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Sampling of the results

Anomalous dimension of large spin double trace operators: PO, =+ - O, @
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Flashing the results for epsilon expansion
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If OPE is associative then these two expansion must give the same result

Obtain all A, Cay You know everything..!!

This is the conventional bootstrap program
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vLu K1
: A—t u\ Ae
Leading > Capu'z fau(v) = (5)
Al

term

The r.h.s. diverges as v ~ O.

Each term on the |.h.s. goes as fae(v) ~logv

Need to sum over infinite large spin double trace operators
on the left to reproduce the divergence on the r.h.s.
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Double trace operators

O~ ¢8,,0,, - 0,,0°"¢

The Unknowns

A=205+2n~+L+yny Anomalous dimension

£>1

Cae = Cnp(1+46Ch ) »
OPE coefficient

n =0 for simplicity
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A=20p+L+ 7

Small v behavior on the rhs : power of v is controlled by the twist T=A—/4

We focus on the minimal twist operators on the rhs
twist Tm  spin €m  OPE coeff (i,
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Coefficient of Log u term on the |hs involves the anomalous dimension

u®* logu »  Cy F}g fe(v)
£

Assume the following expansion of the anomalous dimension in large spin limit

e =0+ T+

C2T?(A+O)T(2A4+£—1)

Known Mean field OPE coefficient Cy = OT2(AL)T(2A, +20—1)
! b ¢ o

Large spin sum on the lhs can be done at the leading order by converting

E:%/d
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Similar analysis for non log terms gives the OPE coefficients
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Large spin bootstrap

Subleading order corrections can be done following Alday-Zhiboedov (2015)

Change of variable ¢ —y J J? = (£ + Ag)(£+ Ay —1)

Anomalous dimension: asymptotic expansion in inverse J

1 1

JTm J?

Involves two recursion relations that one needs to solve

Simplifies in Mellin space...gives an all order expression !
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Scaling behavior of CFT correlation function

Mellin representation captures conformal symmetry automatically
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Properties of Mellin amplitude
A(u,v) = /ds dtu® v T(—t)*T(s +1)*T(Ay — 5)* M(s,t)
* Mellin amplitude is a meromorphic functin of (s,t)

* Poles correspond to the primary operators exchanged in
the infermediate states

* Residues tell us about the OPE coefficients

* Channel dualities are manifest as s, t exchange
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Play a key role in repackaging the equations in Mellin space
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Strategy in Mellin space

Mellin transform of the t channel can be obtained from the s channel
by replacing s 5>t 4+ Ay, t—s— Ay

Idea now is to look at the Mellin transform of the t channel
conformal block and expand the t-dependence in terms of
the continuous Hahn polynomials

We will decompose the bootstrap equation into the basis of
continuous Hahn polynomials

Boils down to simple equations in Mellin space
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Mellin transform of t channel conformal block

Minimal twist operator Tm = Ap —bm

I\(—Amz—fm — A¢ — ?'})F( Qh_'ﬁ;”_Em — Aqﬁ — t)
r2 ()
X P(t+ Ag, 8 — Ay)

v

Mack polynomial, polynomial in s, t

G'(u,v) = Cp, /ds dtu® v’ p

p=T2(Ag — 5)T*(~1) (s + 1)

Evaluate the residue at s = Ay
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Mellin transform of t channel conformal block

Focus on the log u ferm

2

Gt(u,v) = Cpp u logu/dt vt T2(Ay + t)I( B = bm _ Ay —1)

xr(zh_ﬁ‘;_fm —A¢—t> P(t+ Ay,0)

Re express the t dependence in terms of Q(t) polynomials.

Gt (u,v) = Zu%logu / dtv T2 (Ay + £) T2 (=) ¢t Q22 (1)



Mellin transform of t channel conformal block

(u,v) = Zu% log u f dtv' T2 (Ag + ) T2 (—t) ¢ Q4 (2)

a5 = 2 Be(Ag) C’m/dt D(Tm/2 — Ap — T ((2h — Apy — £) /2 — Ay — 1)

0,205+ £—1, Ay +1t

As , A,

x T2(Ay +1) P(t + Ay, 0) 3 F [

t integral has pole at t=Tm/2—Ap+T
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Bootstrap equation in Mellin space

