LLMs

PRETRAINING + POSTTRAINING

Tatsunori Hashimoto



Roadmap

1. Pretraining (continued - Scaling)

2. Post-training

3. Statistical ML + LLMs



Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(w;|w;.._;), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

Train a neural network to perform language

modeling on a large amount of text. o goes to make tasty tea
h

Save the network parameters.

[Slide from CS224n]


https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language Step 2: Finetune (on your task)
modeling) Not many labels; adapt to the task!
Lots of text; learn general things!
goes to make tasty tea END ©/®
I )

Iro  goes to make tasty tea ... the movie was ...
h

[Slide from CS224n]



Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets”
perspective?

Consider, provides parameters 8 by approximating mein Lyoretrain (6).

(The pretraining loss.)

Then, finetuning approximates mein Leinetune (8), starting at 6.

(The finetuning loss)

The pretraining may matter because stochastic gradient descent sticks
(relatively) close to 8 during finetuning.

So, maybe the finetuning local minima near 8 tend to generalize well!
And/or, maybe the gradients of finetuning loss near 8 propagate nicely!

5 [Slide from CS224n]



Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their pg(W¢[wq.t—1)!

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

 Dialogue (context=dialogue history)

« Summarization (context=document)

hq,...,hy = Decoder(wy, ..., wy)
Wy ~ Aht—l + b Wy Wy W3 Wy Wg

[Note how the linear layer has been

Where A, b were pretrained in the language pretrained.]

model!
6




Increasingly convincing generations (GPT2) [Radford et al., 2018]

Pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce
relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

[Slide from CS224n]


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

GPT-3, In-context learning, and very large models

Circa 2010s - we interact with LMs in two ways:
Sample from the distributions they define (maybe providing a prompt)
Fine-tune them on a task we care about, and take their predictions.

Emerging idea: leverage these models without explicit parameter adaptation

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
GPT-3 has 175 billion parameters.

[Slide from CS224n]



GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient steps
simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):
“ thanks -> merci

hello -> bonjour
mint -> menthe
otter-> 7
Output (conditional generations):
loutre...”

9 [Slide from CS224n]



GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient steps
simply from examples you provide within their contexts.

Learning via SGD during unsupervised pre-training

WV

3 3 3
5+8=13 8 gaot => goat 8 thanks => merci 8
3 = 3
— — —
p N W E 2 sakne => snake 2 hello => bonjour g
— - —
o o , o
1501 o brid => bird W mint => menthe -
= — ]
3. 3 =
=3 — =
3+4=7 (7] fsih => fish (7= wall => mur (<]
5+9 =14 dcuk => duck otter => loutre
9 +8=17 caihp => chimp bread => pain
WV A 4 WV
sequence #1 sequence #2 sequence #3

10 [Slide from CS224n]



Larger and larger models

The blessings of scale
Al training runs, estimated computing resources used
Floating-point operations, selected systems, by type, log scale
PaLM (540B)

T3 o . 1%
. GPT-2 ‘ ?
® Drawing @ Language DALL-E 1020
@ Vision Other BERT-Large
1016
NPLM@ ®
Py -
12
NetTalk ® 10
Ooe
Neaocognitron
g P o 108
@
ADALINE 4
® 10
OTheseus 1
T T T T T T T T T T T T T T T
1950 60 70 80 90 2000 10 22

Sources: "Compute trends across thyee eras of machjpe leagning”, il |,arXiv, 2022; Our World in Data . .
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Trained on more and more data

200
Billion
3 30
09 gillion  Billion ‘
. . O
13 y.o. BERT RoOBERTa GPT-3 Chinchilla
Human (2018) (2019) (2020) (2022)

# tokens seen during training

https://babylm.github.io/
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Where does this data come from?
Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
ArXiv

PubMed Central

StackExchange !!
PMA Github
FreeLaw USPTO NIH |OpenWebText2 Wikipedia DM Math I YT

Model |Training Data

BERT  BookCorpus, English
Wikipedia

GPT-1 | BookCorpus

GPT-3 CommonCrawl, WebText,
English Wikipedia, and 2
book databases (“Books 1”
and “Books 2”)

GPT-  Undisclosed

3.5+




Why scale? Scaling laws

7 4.2
6 —— L=(D/5.4-10'3)-00% | 5.6 — L=(N/8.8-10'3)-0.076
: 3.9 48
§ 3.6 4.0
- 4
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PF-days, non-embedding tokens non-embedding

Empirical observation: scaling up models leads to reliable gains in perplexity



Data vs performance

What’s a data scaling law?

Data scaling laws : simple formula that maps dataset size (n) to error

What do we expect out of scaling laws?

