Idealistic Filtration Program toward resolution of singularities
in positive characteristic II
Abstract of the talk: Look for the abstract and content of the talks by Matsuki at the end of the
schedule.

Special Lunch Break
Prof. Hikami will take us to a campus tour of OIST.
We will have lunch at Cafe “GURANO”, where you can have a buffet type lunch for 500 yen.
The two afternoon talks will be held in OIST C209 room. Having the talks there will save us time and

hassle of moving around.
Afternoon Session
3:00 PM - 4:00 PM

Speaker: Stefan Perlega
Affiliation: UniCredit Bank Austria AG
Title of the talk: Indefinite increase of the residual order
Abstract of the talk: The subject of the talk are singularities defined over a field of character-
istic p > 0 by a so-called purely inseparable equation of the form zp

e

+ F (x1, . . . , xn) = 0. These
singularities are often studied in the context of resolution of singularities since they exhibit cer-
tain pathologies which do not appear over fields of characteristic zero. A common invariant that
is associated to these singularities for the purpose of measuring improvement under blowups is the
residual order. It appears as a natural generalization of the resolution invariant in characteristic
zero, although it has much less desirable properties.

It is a well-known fact that the residual order may increase under blowups, even if the center is
chosen as a closed point. A result of Moh asserts that the increase of the residual order under a
single blowup is limited by pe−1, but it leaves open the question how big this increase may become
under longer sequences of blowups.

In this talk, we will discuss an example of a sequence of singularities under point-blowups which is
constructed as a cycle and can be iterated indefinitely. In this example, the residual order increases
during each iteration of the cycle, proving that that there is no limit to how much the invariant may
increase under longer sequences of blowups.

4:15 PM - 5:15 PM

Speaker: Daisuke MATSUSHITA
Affiliation: Hokkaido University
Title of the talk: On period loci of a subgroup of the automorphism group of an irreducible
symplectic manifold.
Abstract of the talk: Let X be an irreducible symplectic manifold and L a isotropic nef line
bundle on X. We also let g be an element of Aut(X,L). Assume that the order of g is infinite. I
will report a geometric nature of the fixed loci of gn, (n > 0) and give an approach to Abundance
conjecture.
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Wednesday, June 12

Morning Session

9:00 AM - 10:30 AM

Speaker: Kenji Matsuki
Affiliation: Purdue University/KUIAS
Title of the talk: Introduction to the Idealistic Filtration Program toward resolution of singularities
in positive characteristic III
Abstract of the talk: Look for the abstract and content of Matsuki’s talks at the end of the
schedule.

10:45 AM - 12:15 AM

Speaker: Diego Sulca and Orlando Villamayor
Affiliation: Universidad Nacional de Córdoba (Sulca) and Universidad Autónoma de Madrid (Vil-
lamayor)
Title of the talk: Multiplicity, blow ups of finte morphisms, and applications to radicial coverings
of a regular variety III
Abstract of the talk: Look for the abstract and content of the talks by Sulca and Villamayor at
the end of the schedule.

Afternoon Session

2:00 PM - 3:00 PM

Speaker: Nobuo Hara
Affiliation: Tokyo University of Agriculture and Technology
Title of the talk: Self-dual Frobenius summands on a quintic del Pezzo surface
Abstract of the talk: Given a polarized variety (X,L) in characteristic p > 0, we want to know how
many and what kind of indecomposable direct summands appear in the direct sum decomposition
of the iterated Frobenius direct images F e∗ (Ln), where e, n are non-negative integers. In this talk, I
will consider this problem on a quintic del Pezzo surface with anti-canonical polarization, focusing
on the case where F e∗ (Ln) is self-dual.

3:15 PM - 4:15 PM

Speaker: Santiago Encinas
Affiliation: Universidad de Valladolid
Title of the talk: Nash multiplicity sequences and Hironaka’s order function
Abstract of the talk: When X is a d-dimensional variety defined over a field k of characteristic
zero, a constructive resolution of singularities can be achieved by successively lowering the maximum
multiplicity via blow ups at smooth equimultiple centers. This is done by stratifying the maximum
multiplicity locus of X by means of the so called resolution functions. The most important of these
functions is what we know as Hironaka’s order function in dimension d. Actually, this function can
be defined for varieties when the base field is perfect; however if the characteristic of k is positive,
the function is, in general, too coarse and does not provide enough information so as to define a
resolution. It is very natural to ask what the meaning of this function is in this case, and to try to
find refinements that could lead, ultimately, to a resolution. In this talk we will show that Hironaka’s
order function in dimension d can be read in terms of the Nash multiplicity sequences introduced by
Lejeune-Jalabert. Therefore, the function is intrinsic to the variety and has a geometrical meaning
in terms of its space of arcs.

4:30 PM - 5:30 PM

Speaker: Ana Bravo
Affiliation: Universidad Autónoma de Madrid
Title of the talk: Contact loci and Hironaka’s order
Abstract of the talk: This talk is a continuation of ”Nash multiplicity sequences and Hironaka’s
order function” by S. Encinas. Here we study contact loci sets of arcs and the behavior of Hironaka’s
order function defined in constructive Resolution of singularities. We show that this function can be
read in terms of the irreducible components of the contact loci sets at a singular point of an algebraic
variety. This is joint work with S. Encinas and B. Pascual-Escudero.
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Thursday, June 12

Morning Session

9:00 AM - 10:30 AM

Speaker: Diego Sulca and Orlando Villamayor
Affiliation: Universidad Nacional de Córdoba (Sulca) and Universidad Autónoma de Madrid (Vil-
lamayor)
Title of the talk: Multiplicity, blow ups of finte morphisms, and applications to radicial coverings
of a regular variety IV
Abstract of the talk: Look for the abstract and content of the talks by Sulca and Villamayor at
the end of the schedule.

10:45 AM - 12:15 AM

Speaker: Hiraku Kawanoue
Affiliation: Chubu University/RIMS
Title of the talk: Surface resolution via IFP
Abstract of the talk: I will talk about the problem of resolution of singularities of a surface
embedded in a nonsingular ambient space W . When dimW = 3, this corresponds to the problem of
resolution of singularities of an idealistic filtration in Matsuki’s talk on Day 3, where the difficulty
is concentrated in the monomial case.

I will present the original (old) invariant in the monomial case in dimW = 3, based upon the
work of Benito-Villamayor. The new invariant, which Matsuki talks about on Day 3, is the product
of his effort to understand why this old invariant works. (At the beginning we could not see why the
old invariant works.) The old one actually behaves better than the new one in dimW = 3, while it
seems more difficult to generalize it to the higher dimensional case than the new one.

Afternoon Session

2:00 PM - 3:00 PM

Speaker: Shihoko Ishii
Affiliation: Yau Mathematical Science Center, Tsinghua University/ University of Tokyo
Title of the talk: R-multiideal on a smooth surface in positive characteristic
Abstract of the talk: In the talk, I will show that Mustaţǎ-Nakamura’s conjecture holds for pairs
consisting of a smooth surface and a real multiideal over the base field of positive characteristic.
As corollaries, we obtain the ascending chain condition of the minimal log discrepancies and of the
log canonical thresholds for those pairs. We also obtain finiteness of the set of the minimal log
discrepancies of those pairs for a fixed real exponent.

3:15 PM - 4:15 PM

Speaker: Eamon Quinlan-Gallego
Affiliation: University of Michigan and University of Tokyo
Title of the talk: Bernstein-Sato polynomials in positive characteristic
Abstract of the talk: In 2009 Mustaţă defined Bernstein-Sato polynomials in prime characteristic
for hypersurface singularities and proved that the roots of these polynomials are related to the F-
jumping numbers of the hypersurface. We follow Mustaţă’s approach and develop a similar definition
for the case of arbitrary ideals. We then show that these polynomials still retain information about
the F-jumping numbers. We also generalize previous work of Bitoun to this new setting.