Y ut¢logu f dt v T2 (Ag + t) T2 (=) (5 + q5) Q¢ (t) = 0
£

Q@ +q,=0 Algebraic eq !l

*‘?I‘(Q(E + Ad¢))
AGPPT(L + Ag)?

qe = Be(Ag) e Be(Ay) = ATy

=D 28:(24) Cry %PQ(M/Q + )T (h = Ay — 1)

—4, 20+ 40— 1, T /2471

At.ﬁ : Aﬁb &

X P(Tm/Q—I—?",O)gFQ[

Y

Mack polynomial

Need the large spin behavior of continuous Hahn polynoimal.
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In Mellin space approach the large spin behavior of continuous Hahn
polynomial is the key ingredient

These polynomials can be derived from Wilson polynomials in
a particular limit

Wilson in 1991 worked out the large argument asymptotics
of the Wilson polynomial

James Wilson 1991

Use these results to derive the large spin behavior of continuous
Hahn polynomial



Asymptotics of continuous Hahn polynomial

—l,2s+0—1,s+1
S S ’

3k 1

(=)™ T(s) Tl —n—1+s—t)['(n+s+t)

TRT(2s+ 0 — DI(—t—n)2T(s + OT (L + € +n+s+1)



Asymptotics of continuous Hahn polynomial

3F2[—€, 2s + 0 — 1, S—I_t;l]

s S

(=)™ T(s) Tl —n—1+s—t)['(n+s+t)

TRT(2s+ 0 — DI(—t—n)2T(s + OT (L + € +n+s+1)

Zd JozBQk

J=vVAA+a+B-1)

J. L.Fields
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PD, K. Ghosh, A. Sinha

3fy

—0,2s+¢0—1, s —l—t; 1} N i (=1)"T2(s) (s + t)n by (5) b, (£)T

T2(—f —
s s e o nI['2(—t —n)

JP=U+s)L+s—1)

o = 2k1 + 2ko + 2n + 2s + 2t



Asymptotics of continuous Hahn polynomial

PD, K. Ghosh, A. Sinha

3fy

—0,2s+¢0—1, s —l—t; 1} N i (=1)"T2(s) (s + t)n by (5) b, (£)T

T2(—f —
s s e o nI['2(—t —n)

JP=U+s)L+s—1)

o = 2k1 + 2ko + 2n + 2s + 2t

Given in terms of generalised Bernoulli polynomial



Asymptotics of continuous Hahn polynomial

PD, K. Ghosh, A. Sinha

3fy

—0,2s+¢0—1, s —l—t; 1} N i (=1)"T2(s) (s + t)n by (5) b, (£)T

T2(—f —
s s e o nI['2(—t —n)

JP=U+s)L+s—1)

o = 2k1 + 2ko + 2n + 2s + 2t
Given in terms of generalised Bernoulli polynomial

Only even powers of J will appear
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In the large spin limit Yo ~ Z % in s channel
i=0

From the t channel we have the large spin behavior of the
continuous Hahn polynomial

Comparing powers of J from both sides of the bootstrap equation
will fix the anomalous dimension at all orders in inverse J



Result: Anomalous dimension
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i t—q 1—

Y Y (1 b, () b o - By

q=0n=0 k;=0

y (T + 2l — 1) T (=h+ Ly + T +1) T2 (26, + T, — 1)

'n,!q!I‘(l—h+q—|—€m—|—fm)I‘4(£m—|—%"*)I‘(Em—l—'rm—l)

g+ )T (n+q+ ™) T2 (A,)
]_"2( n—q+A¢——)

X

Plqg+71m/2,0)

Expression for anomalous dimension to all orders in 1/J

eg.i=0

Yo = —

212 (Ay) T (2l + Tm) ) (})"’m c..

T2 (L + 72) T2 (Ay — ) \J



Result: OPE coefficient

Similar expression for OPE coefficient =~ comes from the non log term

(i) function(7m, Ay, fm)

600’2 — J'Tm Om

Given in terms of generalised Bernoulli polynomial and Mack polynomial
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Critical exponents via Epsilon expansion...

S = f di= [(am)? + Aaﬁ‘*}

* based on Feynman diagrams
* Locate fixed point for which the beta function vanishes

* Use Callan-Symanzik equation o determine the anomalous dimension

A = Af’r’ee_i"y
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Critical exponents via Epsilon expansion...