Monotonic, logistic-
like curves

Generalization Error (Log-scale)

Small Data . Irreducible
Region Power-law Region Error
Region
Best Guess Error
w2

Irreducible Error

Training Data Set Size (Log-scale)

[Hestness+ 2017]




Data scaling laws for language models

First, an empirical observation

Loss and dataset size is linear on a log-log plot

4.2
— L= (D/5.4 . 1013)—0.095
3.9
wn
§ 3.6 “Scale-free” or
2 33 “Power law”
Q
|_
3.0
2.7 . ,
108 10°
Dataset Size
tokens

(For language modeling, from Kaplan+ 2020)



Scaling laws: past works and other areas

Scaling laws hold in many domains

AN —— Token Error Rate
o ~~- Token Error Rate Trend OTBTTIN | 4.2 131-0.095
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Training Data Set Size, Hours of Audio (Log-scale) Dataset Size —14
tokens 4 =2 0

log2( data fraction )

Machine translation Speech Language modeling Object recognition

Hestness et al 2017. Kaplan et al 2020. Rosenfeld 2020.

Data scaling has been known for a while
Kolachina+ 2012 for machine translation, Hestness+ 2017 for neural



Conceptual foundations of data scaling laws.

[ Q: Why do scaling laws show up? } S0 | pomeronnegen | TG
T Region Errgr
+ Regi
We know error should be monotone —_— : \
But why is it a power law / linear in log-log? :

Training Data Set Size (Log-scale)

[ A: Estimation error naturally decays polynomially. ]

But this answer may take a moment to understand. Let’s work through an example.

Example: If our task is to estimate the mean of a dataset, what’s the scaling law?



Toy example: mean estimation

Input: x; ..x,, ~N(u,0?)

Task: estimate the average as i = %

What’s the error? By standard arguments..
2

E[(2 — 1)?] = >

n

This is a sample complexity bound and also a scaling law
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law



Scaling law exponents: an intriguing mystery

Similar arguments show most ‘classical’ models (regression, etc) have Tllor \/in_scaling

This means we shouldseey = —x + Cory = —0.5x + C
What do we find in neural scaling laws?
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Machine translation Speech Language modeling

Why? - still somewhat an open question



Detour: scaling laws for (nonparametric) learning

Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: x; ... x,, uniformin 2D unit box. y; = f(x;) + N(0,1)

Task: estimate f(x)
1
Approach: cut up the 2D space into boxes with length n %, average in each box

J

What’s our estimation error?
Informally, we have v/n boxes, each box gets /n samples.

1
Error ~ — + (other smoothness terms)

Vn

In d-dimensions, this becomes Error = n~%/¢ - This means scalingisy = — %x +C

Takeaway: flexible ‘nonparametric’ learning has dimension dependent scaling laws.



Intrinsic dimensionality theory of data scaling laws

In case that was a bit too low-level..

1. Scaling laws arise due to polynomial rates of learningn—la

2. Some argue the slope a is closely connected to the intrinsic dimensionality of the data.

25 7
--- 4/ap -~
-- 2/ap
20+ °

151

4/ap

10+ . -

2 4 6 8 10 12 14 16 18 20 22 24 26
Dimension

® Teacher-Student ® CIFAR-100 ©  FashionMNIST
® CIFAR-10 ® SVHN MNIST

Some recent work (Bahri+ 2021) have tried to verify this empirically.. though no smoking gun



Scaling laws for model engineering

Scaling underlies many ‘systematic’ design choices for LMs

Our motivation: how can we efficiently design huge LMs?
* LSTMs vs Transformers
* Adamvs SGD

How should we allocate our limited resources?
* Train models longer vs train bigger models?
* Collect more data vs get more GPUs?

Scaling laws provide a simple procedure to answer these.



Model size data joint scaling

Q: Do we need more data or bigger models?

Clearly, lots of data is wasted on small models

Joint data-model scaling laws describe how the two relate

From Rosenfeld+ 2020,

Error=n"%+mPF +C

From Kaplan+ 2021

Error = [m~% 4+ n"1]8

Provides surprisingly good fits to model-data joint error.

Loss vs Model and Dataset Size

See,, .
.. ""-. .................. D SRR o
.,

9, g
i ..
ey ..
L : .

167 ]68 169 100

LI

393.2K

(a) Wikil03 error (cross entropy) landscape.



Scaling can help identify model size - data tradeoffs

Validation Loss
[
Parameters

........ L=2.57- C—0.048

10” 10 107 10° 10° 10*
Compute (PetaFLOP/s-days)

Modern observation: train a big model that’s not fully converged.