4:30 PM - 5:30 PM

Speaker: Hironobu Maeda
Affiliation: Tokyo University of Agriculture and Technology
Title of the talk: Plücker Coordinates, Gauss Composition and the Principal Genus Theorem –
High School Algebra in Arithmetic
Abstract of the talk: In 1801 Gauss gave an algorithm to calculate an integral binary quadratic
form whose duplication is a given binary form belonging to the principal genus (article 286 in
Disquisitiones Arithmeticae). We show that his method is also valid in the case, where the coefficient
domain is the principal ideal domain, in which 2 is either a unit or a prime element whose residue
field is perfect and generated by units of the domain.
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Friday, June 14

Morning Session

9:00 AM - 10:30 AM

Speaker: Hiraku Kawanoue
Affiliation: Chubu University/RIMS
Title of the talk: IFP with radical saturation
Abstract of the talk: I will talk about a different approach to realize the algorithm for resolution
of singularities in the framework of IFP from the one Matsuki talks about. My wish is to include
the radical saturation, namely, the integral closure of an idealistic filtration, in the algorithm. I
will explain why this is more desirable from a theoretical point of view, and present some possible
changes of the framework of the IFP itself so that it would better serve my wish.

10:45 AM - 12:15 AM

Speaker: Diego Sulca and Orlando Villamayor
Affiliation: Universidad Nacional de Córdoba (Sulca) and Universidad Autónoma de Madrid (Vil-
lamayor)
Title of the talk: Multiplicity, blow ups of finte morphisms, and applications to radicial coverings
of a regular variety V
Abstract of the talk: Look for the abstract and content of the talks by Sulca and Villamayor at
the end of the schedule.

Afternoon Session

2:00 PM - 3:00 PM

Speaker: Shinobu Hikami
Affiliation: OIST
Title of the talk: Singularity theory for the negative value p of spin curves
Abstract of the talk: The moduli space of p-spin curves (p > 0) is related to minimum ADE
singularities. For An type singularities, n corresponds to p− 1 (p = 2, 3, · · · ). We extend the value
pf p to negative integers (p < 0) and discuss the relation to the 2 dimensional quasi homogeneous
surface singularities for arbitrary genus.

3:15 PM - 4:15 PM

Speaker: Angelica Benito
Affiliation: Universidad Autónoma de Madrid
Title of the talk: ”A semicontinuous invariant of singularities in positive characteristic” (joint
work with O. Villamayor).
Abstract of the talk: Fix a hypersurface X embedded in a smooth scheme V over a field k. The
multiplicity of X at each point defines a function, multX : X −→ Z, which is upper semicontinouos.
Hironaka introduces a refinement of this function: (multX , H − ordX) : X −→ Z×Q. When X is a
plane curve, and k = k is a field of characteristic zero, the value H − ord(x) at a closed point x ∈ X,
where the curve is analytically irreducible, is known as the first characteristic exponent. For hyper-
surfaces of arbitrary dimension Hironaka proves that, if k is of characteristic zero, this refinement of
the function multX : X −→ Z is again upper semicontinuous (Z×Q ordered lexicografically).

The semicontinuity of this important refinement fails to hold if the characteristic of k is positive.

In this paper we introduce a natural modification of Hironaka’s function, say H̃ − ordX , making use

of invariants specific to the characteristic, so that (multX , H̃−ordX) : X −→ Z×Q is semicontinuous

when k is a perfect field. The new function H̃ −HordX coincides with H − ordX when evaluated at
closed points. In particular we prove that Hironaka’s function is upper semi continuous in the closed
spectrum also in positive characteristic.
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Abstract and schedule for the talks by Sulca and Villamayor

Multiplicity, blow ups of finte morphisms, and applications to radicial coverings of a regular
variety

The proposal is to study of the multiplicity as the main invariant to resolve singularities in characteristic
zero. This also leads to new questions in arbitrary characteristic which we want to explore.

Basically we will view a singular variety X, at least locally, as finite cover of a regular variety, say X → V ;
as opposed to viewing the singular variety as a subscheme of a regular variety, say X ⊂ V . This approach
enables us to consider some natural non-embedded operations. For example if X is normal and X ′ → X is
the blow up at a regular center Y followed either by the normalization or by some prescribed finite birational
morphism. This happens, for instance, if we blow up at the integral closure of some power of the ideal I(Y ).

As for positive characteristic we aim to apply these techniques in the study of some very specific sin-
gularities: Let k be a perfect field of characteristic p > 0, and fix an irreducible polynomial of the form
Zp

e

+ f(X1, . . . , Xd) ∈ k[X1, . . . , Xd][Z]. This polynomial defines a hypersurface, say H ⊂ Ad+1
k , and the

induced extension of coordinate rings k[X1, . . . , Xd] ⊂ k[H] (ring of functions of H) is finite and purely
inseparable. Moreover, the highest possibly multiplicity at points of H is at most pe. We will analyze these
finite extensions in more generality, namely when there is a finite and surjective morphisms δ : X → V of
k-varieties, where V is regular and the extension of function fields k(V ) ⊂ k(X) is purely inseparable. In
this case the multiplicity at points of X is bounded by the degree pe := [k(X) : k(V )].

Assume that the set Fpe(X) ⊂ X of points of multiplicity pe is non-empty. We shall introduce and
discuss invariants of singularities x ∈ X when x ∈ Fpe(X). We will use these invariants to stratify Fpe(X),
and we shall study the behavior of these invariants under blow-ups X ′ → X at regular centers Y included
in a stratum. The techniques involved in this discussion will make use of differential operators on regular
varieties.

On the multiplicity, finite morphisms, and blow-ups of finite morphisms.

0.1. Let X be a variety over a perfect field, and let

multX : X → N

be the function that assigns to each point x ∈ X the multiplicity of the local ring OX,x. It is well-known that
multX is upper semi-continuous when N is given the usual order topology ([22], [8]), whence X is stratified
as a finite union of locally closed subsets, namely the level sets

Fn(X) := {x ∈ X : multX(x) = n}, n ∈ N.

It is also well-known that X is regular if and only if multX(x) = 1 for all x ∈ X ([22, Thm. 40.1]). When X is
not regular and n denotes the maximum value of multX , then the level set Fn(X) (the maximal multiplicity
locus) is a proper closed subset of X. The following theorem shows that the multiplicity fulfills a fundamental
principle for invariants attached to singularities which we call the fundamental point-wise inequality.

Theorem 0.2 (Dade, [8]; see also [24]). Let X
π←− X1 be a blow up at an irreducible regular center included

in Fn(X). Then

multX(π(x1)) ≥ multX1(x1), ∀x1 ∈ X1.

In particular, max multX ≥ max multX1 .

We remark that this result remains valid if we replace X
π←− X1 by a composition X ← X1 ← X ′1, where

X1 ← X ′1 is any finite birational morphism over X1; see the discussion in Remark 0.5,(d).

0.3. When studying the singularities of an algebraic variety, it is often convenient to view the variety as a
finite ramified covering of a regular one. Namely, we consider a variety X together with a finite and surjective
morphism δ : X → V where V is regular. This approach has been shown to be efficient when studying the
multiplicity at singular points of X. For instance, Lipman uses this approach to discuss the multiplicity
of complex analytic varieties, and also of algebraic varieties, and the effect of blowing up at equimultiple
centers; see [21]. More recently, this idea was taken further in [27] to give an alternative proof of resolution
of singularities in characteristic zero by using the multiplicity as main invariant of singularity; see also [4]
and [26].
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The following theorem, which is valid in arbitrary characteristic, serves as a basis for the study of the
multiplicity when a variety is presented as a ramified covering of a regular one. We use the following
terminology. Given a finite and surjective morphism of integral schemes δ : X → V , its generic rank is the
degree [K(X) : K(V )] of the induced extension of function fields K(V ) ⊂ K(X).