A—E—k N +2 2 N+ 2 63N+14_163
P72 TAN+82 T4(N+8)2| (N+82 4
N + 2 N + 2
Ay =d —2- € 13N + 44)€?
¢ "N+8 2(N+8)2( )
Known up to epsilon™5 Kleinert et al
d=3, N=1
Anm. dim. critical exponents € =1
Ay n=20s—d+2  0.519

A p2 a=2- d_g& 1.45
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Computing A for ¢° till 2 loops, in Wilson Fisher fixed
point CFT

X

Computing till 3 loops involves many more diagrams

* OPE coefficients are even more difficult to compute:
involves three point functions
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Can bootstrap help?

Results from large spin bootstrap can be used to determine
the operator dimension of 9, 8,,---0,,¢
in the large spin limit

Ag=240—e+626+67 + 6Vt + 776

1

Remember A =2A, + £+ v+ — ; + -
212 (Ay) T (20, + Trn) 1\
F}/D - 2 Tm 2 Tm Y Cm,
L2 (bm + 751) T2 (B — 731) \L

There are multiple operators with the same minimal twist ¢%, p0“™¢

Tm = 2 + O(€)

Need to sum over £,
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Strategy for epsilon expansion

T2 (Ay) T (20, + Tm) (1 ) T
Y0 = o T T, 9 Om’
me L2 (b +730) T2 (Ag = 75) \S

€2 € e 4) <(3) o(4) <(3 3)y €
Yo~ H# gt tHg+ £(657,667, 86", 65, C§ ))g_z

Step 2: Use the known results as input

Feynman diagram Mellin bootstrap
4) 3) ¢(4) <(3) (3)
550, 887, 657, 65> o
Kleinert et al. Gopakumar-Kaviraj-Sen- Sinha

Gracey,Manashov et al.



Strategy for epsilon expansion

OT2 (Ay) T (2 + Trm) (1)"m
o = - T. T 9 Om7
2Tt ) 12 (8- ) 8
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Step 2: Use the known results as input

Feynman diagram Mellin bootstrap
4 3 4 3 3
057867, 80, Gy Cy”
Kleinert et al. Gopakumar-Kaviraj-Sen- Sinha

Gracey,Manashov et al.

Step 3: Do the sum over £,

Compute the anomalous dimension of higher spin operators at e”5 in
the large spin limit



Sampling of new result: Large spin anm. dimension

PD, A. Kaviraj
$0u, Oy *+* Oy @ JHEP1802(2018)153

1 6 3) (4) A (5) 5
Ay =24+ 40— — 1= 6( &, )
(=24t e ( T 1))+ _ +

) €
£ 708588042
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+1627% — 31) + 27 (5ve(24vE (41 — 12vg) + 31) + 2167 — 810ygT?)

(2430@(3)(144 log(£) + 144vg — 59) — 2332800¢(5)

+ 2038572 + 33770)



Subsequent order of anomalous dimension can also be computed using

WAy — 1) 7y, (Ag) 2TmH2bm =172 (p 4 Tm 4 L Tm
71:ZC€m( ¢ ) Tm (Ag) . . (T 5 ""2) (1>
™ VL (bm + 75) T2 (Ag — 75+



Subsequent order of anomalous dimension can also be computed using

WAy — 1) 7y, (Ag) 2TmH2bm =172 (p 4 Tm 4 L Tm
71:ZC€m( ¢ ) Tm (Ag) . . (T 5 ""2) (1>
™ VL (bm + 75) T2 (Ag — 75+



Subsequent order of anomalous dimension can also be computed using
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Subsequent order of anomalous dimension can also be computed using

20 — 1) Ty (Ag) 27mF26m =172 (4, + T 4+ 1) 71\
’}’1=Zcem( ¢ ) Tm (Ag) ( 2 2)()

2 VAT (b + ) T2 (B — ) f
£5
This gives the anomalous dimension at the order (+) /3

Similarly, the OPE coefficients can also be computed using
the large spin OPE results
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Summary

Mellin space techniques can be used to obtain the
CFT data for large spin double trace operators to all orders in
inverse conformal spin

Epsilon expansion in the large spin limit

Can be extended for higher twist operators

Mixed correlator, external operators with spin, supersymmetry

Relation between the usual bootstrap and Mellin bootstrap



Thank you
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