Caution #2 - ‘Optimal’ scaling laws are hard to get

‘Linear fits’ can be quite deceiving

Minor changes to hyperparameters result in different scaling

1T ,
A&
—— Approach 1
1008 —— Approach 2
" —— Approach 3
— -,
% 108 Kaplan et al (2020)
S Y& Chinchilla (70B)
& 1.08 Y Gopher (280B)
% GPT-3(175B)
Y Megatron-Turing NLG (530B)
100M
4
10'{'0171 1019 1021 1023 1025

FLOPs

Hoffman+ 2022



Scaling Efficiency: how do we best use our compute

GPT-3 was 175B parameters and trained on 300B tokens of text.
Roughly, the cost of training a large transformer scales as parameters*tokens
Did OpenAl strike the right parameter-token data to get the best model? No.

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion

e

This 70B parameter model is better than the much larger other models!

o7 [Slide from CS224n]



Test Loss

Scaling laws for many other interesting architecture decisions
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Predictable scaling helps us make intelligent decisions about architectures etc.




Scaling laws for models and compute

Log-linearity extends to model parameters and compute!

Lets us set the following based on small models
- Pick optimizer
- Pick architecture and model sizes

J

Also lets us make smart resource tradeoffs
- Big models vs more data?




Language models as world models?

Language models may do rudimentary modeling of agents, beliefs, and actions:

Pat watches a demonstration of a bowling ball and a
leaf being dropped at the same time in a vacuum cham-
ber. Pat, who is a physicist, predicts that the bowling
ball and the leaf will fall at the same rate.

Changing the last sentence of the prompt, we get:

... Pat, who has never seen this demonstration before,
predicts that the bowling ball will fall to the ground first.

This is incorrect. In a vacuum chamber, there is no air

Language Models as Agent Models [Andreas, 2022]

30 [Slide from CS224n]



Language models as world models?

...math:

We can describe circles in the zy-plane using equations in terms of z and .
Circle equations questions require us to understand the connection between
these equations and the features of circles.

For example, the equation (z + 2)? + (y — 3)? = 4% is graphed in the zy-plane
below. It is a circle with a center at (-2, 3) and a radius of 4. it 1

1 2

https://www.khanacademy.org/test-prep/sat/x0a8c2e5f:untitled-
31 652 [Slide from CS224n]




// Determine whether the sentiment of text 1s positive
// Use a web service
async function isPositive(text: string): Promise<boolean> {
const response = await fetch( http://text-processing.com/api/sentiment/", {

method: "POST",

body: "text=${text}’,

headers: {

"Content-Type": "application/x-www-form-urlencoded",

const json = await response.json();
return json.label === "pos";

}

https://github.com/features/copilot [Slide from CS224n]




Language models as world models?

...medicine;

33

Rapid and chronic ethanol tolerance are composed of
distinct memory-like states in Drosophila

Abstract

Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by
ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we
characterize three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and
repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and
one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for two days,
induces ethanol preference, and hinders the development of rapid tolerance through the activity of

[Larnerd, 2023]

[Slide from CS224n]



Language models as multitask assistants?

| need to throw a dinner
party for 6 people who are
vegetarian. Can you
suggest a 3-course menu
with a chocolate dessert?

[Microsoft Bing]

(Also see OpenAl’s ChatGPT,
Google’s Bard, Anthropic’s Claude)

34

0 b P

Sure, | can suggest a 3-course menu with a
chocolate dessert for your vegetarian dinner
party. Here are some possible options:

o Starter: Wild Mushroom Tartlets with
Onion Sauce ' or Vegan Popcorn Tofu
Nuggets ?

 Main: Vegan Butternut Squash Mac ? or
Vegetarian Three-Bean Chili °

o Dessert: Chocolate Lava Cake * or
Chocolate Pasta with Chocolate
Hazelnut Cream Sauce, White Chocolate
Shavings, and Fresh Berries *

| hope this helps you plan your party. Enjoy!

Learn more: 1. booths.co.uk +10 more
[Slide from CS224n]



Language models as multitask assistants?

How do we get from this

Stanford University is located in

to this?

ChatGPT

0: % JAN
Examples Capabilities Limitations

"Explain quantum computing in Remembers what user said May occasionally generate
simple terms" earlier in the conversation incorrect information

"Got any creative ideas for a 10 Allows user to provide follow- May occasionally produce
year old's birthday?" up corrections harmful instructions or biased
content

"How do | make an HTTP Trained to decline inappropriate
request in Javascript?" requests Limited knowledge of world and
events after 2021

35 [Slide from CS224n]



Language modeling # assisting users

PROMPT  Explain the moon landing to a 6 year old in a few sentences.