Theorem 0.4 ([27]). Let δ : X → V be a finite and surjective morphism of varieties such that V is regular,
and let n denote the generic rank of δ. Then

multX(x) ≤ n, ∀x ∈ X.

Moreover, when Fn(X) := {x ∈ X : multX(x) = n} is non-empty, then the following holds.

(1) Fn(X) is closed and each fiber δ−1(δ(x)), x ∈ Fn(X), contains only one point. In particular, δ
induces a homeomorphism Fn(X) ≡ δ(Fn(X)).

(2) An irreducible subvariety Y ⊂ X included in Fn(X) is regular if and only if its image δ(Y ) ⊂ V is
also regular. In that case, the blow-up of X at Y and the blow-up of V at δ(Y ) fit into a commutative
diagram

(0.4.1) X

δ

��

X1
oo

δ1

��
V V1
oo

for a uniquely determined morphism δ1 : X1 → V1. This morphism is again finite, surjective, and
has generic rank n.

Remark 0.5.

a) The proof of this theorem follows essentially from a well-known formula of Zariski that describes the
behavior of the multiplicity with respect to finite extensions of rings; see [28, VII, Corollary 1 to Theorem
24].

b) The horizontal arrows in (0.4.1) are blow-ups at regular centers; in particular, V1 is regular since V is so.
We remark that the existence of δ1 making (0.4.1) commutative is not guaranteed if Y is not included in
Fn(X), even if δ(Y ) is also regular.

c) Part (2) of the theorem states that δ1 has again generic rank n, so an application of the theorem to
δ1 shows that multX1

(x1) ≤ n for all x1 ∈ X1. In particular, this theorem provides a simple proof of
Theorem 0.2 in the case that X is provided with a finite and surjective morphism δ : X → V with V
regular, such that the generic rank of δ coincides with the maximal multiplicity at points of X.

d) Let X1 ← X ′1 be a finite birational morphism. An application of the formula of Zariski that was mentioned
in a) shows that this morphism satisfies the fundamental point-wise inequality for the multiplicity, whence
the same holds true for the composition X ← X1 ← X ′1. Notice that if δ′1 : X ′1 → V1 denotes the

composition X ′1 → X1
δ1−→ V1, then δ′1 is a finite and surjective morphism of generic rank n, and the

commutativity of (0.4.1) remains valid if we replace X ← X1 by X ← X1 ← X ′1 and δ1 by δ′1. As an
example, we might take for X1 ← X ′1 the normalization of X1. In this case, the composition X ← X1 ←
X ′1 is called the normalized blow-up at Y .

e) We finally mention that if X is any variety over a perfect field, say with maximal multiplicity n, and if
x ∈ Fn(X), then there exists an étale neighborhood X ′ → X of x and a finite and surjective morphism
δ : X ′ → V of generic rank n such that V is regular; thus, the conclusions (1) and (2) in the Theorem
apply for this δ. This observation together with the observation in c) can be used now to give a complete
proof of Theorem 0.2.

In view of the previous Theorem, we now introduce the following terminology.

Definition 0.6. Let δ : X → V be finite and surjective morphism of varieties, say of generic rank n, such
that V is regular. We say that δ is transversal if Fn(X) 6= ∅. In that case, an irreducible regular subvariety
Z ⊂ V included in δ(Fn(X)) will be called a permissible center for δ. Given such a center Z ⊂ V , let
Y ⊂ V be the subvariety whose underlying set is δ−1(Z). This is a regular subvariety by Theorem 0.4. Let
V ← V1 and X ← X1 denote the blow-ups at Z and δ−1(Z), respectively, and let δ1 : X1 → V1 be the unique
morphism which makes the diagram (0.4.1) commutative. We call δ1 the blow-up of δ at Z.
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Notice that if δ1 is again transversal, then a blow up of δ1 at a permissible center, say Z1 ⊂ V1, will
produce a new morphism δ2. If we keep doing this, after r steps we will obtain a commutative diagram

(0.6.1) X

δ

��

X1
oo

δ1

��

X2
oo

δ2

��

· · · Xr
oo

δr

��
V V1
oo V2

oo · · · Vroo

where the vertical arrows are finite and surjective morphisms of generic rank n, and for each index i < r:
(a) Vi ← Vi+1 is a blow-up of Vi at a permissible center for δi, say Zi ⊂ Vi; (b) Xi ← Xi+1 is the blow-up
of Xi at δ−1

i (Zi) ⊂ Fn(Xi); (c) δi+1 is the blow-up of δi at Zi. We obtain

n = max multX = max multX1 = · · · = max multXr−1 ≥ max multXr .

A natural question is if it is always possible to construct such a sequence so that the last inequality is
strict. If the base field has characteristic zero, then the answer is affirmative; in fact, this construction can
be done algorithmically. A fundamental result in the construction of such an algorithm is the following
Representation Theorem.

Theorem 0.7 ([27]). Assume that δ : X → V is a transversal morphism of varieties over a field of charac-
teristic zero with V regular, and let n be the generic rank. Then one can construct a coherent ideal J on V
and positive integer b such that

δ(Fn(X)) = Sing(J , b) := {x ∈ V : νx(J ) ≥ b},(0.7.1)

and such that this equality is stable under blow-ups, in the following sense. Let Z ⊂ V be a permissible center
for δ, let V ← V1 ⊃ H1 be the blow-up of V at Z, where H1 denotes the exceptional hypersurface, and let
δ1 : X1 → V1 denote the blow-up of δ at Z. Then JOV1

= I(H1)bJ1 for an OV1
-ideal J1, and

δ(Fn(X1)) = Sing(J1, b).

Remark 0.8. It is also required that (0.7.1) is preserved after restriction to open subsets, multiplication by
the affine line, and after any sequence of transformations made of these three types of operations. This is
expressed by saying that δ(Fn(X)) is represented by an idealistic exponent, in the sense of Hironaka. We do
not go into details and refer the reader to [27] where the Theorem is formulated using Rees algebras rather
than pairs (J , b). We also remark that, as a consequence of Theorem 0.7, the algorithmic reduction of the
multiplicity is a consequence of the constructive resolution of pairs (or of Rees algebras). We finally mention
that in positive characteristic, the pair constructed in Theorem 0.7 only gives an inclusion δ(Fn(X)) ⊆
Sing(J , b), which is in general strict. Moreover, there are examples where δ(Fn(X)) is not represented by
any idealistic exponent.

0.9. Closed immersions vs. finite morphisms. Blowing up singular varieties at regular centers is crucial in
Hironaka’s approach for resolution of singularities over fields of characteristic zero, in which he considers an
embedding X ⊂ V of the singular variety into a regular variety, and uses the Hilbert-Samuel function as
main invariant of singularities. Note that if we blow up X and V simultaneously at a regular center included
in X, then there is a natural inclusion X1 ⊂ V1 of the corresponding blow-ups. We refer here to [6] where
the semi-continuity of the Hilbert-Samuel function is studied in the first chapter (Theorem 1.33), and the
behavior under blow-ups (the fundamental point-wise inequality) is carefully treated in the second chapter.