COMPLETION  GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

Language models are not aligned with user intent [OQuyang et al., 2022].

36 [Slide from CS224n]



Scaling up finetuning

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language Step 2: Finetune (on many tasks)
modeling) Net many labels; adapt to the tasks!
Lots of text; learn general things!
goes to make tasty tea END ©/®
I )

Iro  goes to make tasty tea ... the movie was ...
h

37 [Slide from CS224n]



Instruction finetuning

Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Please answer the following question. [FLAN-T5; Chung et al., 2022]
What is the boiling point of Nitrogen?

AN 4

Answef the following question by Tl e el Gl

LEEECAlE] Sils SE originally. They used 20 to

The cafeteria had 23 apples. If they 1 make lunch. So they had 23 -

used 20 for lunch and bought 6 more, 1/ 20 = 3. They bought 6 more

how many apples do they have? Language apples, so they have 3+ 6 = 9.

~ model =

¢ Eva IU ate on unseen tasks Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George

Q: Can Geoffrey Hinton have a Washington died in 1799. Thus, they
conversation with George Washington? could not have had a conversation

Give the rationale before answering. together. So the answer is “no”.

38 [Slide from CS224n]



A huge diversity of instruction-tuning datasets
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The release of LLaMA led to open-source attempts to " create’ instruction tuning data



What have we learned from this?

You can generate data & N

1 H LLaMA 7B L) ‘
synthetically (from bigger Text-davinci-003 7
L M S) Supervised ] l

52K Finetuning Alpaca 7B
175 Self- Modified Self-instruct Instruction-following
Instruct Instruction Generation examples
seed tasks

You don’t need many samples to LIMA: Less Is More for Alignment
instruction tune

Chunting Zhou**  Pengfei Liu*™*  Puxin Xu*  Srini Iyer”  Jiao Sun*

Crowdsourcing can be pretty

effective! .
Open Assistant

We believe we can create a revolution.

In the same wav that Stable Diffusion helped the world make art and



Limitations of instruction finetuning?

* One limitation of instruction finetuning is obvious: it’s expensive to collect ground-
truth data for tasks.

* But there are other, subtler limitations too. Can you think of any?
* Problem 1: tasks like open-ended creative generation have no right answer.
» Write me a story about a dog and her pet grasshopper.

* Problem 2: language modeling penalizes all token-level mistakes equally, but some
errors are worse than others. Ivent ical

* Evenwith instruction finetuning, there is  a fantas TV show END
a mismatch between the LM
objective and the objective of

“satisfy human preferences”!

« Can we explicitly attempt to satisfy

human preferences? Avata s a fantas TV show
41 r y [Slide from CS224n]




Optimizing for human preferences

* Let’s say we were training a language model on some task (e.g. summarization).

* Foreach LM sample s, imagine we had a way to obtain a human reward of that
summary: R(s) € R, higher is better.

SAN FRANCISCO, An earthquake hit The Bay Area has
California (CNN) -- San Francisco. good weather but
A magnitude 4.2 There was minor is prone to
earthquake shook property damage, earthquakes and
the San Francisco but no injuries. wildfires.

e o o Sl SZ
ove.rturn unstable R(Sl) — 8.0 R(Sz) — 1.2
objects.

* Now we want to maximize the expected reward of samples from our LM:

Note: for mathematical simplicity IE§~p9 (s) [R (.§')]

5 we’re assuming only one “prompt” [Slide from CS224n]



High-level instantiation: ‘RLHF’ pipeline

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our — >
xplain the moon
prompt dataset. landing to a 6 year old
A labeler
demonstrates the @
desired output Y
behavior. Some peo’ple went
to the moon...
This data is used SFT
to fine-tune GPT-3 .,}?.ﬁ.
with supervised \}Q{/
learning. 2

First step: instruction tuning!

Second + third steps: maximize reward (but how??)

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain gravity... Explain war.

Moon s natural People went to
satellite o... the moon...

NS

0-0-0-0

'

RM

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from wmzmw

the dataset. about frogs

The policy -
enerates 22

g .//?.&.

an output. \.\5&{/

The reward model

——— &>
the output. }T{/
The reward is

used to update rk
the policy

using PPO.




Optimizing for human preferences

44

How do we actually change our LM parameters 8 to maximize this?
IEf'VP@(S) [R (§)]
Let’s try doing gradient ascent!

Or11 =0+ Vet]E§~p9t(S) [R(5)] What if our reward

How do we estimate/ \ function is non-
this expectation?? differentiable??

Policy gradient methods in RL (e.g., REINFORCE; [Williams, 1992]) give us tools for
estimating and optimizing this objective.

We’ll describe a very high-level mathematical overview of the simplest policy
gradient estimator.

[Slide from CS224n]



A (very!) brief introduction to policy gradient/REINFORCE [williams, 1992]
« We want to obtain (defn. of expectation) (linearity of gradient)
VoBs-poo[RE)] = Vg ) R(IPe(8) = ) R(s) Yoy (s)

* Here we’ll use a very handy trick known as the log-derivative trick. Let’s try taking
the gradient of log pg (s)

1
Vg log pg(s) = Vo pg(s) = Vgpe(s) = py(s) Vylogpe(s)
pe(s)

(chain

Thisis an
rule)

expectation of this

> R(s)Vops(s) = ) pa(SIR(S) Vg log py(s)

*  Plugbackin:

= Eg-pps)[R(5) Vg log pa(3)]

45 [Slide from CS224n]




How do we model human preferences?

« Awesome: now for any arbitrary, non-differentiable reward function R(s), we can
train our language model to maximize expected reward.

* Not so fast! (Why not?)
* Problem 1: human-in-the-loop is expensive!

» Solution: instead of directly asking humans for preferences, model their
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

An earthquake hit The Bay Area has )
San Francisco. good weather but Train an LM RM(p(S) to
There was minor is prone to predict human
Erzperti_’ damage, e?i;}f“_luakes and preferences from an
ut no injuries. wi ires.

] annotated dataset, then

S ..
51 O 2 @ optimize for RM
R(s;) =80 am R(s,) =12 M
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How do we model human preferences?

Problem 2: human judgments are noisy and miscalibrated!

Solution: instead of asking for direct ratings, ask for pairwise comparisons, which
can be more reliable [Phelps et al., 2015; Clark et al., 2018]

A 4.2 magnitude
earthquake hit
San Francisco,
resulting in
massive damage.

S3

R(s3) = 4.1?7 6.6? 3.27

47 [Slide from CS224n]



How do we model human preferences?

* Problem 2: human judgments are noisy and miscalibrated!

» Solution: instead of asking for direct ratings, ask for pairwise comparisons, which
can be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but
There was minor > San Francisco, > is prone to
property damage, resulting in earthquakes and
but no injuries. massive damage. wildfires.

o1 1.2 53 52

Bradley-Terry [1952] paired comparison model
Jrm (@) = —E (v 2y [log a(RMy (s*) — RMg (s1))]
7k

“winning” “losing”  s" should score
46 The Bay Area .. .. wildfire sample  sample higher than s'




RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

* Finally, we have everything we need:
« A pretrained (possibly instruction-finetuned) LM pf7 (s)

 Areward model RMy(s) that produces scalar rewards for LM outputs, trained on
a dataset of human comparisons

* A method for optimizing LM parameters towards an arbitrary reward function.
*  Now to do RLHF:
« Initialize a copy of the model p;”(s) , with parameters § we would like to
optimize
» Optimize the following reward with RL: Pay a price

pa-(s)\ whenpit(s) >
R(s) = RMy(s) — ;\3 log (];I‘;T—(S)) 0

This is a penalty which prevents us from diverging too far from the pretrained model. In expectation, it is known as the Kullback-
49 Leibler (KL) divergence between pj”(s) and p”7 (s).

PT
p (s) [Slide from CS224n]




RLHF provides gains over pretraining + finetuning

Fraction preferred to ref

50

o
N

© o o o
w0 o

o
\S)

— PRL (s)
1'7
Human feedback
Reference summaries - pIFT (s)
Supervised learning p"'(s)
‘Pretrainonly . . o .
1 SB 2.7B 67B 1 298 [Slide from CS224n]

Model size
[Stiennon et al., 2020]




Method Simulated win-rate (%) Human win-rate (%)
GPT-4 79.0+14 69.8 £ 1.6
ChatGPT 614 1.7 52.9 L+ 1.7
PPO 46.8 £ 1.8 55.1 £1.7
Best-of-n 45.0 £ 1.7 50.7 £ 1.8
Expert Iteration 419+ 1.7 45.7 £ 1.7
SFT 52k (Alpaca 7B) 39. 2k 1157 LA B
SFT 10k 36.7 L 1.7 44.3 + 1.7
Binary FeedME 36.6 £ 1.7 £ 70 e gl B 4
Quark a5.6:L 1.7 -
Binary Reward Conditioning 3241+1.6 -
Davinci001 244+1.5 3251+ 1.6
LLaMA 7B 11 .Sk 11 6.5+ 0.9

Controlled comparisons of “RLHF” style algorithms

Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for Human
feedback.