The situation when using the multiplicity as main invariant of singularity is quite different since the
techniques here rely on the existence of finite morphisms X → V and transformations of finite morphisms.
Note that the replacement of X by its normalization X̃ is not compatible with embeddings X ⊂ V , for
example the normalization of a hypersurface might not be a hyperpersurface. However, normalization is
compatible with finite morphisms X → V since the composition X̃ → X → V remains finite. Moreover,
it follows from the observations in Remark 0.5, d), that one can produce diagrams like (0.6.1) so that
each morphism in the top row is a normalized blow-up at a regular center included in the set of points of
multiplicity n, and each of them satisfies the fundamental point-wise inequality for the multiplicity. This is a
peculiar property of the multiplicity, namely that the point-wise inequality also holds for blow ups followed
by finite birational morphisms such as the normalization. These will show up in our discussion although we
shall restrict our attention on a very specific case in characteristic p > 0.
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0.10. The case of radicial morphisms. The Representation Theorem 0.7 is still valid in the case of charac-
teristic p > 0 if n is not divisible by p. On the other hand, if p|n, say n = pem with (p,m) = 1, then we
can still attach to δ : X → V a pair (J , b) and a morphism of schemes δ′ : X ′ → V of generic rank pe such
that δ(Fn(X)) = Sing(J , b) ∩ δ′(Fpe(X ′)), and such that this description is preserved under any sequence
of morphisms that are either blow-ups at permissible centers, restriction to open subsets or multiplications
by the affine line. The next step would be to consider the case when n = pe. We shall focus here in a very
special case. The case in which δ is radicial.

For our next discussion, p denotes a fixed prime, and q a power of p. For a ring B of characteristic
p we denote Bp the image of the Frobenius endomorphism F : B → B. If B is a domain, we denote
B1/p = {x ∈ L : xp ∈ B}, where L is an algebraic closure of the fraction field of B. Similar notation is used
when p replaced by q. This notation extends also to sheaves of rings on schemes. Finally, for a scheme V ,
when we use the expressions OV -ideal, OV -module and OV -algebra we are assuming in advance that they
are respectively quasi-coherent OV -ideals, modules and algebras.

We now introduce the class of morphisms we shall deal with.

Definition 0.11. We define Cq as the class of all finite and surjective morphisms δ : X → V of integral
schemes of characteristic p where V is regular and the following holds.

(i) V is F -finite, that is, every affine ring S of V is finite over its subring Sp (e.g. a variety over a field k
of characteristic p such that [k : kp] is finite).

(ii) If S is an affine ring of V and B is the corresponding affine ring of X (that is, Spec(B) = δ−1(Spec(S))),
then Bq ⊆ S. Here, we are identifying S with a subring of B.

We also denote by Cq(V ) the subclass of Cq consisting of those morphisms δ : X → V for a fixed V .

The following is a list of observations where we also introduce some notation.

(1) Any δ : X → V in Cq is in particular affine, and its underlying continuous map is a homeomorphism.
Hence, we can think of OX as a sheaf on V which includes OV as a subsheaf. Condition (ii) in Definition
0.11 can be therefore written as OqX ⊆ OV .

(2) Given δ : X → V in Cq, the induced extension of function fields, say K(V ) ⊂ K(X), is finite and
purely inseparable; in particular, the generic rank of δ is a power of p, say pt. Theorem 0.4, which was
formulated for varieties, have been actually proved in [27] under more general hypothesis, and can be
applied to our morphism δ too. In particular, the multiplicity along points of X is at most pt. For
convenience of notation, we shall write Fδ(X) ⊂ X instead of Fpt(X) (= the set of points of multiplicity
equal to the generic rank of δ). As in the case of varieties, we say that δ is transversal if Fδ(X) 6= ∅.

(3) Cq(V ) can be viewed as a full subcategory of the category of finite V -schemes. Since the latter category
is (anti)-equivalent to the category of coherent OV -algebras, condition (ii) in Definition 0.11 implies that

Cq(V ) is (anti)-equivalent to the category of OV -subalgebras of O1/q
V . One easily checks that the only

morphisms in the latter category are given by inclusions. Finally, by an application of Frobenius, we
obtain:

Lemma 0.12. By assigning to each δ ∈ Cq(V ) the OqV -subalgebra Bδ := OqX ⊆ OV , we obtain an equivalence
between Cq(V ) and the collection of coherent OqV -subalgebras of OV . In addition, given δ, δ′ ∈ Cq(V ), there
exists a V -morphism X → X ′ if and only if Bδ′ ⊆ Bδ, and in that case there is only one such V -morphism.

Example: Let V = Adk = Spec(k[X1, . . . , Xd]), where k is a field of characteristic p such that [k : kp]
is finite. This is an F -finite regular scheme. We obtain a morphism δ : X → V in Cq(V ) by setting
X = Spec(k[X1, . . . , Xd][Z]/〈Zq + f(X1, . . . , Xd)〉), where f(X1, . . . , Xd) /∈ (k[X1, . . . , Xd])

p. According to
our previous discussion, we shall associate to δ the (k[X1, . . . , Xd])

q-subalgebra of k[X1, . . . , Xd] generated
by f(X1, . . . , Xd).

0.13. Fix a transversal morphism δ : X → V in the class Cq(V ). Our objective is to introduce invariants of
singularities for points in Fδ(X). Lemma 0.12 with the aid that δ is a homeomorphism enable us to replace
Fδ(X) by δ(Fδ(X)) ⊂ V , and δ by the OqV -subalgebra Bδ := OqX . Since V is F -finite and regular, the module

of differentials Ω1
V is locally free of finite rank, whence the OV -module Diff i

V of differential operators on V

of order ≤ i is also locally free of finite rank. We denote by Diff i
V,+ ⊂ Diff i

V the OV -submodule consisting
of those operators D such that D(1) = 0. By evaluation, we obtain OV -ideals

Diff 1
V,+(Bδ) ⊆ . . . ⊆ Diff q−1

V,+(Bδ).
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This list of q−1 ideals will play a predominant role in our investigation of invariants of singularities that refine
the multiplicity. The following theorem shows an instance of this assertion, namely, it describes δ(Fδ(X)) as

the support of Diff q−1
V,+(Bδ). It will also illustrate how the notions of permissible centers and blow-ups can

be expressed entirely in terms of OqV -subalgebras and transformations of these algebras. For completeness,
we include part of Theorem 0.4.

Theorem 0.14. Fix a transversal morphism δ : X → V in the class Cq, and set Bδ := OqX ⊂ OV .

(1) Fδ(X) is closed, and its homeomorphic image in V can be expressed as

δ(Fδ(X)) = V(Diff q−1
V,+(Bδ)).

(2) Let Y ⊂ X be a closed irreducible subscheme, and let Z ⊂ V denote the closed subscheme of V whose
sheaf of ideals is I(Y ) ∩ OV (whence Z = δ(Y ) as sets). Then following assertions are equivalent:
(a) Y is regular and it is included in Fδ(X).

(b) Z is regular and it is included in V(Diff q−1
V,+(Bδ)).

(3) If the equivalent conditions in (2) are satisfied, then the blow-up of X at Y and the blow-up of V at
Z fit into a commutative diagram

(0.14.1) Y ⊂

Z ⊂

X

δ

��

X1
oo

δ1

��
V V1
oo

,

for a uniquely determined morphism δ1, which is also in the class Cq.
(4) The OqV1

-algebra Bδ1 := OqX1
⊆ OV1

associated with δ1 coincides with the OqV1
-subalgebra of OV1

generated by the conductor (BδOqV1
: L(q)

1 ) ⊆ OV1
. Here, BδOqV1

denotes the OqV1
-subalgebra of OV1

generated by the sections of Bδ when these are viewed as sections on the blow-up V1, L1 denotes the

exceptional ideal of the blow-up V ← V1, and L(q)
1 denotes the OqV -ideal L1 ∩ OqV ⊂ O

q
V .

We introduce the following definition before going into some remarks about this theorem.