PPO (method in InstructGPT) does work
Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too

[Dubois et al 2023]



RLHF behaviors - clear stylistic changes

Instruction: What are the five most common causes of stress among people?
Alpaca (Finetuned w/ 10k data): The five most common causes of stress among people are work, money, relationships, health, and family
Alpaca + PPO: The five most common causes of stress among people are:

1. Pressure at work: Whether it is due to tight deadlines, high expectations, or an overwhelming workload, pressure at work can be a major
source of stress

2. Money problems: Financial issues can be a significant source of stress, from not being able to make ends meet to struggling with debt.

3. Unhealthy lifestyle: Poor diet, lack of exercise, and sleep deprivation can all contribute to stress.

4. Unhappiness at home: Problems in relationships, conflicts with family members, and other domestic issues can be a major source of
stress.

5. Uncertainty: Excessive worry and anxiety about the future, health issues, or other unknowns can be a major cause of stress

Significantly more detailed, nicer/clearer list like formatting

[Dubois et al 2023]



Limitations of RL + Reward Modeling

TECHNOLOGY

* Human preferences are unreliable!  Google shares drop $100 billion after

* "Reward hacking”isacommon jts new Al chatbot makes a mistake
problem in RL

February 9,2023 - 10:15 AMET

° Chatbots are rewa rd ed to https://www.npr.org/2023/02/09/1155650909/google-chatbot--error-bard-shares
produce responses that seem
authoritative and helpful,

regardless of truth I S Who won the superbowl?

« This can result in making up facts | oo

The Super Bowl is the annual American football game that determines the champion of the National

. .
+ h a l l u C I n a t I O n S Football League (NFL) " . The most recent Super Bowl was Super Bowl LVI, which was held on February

6 2023 at $oF Stad um in Inglewood cal fom a 2 The wmner of that game was the Ph Iadelph ia

Bing Al hallucinates the Super Bowl

~ Ao Ao

The most receﬂrﬂwﬂt° §9per Bow! was Super Bowl LVI,

Nracmim in 1am A KAV KIICCANAArS WNO (1P]

Eagles who defeated the Kansas CIty Chiefs by 31-24

Learn more: 1. el ia.org 2. spor com 3. cbssports.com J

https://news.ycombinator.com/item?id=34776508
https://apnews.com/article/kansas-city-chiefs-philadelphia-eagles-technology-
science-82bc20f207e3e4cf8labc6a5d9e6b23a [Slide from CS224n]
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Limitations of RL + Reward Modeling

* Human preferences are unreliable!

« ”Reward hacking” is a common
problemin RL

 Chatbots are rewarded to
produce responses that seem
authoritative and helpful,
regardless of truth

* This can result in making up facts
+ hallucinations

* Models of human preferences are
even more unreliable!

54

Reward model over-optimization

-
o

©
~

Fraction preferred to ref
o
o

o
o)

o
o

’————

0

2 5 10 25 75 250
KL from supervised baseline

P (S))

R(s) = RMy(s) — f log (pPT(s)

[Stiennon et al., 2020]




Removing the ‘RL’ from RLHF

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the history of jazz" o label rewards the history of jazz"
R'5 . /\
—a > —> reward model LM pollcy ° —>  final LM °
< R
preference data maximum sample completions preference L —.
likelihood reinforcement learning likelihood

Vo Lppro(To; Tref) =

- BB(ageon|  o@) = Foaa) | Tologrlyy | 7) - Tologntu ) ||

higher weight when reward estimate is wrong  increase likelihood of y,,  decrease likelihood of y;

silil)
7o(x,y) = Blog T2y

You can replace the complex RL part with a very simple weighted MLE objective
Other variants (KTO, IPO) now emerging too

[Rafailov+2023]



What’s next?

RLHF is still a very underexplored and fast-
moving area!

RLHF gets you further than instruction
finetuning, but is (still!) data expensive.

Recent work aims to alleviate such data
requirements:

= RL from Al feedback [Bai et al., 2022]

= Finetuning LMs on their own outputs
[Huang et al., 2022; Zelikman et al.,
2022]
However, there are still many limitations of large

LMs (size, hallucination) that may not be
solvable with RLHF!
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LARGE LANGUAGE MODELS CAN SELF-IMPROVE

Jiaxin Huang'* Shixiang Shane Gu?> Le Hou?! Yuexin Wu?

Hongkun Yu? Jiawei Han'

University of Illinois at Urbana-Champaign 2Google

{jiaxinh3, hanj}@illinois.edu ?2{shanegu, lehou, crickwu,
xuezhiw, hongkuny}@google.com

Xuezhi Wang?

[Huang et al., 2022]

- === chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]

[Slide from CS224n]



Topics in LLMs + Statistical machine learning

* Conformalinference + Language modeling

» Testing for benchmark contamination

« Watermarking language models

57



Language models work pretty well.. But.

Horace He
. @cHHillee
Ail‘ Canada ordered to pay Customer :sustpect:GzT;&s performance is influenced by data contamination, at
who was misled by airline’s chatbot The Stanford Daily '

Of the easiest problems on Codeforces, it solved 10/10 pre-2021
problems and 0/10 recent problems.
Company claimed its chatbot ‘was responsible for its own actions’

when giving wrong information about bereavement fare News - Science & Technology

This strongly points to contamination.

Scores of Stanford students used -

P
g s B PSSy - "
Ao} ok
X ,

o ChatGPT on final exams, survey —— p——
suggests PRT— —
triangle! brute force, geometry, math | </ data structures, greedy, implementation, math < %

greedy, implementation, math </ ¢ 4 %

brute force, implementation, strings

Hallucinations Misuse and spam Untrustworthy evaluations



The big picture: we need better tools to study LLMs

We need more than heuristics for LMs

we want precise, controllable
statistical guarantees.




Can we give guarantees on correctness?

We can never ensure 100% correctness, but what about high-probability guarantees?

‘ T . Who is Michael Jordan?

-
-

With 95% probability, the following statement is correct:

Fi(x) = Michael Jordan is a former

professional basketball player.




How can we do this? Conformal prediction

Detour: conformal prediction is a powerful way to get (uncertainty) from black-box models

Heuristic f | Rigorous
uncertainty—» g?gd?é{ircl)% —»-uncertainty
(per input) (per input)

Can be used to provide tight confidence intervals when predicting proteins, galaxies with DNNs

confidence interyal
1 intervals 2 ngrtYIS
Proteomic Analysis [ prediction-powered
with AlphaFold [ classical
ppppppppppppp I; o e s -
J \ ground truth
e g Vi
Y "Z,PN
< 15 20 1000 2000 3000
: ratio betwes
aaaaaaaaaaaaaaaaaaaaaaaa
Galaxy Classification
with Computer Vision
.. freq! ra



What does conformal prediction have to do with LMs?

There’s a correspondence between correctness and uncertainty quantification

Q: Where was Abe Lincoln Born?
A: Sinking Spring Farm, Hodgenville, Kentucky

yo
LM outputs V1

y2

On a farm in Frankfort, Kentucky

Frankfort, Kentucky

Kentucky

E(@)

Confidence set
EGY):={y:yFy}

E(y2)

Frankfort KY

| Frankfort municipal hospital, KY |

On afarmin
Frankfort, KY

E
v

Sinking Spring Farm
Q Hodgenville, KY

\\

y*: Sinking Spring Farm, Hodgenville, Kentucky

(Red shows falsehoods,
blue is correct)



Key idea: use conformal prediction to “back off”

The algorithm:

1. Construct a sequence of “less specific” y;

2. Score each y; via a confidence measure S(y;)

3. Select a cutoff t for S(y;) using conformal prediction such that

P(y*eE(y))=1-a

At inference time return y; -- this hasa 1 — a correctness guarantee

Fo(z) = Michael Jordan (born February 17,
1063), is a former professional
basketball player.

Fi(z) = Michael Jordan is a former
professional basketball player.

Fo(z) = @.



Does it work?

One of our results: precise, finite-sample guarantees of factuality / correctness

Theorem 4.1. Let {X;,Y;*}™! be exchangeable, F; be sound, and o be defined as the ("H)n(l_a) th
quantile of the scores {r(X;,Y;*)}",, which we assume to be distinct without loss of generality. Then,
for ae [ 1] the following lower bound holds:

P(Yhy € E(Fg (Xai1))) 2 10
If E(F.(-)) follows the nested property, then the following upper bound holds:

n+l’

l-a+

7 2 P(Y € B(Fg. (Xnsn)))-

Soundness: F; is the empty set for some t



Does it work?