Definition 0.15. For a pair (V,B) with B an OqV -subalgebra, we define Sing(V,B) := V(Diff q−1
V,+(B)). A

regular subscheme Z ⊂ V included in Sing(V,B) is called a permissible center for (V,B). If V ← V1 is the

blow-up of V at Z and L1 is the exceptional ideal, then we call the OqV1
-subalgebra OqV1

[(BOqV1
: L(q)

1 )] the
1-transform of B by the blow-up.

Remark 0.16. Lemma 0.12 and Theorem 0.14 enable us to work entirely within the setting of pairs (V,B),
where V is an irreducible F -finite regular scheme and B is an OqV -subalgebra. In fact, if B = Bδ for a
morphism δ : X → V , then part (1) of Theorem 0.14 describes δ(Fδ(X)) as the closed set Sing(V,B), part
(2) says that a closed subscheme Z ⊂ V is permissible for δ in the sense of Definition 0.6 if and only if Z
is permissible for (V,B) in the sense of Definition 0.15, and finally (4) states that the blow-up of δ at Z is
the morphism associated with the 1-transform of B. In summary, we can replace diagrams like (0.14.1) by
diagrams of the form

(0.16.1) V V1
oo

B B1

Similarly, an iteration of transformations like (0.6.1) corresponds to a sequence

(0.16.2) V V1
π1oo . . .

π2oo Vr
πroo

B B1 . . . Br

where Vi ← Vi+1 is the blow-up at a regular center, say Zi ⊂ Vi, that is included in Sing(Vi,Bi), and Bi+1

is the 1-transform of Bi.
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On the definition of invariants of singularities.

We have associated with a pair (V,B) a closed set Sing(V,B) := V(Diff q−1
V,+(B)) ⊂ V which, if not empty,

is the maximal multiplicity locus of the V -scheme defined by B1/q. Our aim is to refine the multiplicity by
defining upper semi-continuous functions on V that could lead to a stratification of Sing(V,B). A possible
way to achieve this is by making use of the following list of ideals:

(0.16.3) G(B) = (Diff 1
V,+(B), . . . ,Diff q−1

V,+(B))

This is in fact an example of the following definition.

Definition 0.17. A q-differential collection of ideals is a sequence of OV -ideals G = (I1, . . . , Iq−1) with the

property that Diff i
V (Ij) ⊆ Ii+j whenever i+ j < q. Given such a sequence and a point x ∈ V , we set

ηx(G) := min{νx(Ii) + i : 1 ≤ i ≤ q − 1}

where νx(Ii) denotes, as usual, the order of Ii at x.

The assignation x 7→ ηx(G) defines an upper semi-continuous function η(G) : V → N when N is given
the usual order. The following theorem establishes the fundamental point-wise inequality for η(G) under
an appropriate definition of transformation of q-differential collections. This theorem will be used in the
construction of upper semi-continuous functions for pairs (V,B) (Theorem 0.19), and also for pairs (V,B)
with a normal crossing divisor (Theorem 0.22).

Theorem 0.18. Let G be a q-differential collection on V , let Z ⊂ V be a regular center included in the

maximum locus of η(G), say ηx(G) = aq + b for all x ∈ Z (with a, b ∈ N0 and 0 ≤ b < q), let V
π←− V1 be the

blow-up at Z, and let L denote the exceptional ideal. Then the collection

(0.18.1) G1 := ((I1OV1
: Lqa), . . . , (Iq−1OV1

: Lqa))

is also q-differential, and we have the following point-wise inequality:

(0.18.2) ηπ(x1)(G) ≥ ηx1
(G1), ∀x1 ∈ V1.

We call the collection (0.18.1) the a-transform of G by the blow-up. The first part of the following theorem
shows that the function η for q-differential collections of the form G(B), with B ⊂ OV an OqV -subalgebra,
can be used to stratify the closed set Sing(V,B).

Theorem 0.19. For an OqV -subalgebra B ⊆ OV , the following holds.

(1) Sing(V,B) = {x ∈ V : ηx(G(B)) ≥ q}.
(2) Assume that Sing(V,B) is non-empty, and write the maximum value of η(G(B)) in the form aq+ b

with 0 ≤ b < q. Then a regular center Z ⊂ V included in the maximum locus defines a sequence

(0.19.1) V V1
πoo . . .

∼=oo V1

∼=oo

B B1 . . . Ba

where
(a) V ← V1 is the blow-up at Z and B1 is the 1-transform of B by π.
(b) For each index 1 ≤ i < a, the exceptional hypersurface of π, say H1 ⊂ V1, is included in

Sing(V1,Bi), the isomorphism Vi
∼=←− Vi+1 is the blow-up of Vi at H1, and Bi+1 is the 1-

transform of Bi.
(c) H1 6⊂ Sing(V1,Ba),

(3) If (G(B))1 denotes the a-transform of G(B), then there is a component-wise inclusion

(0.19.2) G(Ba) ⊆ (G(B))1.

In particular, ηx1
(G(Ba)) ≥ ηx1

((G(B))1) for all x1 ∈ V1, whence

(0.19.3) {x1 ∈ V1 : ηx1
((G(B))1) ≥ q} ⊂ Sing(V1,B1).

We call Ba the a-transform of B by the blow-up. Property (1) in the Theorem asserts that if δ : X → V
is the V -scheme defined by B1/q, and if δ1 : X1 → V1 is the blow-up of δ at Z, then we can still blow up δ1
exactly a− 1 times at H1 (obtaining as a result the V -scheme δa : Xa → V1 defined by B

1/q
a ).
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Remark 0.20. The inclusion (0.19.2) is in general strict, and therefore we cannot make use of Theorem 0.18
to deduce a point-wise inequality ηπ(x1)(G(B)) ≥ ηx1(G(Ba)), ∀x1 ∈ V1, which would be desirable. In fact,
examples show that this inequality does not hold in general. Nevertheless, we shall see in the lectures that
a sequence of permissible transformations of q-differential collections starting from G(B), in a way that we
will specify, induces a sequence of permissible transformation of B, hence also a sequence of blow-ups as
(0.6.1).

0.21. When making successive monoidal transformations it is natural to define invariants by making use of
the hypersurfaces introduced in the previous blow-ups. So this time we consider 4-uples (V,B,Λ,L) where
V is an irreducible F -finite regular scheme, B ⊂ OV is an OqV -algebra, Λ is a finite collection of invertible
ideals with normal crossings, and L is an invertible ideal included in I for each I ∈ Λ. For example, we
could take for Λ the empty collection and L = OV . We attach to this 4-tuple the collection

G(B,Λ,L) := ((Diff 1
V,Λ,+(B) : L1), (Diff 2

V,Λ,+(B) : L2), . . . , (Diff q−1
V,Λ,+(B) : Lq−1))

where Diff i
V,Λ,+ ⊆ Diff i

V,+ denotes the submodule of those differential operators that are logarithmic with
respect to each I ∈ Λ.

Theorem 0.22. Within the previous setting, the following holds.

(1) G(B,Λ,L) is a q-differential collection, and there is a component-wise inclusion G(B) ⊆ G(B,Λ,L).
In particular, ηx(G(B)) ≥ ηx(G(B,Λ,L)), ∀x ∈ V , whence

{x ∈ V : ηx(G(B,Λ,L)) ≥ q} ⊂ Sing(V,B).

(2) Let Z be a regular center included in the maximum locus of the function η(G(B,Λ,L)), say ηx(G(B,Λ,L)) =
aq + b for all x ∈ Z (a, b ∈ N0, 0 ≤ b < q), and suppose that {I(Z)} ∪ Λ has normal crossings. Let

V
π←− V1 be the blow-up at Z and let H1 ⊂ V1 be the exceptional hypersurface. We set:

(a) B1 := the a-transform of B by the blow-up.
(b) Λ1 := the collection of the strict transforms of the ideals I ∈ Λ plus the exceptional ideal I(H1).
(c) L1 := (LOV1)I(H1).

Then Λ1 is a collection of invertible ideals with normal crossings, L1 is included in I1 for each
I1 ∈ Λ1, and there is an inequality

ηπ(x1)(G(B,Λ,L)) ≥ ηx1
(G(B1,Λ1,L1)), ∀x1 ∈ V1.

Remark 0.23. As for the fundamental point-wise inequality of our functions η in these theorems, it is worth
bearing in mind a classical result in algebraic geometry. Let V be a smooth variety over a field k and let J
be an OV -ideal. It is well-known that the function x 7→ νx(J ), is upper semi-continuous (see [9, Chap. 2] or
[11, Chap. 3]). Let Z ⊂ V be a smooth subvariety included in the maximum locus of ν(J ), say νx(J ) = b
for all x ∈ Z. Let V ← V1 be the blow up of V at Z, and let H1 denote the exceptional hypersurface. Then
V1 is smooth, and there is a factorization JOV1

= I(H1)bJ1 for some OV1
-ideal J1 which does not vanish

along H1. Then we have

Theorem 0.24. νπ(x1)(J ) ≥ νx1(J1) for all x1 ∈ V1.

0.25. As for the relation with published works, let us mention [10], where Giraud studies Jung conditions for
finite radicial coverings of regular varieties in positive characteristic. The outcome of [5] is a first breakthrough
in the resolution of singularities of radicial extensions in positive characteristic by means of blow-ups at
regular centers. More recently, in [7] Cossart and Piltant prove resolution of singularities for arbitrary three-
dimensional schemes of positive characteristic. These are proofs that introduce suitable invariants, which
fulfill the point-wise inequality for blow ups at regular centers. Other invariants with point-wise inequality
arise in the work of Kawanoue and Matsuki in [16] and [17]. Also in this line, and related with this exposition,
is the joint work of the second author with Benito in [2] (see also [3]). All these cited papers also make use
either of differential operators or of logarithmic differential operators.

We thank C. Abad, A. Benito, A. Bravo, and S. Encinas, for stimulating discussion on these questions.
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Expected schedule. The first three lectures will be devoted to constructive resolution of singularities in
characteristic zero, and we shall also present some questions that arises in positive characteristic.

Lecture 1: On the function multX as an invariant of singularities and Theorem 0.2.
Lecture 2: Blow-ups of finite morphisms and Theorem 0.4.
Lecture 3: Theorem 0.7 and a proof of Resolution of singularities in characteristic zero.

The last two lectures will be devoted to radicial morphisms of the form introduced in Definition 0.11.
According to Remark 0.16, we can focus on OqV -subalgebras of OV , where V is an F -finite regular scheme.
Our discussion will be formulated more generally in terms of OqV -submodules of OV . In the context of
radicial morphisms, modules and transformations of modules will resemble in a natural way the roll played
by ideals and transformations of ideals in the study of the singular locus of a variety.

Lecture 4: p-basis and differential operators techniques applied to the study of Rq-submodules and trans-
formations by blow-ups (where R is an F -finite regular local ring).

Lecture 5: The definition of invariants of singularities using differential operators, and also logarithmic dif-
ferential operators. Theorems 0.18, 0.19 and 0.22.
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Abstract and schedule for the talks by Matsuki

Matsuki will be giving the first 3 lectures using the time slots in the morning given to Matsuki and Prof.
Kawanoue, while Prof. Kawanoue will be giving the last 2 lectures. Please note that Prof. Villamayor will
be delivering 5 lectures in the other time slots in the morning.

I will describe the plan of each lecture for the first 3 days under the uniform title mentioned above. Please
note that Prof. Kawanoue may be speaking under a different title, and that he will describe his own plan of
lectures.

Day 1. IN CHARACTERISTIC ZERO

Part 1. Resolution of singularities of a curve embedded in a nonsingular surface: As a warm-up,
we start the lecture with the discussion of resolution of singularities of a curve embedded in a nonsingular
surface. This is a classical subject, which you can find, e.g., in the textbook “Algebraic Geometry I Complex
Projective Varieties” by Mumford. Mumford attributes his proof to Hironaka. Even though the tools are
elementary, the proof contains almost all the essential ideas toward the general solution in higher dimensional
case in characteristic zero.

The choice of the center for blow up, the singular points of the curve (and its succesive strict transforms),
is obvious in this lower dimensional case.

So the only issue is to show that the process terminates after finitely many steps. For this purpose, we
introduce two invariants, which should measure the improvements of the singularities effectively after each
blow up. The first invariant “µ” is the order of the defining equation of the curve. But the invariant µ by
itself is not good enough to measure the improvements effectively. Thus we introduce the second invariant
“ν”, which is the order of the coefficient ideal on a hypersurface of maximal contact. We observe that
the first invariant µ never increases after each blow up, and that, when the first invariant µ stays the same,
the second invariant ν strictly decreases, finishing the proof.

We note that Mumford “cheats” at one point. Mumford does not prove that the invariant ν is independent
of the choice of a hypersurface of maximal contact. (Actually his definition of the invariant ν is the minimum
of all such choices, which is good enough to show the termination of the process. Of course Hironaka shows
its independence by the so-called Hironaka’s trick. But Mumford did not want to introduce Hironaka’s trick,
I imagine, on which he would have to spend many pages of his book.) We show this independence following
W lodarczyk’s idea of homogenization.

In the discussion above, we already see the important role played by the differential operators in the
problem of resolution of singularities. This is a vision first provided by Giraud.

Part 2. Resolution of singularities of a basic object: We observe that the problem of embedded
resolution of singularities in higher dimensional case is reduced to the problem of resolution of singularities
of a basic object (W, (I, b), E), consisting of a nonsingular variety W , the pair of an ideal I and a positive
integer b ∈ Z>0, and a simple normal crossing divisor E: Starting with (W, (I, b), E) with the singular locus
Sing(I, b) := {P ∈W ; ordP (I) ≥ b} 6= ∅, construct a sequence of transformations

(W, (I, b), E) = (W0, (I0, b), E0)← (W1, (I1, b), E1)← · · · ← (Wl, (Il, b), El)

such that Sing(Il, b) = ∅. (The notion of a basic object with its terminology is due to Villamayor, following
the original notion of an idealistic exponent by Hironaka.)

The basic strategy is to construct a hypersurface of maximal contact H, the coefficient ideal J at level
c ∈ Z>0, and a bounday divisor B = E|H , such that the problem of resolution of singularities for (W, (I, b), E)
is reduced to the one for (H, (J , c), B) and hence that we can use the induction on dimension.
Of course the basic strategy as stated is too naive, and there are some obstructions.

Obstruction 1. The order may strictly increase after a transformation, even though our ultimate goal
is to reduce the order of the ideal below the specified level b.
Obstruction 2. A hypersurface of maximal contact does not exist (at p ∈ Sing(I, b) ⊂ W where
ordP (I) > b).
Obstruction 3. Even when a hypersurface of maximal contact H exists, it may not be transversal to
the boundary divisor E, and as a consequence E|H may not be a simple normal crossing divisor on
H.
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Obstruction 4. A hypersurface of maximal contact exists only locally. So the globalization issue
remains to be resolved: Do the processes of resolution constructed locally patch together to provide
a glocal process of resolution ?

Hironaka’s way of overcoming these obstructions is sublimated into a constructive and explicit algorithm
by Villamayor described below:

Solution to Obstructions 1,2,3:
(a) We introduce the pair of invariants (w-ord, s) where “w-ord” represents the weak-order and

where “s” represents the number of irreducible components in the old part Eold of the boundary
divisor E.

(b) We construct the modification (W, (m(I),m(b)),m(E) = E \ Eold) such that
• Sing(m(I),m(b)) = Sing(I, b) ∩Maximum Locus of (w-ord, s),
• A hypersurface of maximal contact H together with the coefficient ideal J at level c for
the modification exists, m(E) is transversal to H, and hence B = m(E)|H is a simple normal
crossing divisor on H.

(c) Resolution of singularities for (H, (J , c), B), which can be done by induction on dimension,
induces resolution of singularities for the modification, which in turn induces a sequence of trans-
formations for
(W, (I, b), E), where at the end of the sequence the invariant “w-ord” strictly decreases.

(d) Repeat the procedure described in (c), until we reach the stage where w-ord = 0, the monomial
case.

(e) Construct a sequence of resolution of singularities for a basic object in the monomial case by
some easy combinatorial method.

Solution to Obstruction 4: Overcome the globalization issue by Hironaka’s trick or W lodarczyk’s
homogenization.

This settles the problem of resolution of singularities of a basic object, and hence the problem of embedded
resolution of singularities in general. End of Day 1

Day 2. IN POSITIVE CHARACTERISTIC

Part 1. Resolution of singularities of a curve embedded in a nonsingular surface: Here in positive
characteristic, we discuss the above subject from a view point of the Idealistic Filtration Program, our
approach (with Kawanoue) toward resolution of singularities in positive characteristic.

Again the choice of the center for blow up is obvious, and we choose the center to be the singular points
of the curve (and its successive strict transforms).

As in characteristic zero, the only issue is to show that the process terminates after finitely many steps.
For this purpose, we introduce two invariants, which should measure the improvements of the singularities
effectively after each blow up. The first invariant “µ” is the order of the defining equation of the curve
as in characteristic zero. Our second invariant (σ, ν̃) in positive characteristic is similar in spirit to, yet
quite different on its face from, the second invariant ν in characteristic zero, consisting of the two factors
σ and ν̃. Recall that, in order to define the second invariant ν in characteristic zero, the existence of a
smooth hypersurface of maximal contact was crucial. In positive characteristic, a smooth hypersurface of
maximal contact does not exist in general. Therefore, instead, we consider the collection of possibly singular
hypersurfaces of maximal contact, called the Leading Generator System. The first factor σ indicates
at what levels these hypersufaces of maximal contact live, while the second factor ν̃ is the order of the
differential saturation (of the idealistic filtration generated by the defining equation of the curve at level
µ) modulo the L.G.S. Taking the differential saturation corresponds to taking the (homogenized) coefficient
ideal in characteristic zero, and computing the order modulo the L.G.S. corresponds to computing the order
on the hypersurface of maximal contact in characteristic zero. We observe that the first invariant µ never
increases after each blow up, and that, when the first invariant µ stays the same, the second invariant (σ, ν̃)
strictly decreases, finishing the proof.

The proof for the fact that the invariant (σ, ν̃) is independent of the choice of the L.G.S. follows a similar
path to the one in characteristic zero provided by W lodarczyk’s homogenization. In fact, chronologically
Kawanoue’s idea of taking the differential saturation appeared slightly earlier than W lodarczyk’s idea of
homogenization, while they share the common spirit mathematically.
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Part 2. From the notion of a basic object to that of an idealistic filtration: In the second part
of Day 2, we explain the notion of an idealistic filtration, which generalizes and extends in a natural way
the notion of a basic object. It is conceived by Kawanoue as the framework for the I.F.P. toward resolution
of singularities in positive characteristic. However, it is also valid and theoretically simplifies the algorithm
in characteristic zero.

I.F. Classically, in a basic object (W, (I, b), E), we consider the pair (I, b) consisting of a single ideal I
and a fixed level b ∈ Z>0. In an idealistic filtration (W,R, E), we consider the collection labled by the levels
n ∈ Z≥0

R = ⊕n∈Z≥0
(In, n),

which has the natural structure of graded OW -algebra. We require that R is finitely generated as an OW -
algebra, and that the ideals form a filtration, i.e.,

OW = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ii ⊂ Ii+1 ⊂ · · · .
By abuse of language, we also call this graded algebra R an idealistic filtration. It is closely related to the
notion of a Rees algebra used by the Spanish group for the framework of their approach. The only difference
is that they do not require that the ideals form a filtration, but we do. For example, when the Rees algebra
has a set of (local) generators {(fs, ns)}s∈S , it is generated by the set as an OW -algebra. But when we say
the same set generates the idealistic filtration, it is generated by {(fs, ns), (fs, ns − 1), · · · , (fs, 1)}s∈S as an
OW -algebra. Despite this small technical difference, the notions of a Rees algbra and that of an idealistic
filtration play essentially the same role in the problem of resolution of singularities.

Kawanoue also defines the differential saturationD(R) of R, by adding the elements obtained by applying
the differential opeartors, i.e., D(R) is generated as an idealistic filtartion by the the set

{(δf,max{0, n− deg δ}); (f, n) ∈ R, while δ a diff. op. of deg δ}

L.G.S. In an attempt to find a substitute in positive characteristic for a smooth hypersurface of maximal
contact in characteristic zero, Kawanoue considers the following Leading Algebra (at a point P ∈ Sing(R) ⊂
W ), consisting literally of the leading terms of the elements in the idealistic filtration at the point

LP (R) = ⊕n∈Z≥0
{f mod mn+1

P ; (f, n) ∈ RP } ⊂ ⊕n∈Z≥0
mnP /m

n+1
P

and proves the crucial lemma regarding the structure of the leading algebra:
Lemma. There exists a regular system of parameters (x1, . . . , xt, xt+1, . . . , xd) (d = dimW ) and 0 ≤

e1 ≤ · · · ≤ et such that

LP (R) = k[xp
e1

1 , . . . , xp
et

t ] ⊂ k(x1, . . . , xt, xt+1, . . . , xd] = ⊕n∈Z≥0
mnP /m

n+1
P ,

where p = char(k) is the characteristic of the field.
Now by definition, there exists a set H = {(hα, peα)}tα=1 such that

hα = xp
eα

α mod mp
eα+1
P . We call such a set a Leading Generator System, saying that the hα’s define a

collection of possibly singular hypersurfaces of maximal contact. Note that, in characteristic zero, we ob-
serve that LP (R) = k[x1, . . . , xt] ⊂ k(x1, . . . , xt, xt+1, . . . , xd], all the elements of the L.G.S. atre at level 1,
i.e., H = {(hα, 1)}tα=1, and hence that hα’s define the classical smooth hypersurfaces of maximal contact.

Invariant σ. We think that the lower the levels of the elements in the L.G.S. the better the L.G.S. is.
Accordingly, we define the invariant σ, the indicator of how good the L.G.S. is, as the sequence {an}∞n=0

defined by an = d−#{α; eα ≤ n}.
Invariant µ̃. Given f ∈ OW,P (or more generally f ∈ ÔW,P , there is a unique power series expansion of

the following form with resspect to the given L.G.S. H
f =

∑
cf,BH

B

where B = (b1, b2, . . . , bt), H
B = hb11 h

b2
2 · · ·h

bt
t , and where cf,B is of the form

cf,B =
∑
γf,B,Kx

k1
1 x

k2
2 · · ·x

kt
t

where K = (k1, k2, . . . , kt) with 0 ≤ kα ≤ peα − 1 and γf,B,K ∈ k[[xt+1, . . . , xd]].
We define the order of f module H to be the order of the “constant term cO of the expansion, i.e.,

ordP (f |H) = ordP (cO).
We define the order µP (R) of the idealistic filtration R at P modulo H by the formula

µp(R) = min

{
ordP (f |H)

n
; (f, n) ∈ RP , n 6= 0

}
.
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The weak-order µ̃P (R) is defined by subtracting the “appropriate” amount of the order associated to the
boundary divisor E from µP (R). End of Day 2

Day 3. IN POSITIVE CHARACTERISTIC

Part 1. Resolution of singularities of an idealistic filtration: The problem of embedded resolution
of singularities (and that of a basic object) in positive characteristic (as well as in characteristic zero) is
reduced to the problem of resolution of singularities of an idealistic filtration (W,R, E): construct a sequence
of transformations

(W,R, E) = (W0,R0, E0)← (W1,R1, E1)← · · · ← (Wl,Rl, El)
such that Sing(Rl) = ∅. Note that the singular locus Sing(R) of an idealistic filtration is defined to be

Sing(R) = {P ∈W ; ordP (f) ≥ n ∀(f, n) ∈ RP }
The basic strategy to construct such a sequence is to carry out an induction on the invariant σ via L.G.S.

in positive characteristic, instead of carrying out an induction on dimension via a smooth hypersurface of
maximal contact in characteristic zero, meanwhile following a parallel path in positive characteristic to the
solutions of Hironaka to the obstructions in characteristic zero explained on Day 1:

(a) We introduce the triplet of invariants (σ, µ̃, s) where we already discussed the invariants σ and µ̃ and
where “s” represents the number of irreducible components in the aged part Eaged of the boundary
divisor E.

(b) We construct the modification (W,m(R),m(E) = E \ Eaged) such that
• Sing(m(R)) ⊃ Sing(R) ∩Maximum Locus of (σ, µ̃, s),
• σ(R) > σ(m(R))

(c) Resolution of singularities for (W,m(R),m(E)), which can be done by induction on the invariant
σ, induces a sequence of transformations for (W,R, E), where in the sequence the invariant (σ, µ̃, s)
strictly decreases.

(d) Repeat the procedure described in (c), until we reach the stage where (σ, µ̃, s) = (σ, 0, 0), the
monomial case.

(e) Construct a sequence of resolution of singularities for an idealistic filtration in the monomial case.

Are we done ? Not quite ! Unlike in characteristic zero, the problem of resolution of singularities of an
idealistic filtration in the monomial case is SUPER HARD !

Note on the globalization issue: Since homogenization is already incorporated in the form of differ-
ential saturation, one might think the globalization is automatic in the I.F.P. when we try to go through
the local processes described in (a) through (e). Not quite ! There is an issue unique to the I.F.P. (the
issue occurs only when the value of the invariant m̃u is equal to 1). The issue is rather a technical one than
the one which would cause an essential horror like the Moh-Hauser Jumping phenomena. So we ignore the
globalization issue of the I.F.P. in this lecture series.

Part 2. Difficulty in the momomial case: Why is the problem of resolution of singularities in the
monomial case in the I.F.P. in positve characteristic so much more difficult than the monomial caes in the
classical setting in characteristic zero ?

Both in characteristic zero and in positve characteristic, we deal with a monomial of the defining ideals of
the components of a simple normal crossing divisor on a variety. However, the variety in characteristic zero is
nonsingular, since it is the intersection of the successive smooth hypersurfaces of maximal contact trasversal
to each other. Therefore, the analysis is easy. On the other hand, the variety in positive characteristic
is (possibly) very singular, since it is the intersection of the successive (possibly) singular hypersufaces of
maximal contact defined by the elements of an L.G.S. This is where the difficulty lies. (Note that the meaning
of a “simple normal crossing” divisor on a singular variety has to be also clarified in the latter.)

In the following, we describe our strategy (locally at P ∈ W ) to achieve resolution of singularities of an
idealistic filtration in the monomial case, following the original philosophy of Villamayor.
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Inductive scheme in terms of the invariant τ : There is an inductive scheme on the invariant 0 ≤ τ =
#H ≤ d = dimW , i.e., the number of the defining equation of the variety of our concern.

Case τ = 0: This case is the same as the classical one, easy.
Case τ = 1: This caes is the most difficult one.
Case τ = j > 1: This case is reduced to the one where τ = j − 1 and dim = d− 1.
Case τ = d: This case does not happen.
Therefore, the analysis is reduced to the case where τ = 1, i.e., whete there is only one defining equation.

This confirms a folklore that the most essential case in the problem of resolution of singularities is the one
of a hypersurface singularities in our framework.
Analysis of the case where τ = 1:

In this case, by definition, we have only one element H = {(h, pe)} in the L.G.S., where h is of the following
form via Weierstrass Preparation Theorem

h = xp
e

1 + a1x
pe−1
1 + a2x

pe−2
1 + · · ·+ ape−1x1 + ape

with ai ∈ k[[x2, . . . , xd]] and ordP (ai) > i for i = 2, . . . , d.
We observe that the coefficients ai for i = 2, . . . , pe − 1 are “well-controlled”, and hence we can pretend

that h is of the form h = xp
e

1 + ape . This confirms another folklore that the most essential case in the
problem of resolution of singularities in positive characteristic is the case of purely inseparable extensions in
our framework.
◦ Cleaning
We focus our attention on the analysis of ape . We soon realize that the basic invaraint attached to ape ,

e.g. the order, is highly dependent of the choice of the coordinate variables. For example, if h = xp
e

1 + ape

and if the initial term In(ape) is a pe-th power, then setting x′1 = x1 +{In(ape)}1/p
e

, we have h = (x′1)p
e

+a′pe
with ordP (a′e) > ordP (ae). Actually, there is a process, similar to the one demonstarated in this example,
to kill the dependency. The process is called “cleaning”.
◦ From the usual monomial case to the tight monomial case
We have the monomial (M,a) at level a appearing in the definition of the monomial case, and the

monomial M ′ at level pe, which divides ape as much as possible. By normalizing, we obtain the usual

monomial Musual = M1/a and the tight monomial Mtight = (M ′)1/pe .
We set

invMON,♥(P ) := min

{
ordP (ape)

pe
− ordP (Mtight), ordP (Musual)− ordP (Mtight)

}
.

We say we are in the tight monomial case when invMON,♥(P ) = 0, following Benito-Villamayor. We
observe that, when we are in the tight monomial case, resolution of singularities can be achieved easily like
the classical case in characeristic zero. So our final task is, starting from the (usual) monomial case with
invMON,♥(P ) > 0, to find a way to reach the tight monomial case with invMON,♥(P ) = 0.
◦ Induction on dimension
For the purpose of fulfilling the final task, we look at the refined invariant

invMON,♠(P )
:= min {ρD(P )− ordP (Mtight);Dbad component of E,

ordP (Musual)− ordP (Mtight)}
≥ invMON,♥(P ) ≥ 0.

There are two advantages to go from ♥ to ♠. First is that, since ♠ is looking at the edge of the Newton
polygon, the comparison of ♠ before and after blow up is easier than ♥. Second is that by looking at the
components D, we cn use the induction dimension. Actually we apply I.F.P. in one dimension less to D in
order to determine the center.
◦ Overcome the Moh-Hauser Jumping phenomenon
If the invariant invMON,♠(P ) strictly decreases after blowing up our choice of the center (determined by

the induction on dimension), we would have been a happy camper. While it sometimes stays the same (which
is not so bad, as we can overcome this by introducing some supplementary invariants), it can strictly increase
from time to time (which is VERY, VERY bad, and could destroy our whole strategy). The strict increase
of the invariant, caused by the operation of cleaning, is called “the Moh-Hauser Jumping phenomenon”.
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In fact, the big portion of Kawanoue’s motivation to develop the I.F.P. stems from the desire to come
up with an algorithm which avoids “the Moh-Hauser Jumping phenomenon” caused by cleaning. So it is as
though we started the journey escaping from this ghost, only to face the ghost again at the end.

Up to dimW ≤ 3, we can eliminate the ghost by showing the eventual decrease of the invariant
invMON,♠.

The case dimW = 4 is the intensive focus of our current research ! End of Day 3
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