Theorem 4.1. Let {X;,Y;"}™! be exchangeable, F; be sound, and o be defined as the u"—J'l&nth
quantile of the scores {r(X;,Y;*)}™,, which we assume to be distinct without loss of generality. Then,
forace [ﬁ, 1], the following lower bound holds:

P(Ys1 € E(Fg, (Xn1))) 2 1-a.
If E(F(+)) follows the nested property, then the following upper bound holds:

1 .
1-a+ —= 2PV € E(F, (Xna))-

1.091 —«=~ Thrm 3.1 bounds /:

0.91 — FActScore <
—— MATH e

084

0.7 1

Empirical factuality

03 04 05 06 07 08 09 1.0
Target factuality (1 - a)



Factuality on FactScore from 0% to 80%

=
o
1

Average percent removed
©
N

©
o
1

©
[e0)
1

o
[e)]
1

e
D
1

FActScore
B /\/\/{
|~
||
| ]
0j3 0f4 Of5 0f6 0j7 0f8 Oj9

Fraction of factual outputs

Y Base factuality
—— Random

—}— Ordinal
—}— GPT-4 confidence

—— Frequency
—}— Oracle

Ordinal: remove the last claims
GPT-4: ask the LM for confidence
Frequency: sample + count claim
Oracle: remove non-factual first

Note: hand-annotated first 50 san
used our own claim splits for data



Random FactScore examples

Original

Luis Guillermo Rivera is a professional athlete from Colombia who
specializes in high jump. He was born on March 20, 1989 in Apartado,
Colombia. Rivera has represented Colombia in several international
competitions, including the World Championships in Athletics and the
Pan American Games. He won the gold medal in the high jump at the
2013 South American Championships in Athletics. His personal best in
the high jump is 2.31 meters, which he achieved in 2013.

Roxana Diaz is a Venezuelan athlete who specializes in the 400 me

Conformal Factuality

I’m uncertain about the specific details, and I
recommend using a search engine like Google for more
accurate and up-to-date information.

Roxana Diaz is an athlete who has represented

ters hurdles. She represented her country in various i ional
competitions, including the World Championships and the Pan American
Games. Diaz is known for her speed, agility, and determination on
the track. She has won several medals throughout her career, making
her one of the most successful athletes in her country.

Sharad Kumar is an Indian para-athlete who competes in high jump
events. He was born on March 1, 1992, in Bihar, India. Kumar

was diagnosed with polio at a young age, which affected his left
leg. Despite this, he pursued his passion for sports and began
training as a high jumper.\n\nKumar has represented India in several
international competitions and has won numerous medals. He won a
gold medal at the 2014 Asian Para Games in Incheon, South Korea, and
a silver medal at the 2018 Asian Para Games in Jakarta, Indonesia.
He also won a bronze medal at the 2017 World Para Athletics Champi
onships in London.\nnIn 2021, Kumar won a bronze medal in the men’s
high jump T42 category at the Tokyo Paralympics, marking his first
Paralympic medal. His personal best in high jump is 1.90 meters,
which he achieved at the 2017 World Para Athletics Championships.

Katsunosuke Hori is a Japanese actor and voice actor. He was born
on November 28, 1941 in Tokyo, Japan. He is best known for his work
in anime and video games, including roles in "Neon Genesis Evange
lion", "Ghost in the Shell: Stand Alone Complex", and "Final Fantasy
VII: Advent Children". He is also known for his dubbing roles in
foreign films, such as the voice of Gandalf in the Japanese version
of "The Lord of the Rings" trilogy.

Ra Jong-yil is a South Korean diplomat and academic. He served as
the South Korean ambassador to the United Kingdom and Japan. He
also served as the deputy director of the National Intelligence
Service. As an academic, he has taught at various universities and
written several books on North Korea and international relationms.

Vi la in various international competitions.
She has also participated in the World Championships.

Sharad Kumar is an Indian para-athlete who was born
on March 1, 1992, in Bihar, India. He competes

in high jump events and despite his condition, he
pursued his passion for sports and began training as
a high jumper. Sharad Kumar has represented India

in several international competitions and has won
numerous medals in his career. Most notably, in 2021,
he won a bronze medal in the men’s high jump T42
category at the Tokyo Paralympics.

Katsunosuke Hori is a Japanese actor and voice actor.
He is known for his work in anime and video games.

Ra Jong-yil is a South Korean diplomat and academic
who has served as the South Korean ambassador to
both the United Kingdom and Japan. In addition to
his diplomatic work, he has written several books on
North Korea and international relatioms.



Provenance via watermarking

Write an
essay about
World War 1.
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World War 1
stands as the
most deadly...
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World War 1
was the most
deadly...

. —— —

b1
s

—————————————————————————————

Watermarking enables tracking of LLM-generated text (Kirchenbauer et al)

Challenges:
 Watermarks induce distortion (hard sell for LLM vendors)
*  Many watermarks highly non-robust (to deletion of a few words, or cropping)



How watermarking works (l)

was the most deadly ....

World war 1 =, &9

LMs generate text stochastically



How watermarking works (Il)

ﬁ_\

World war 1 =, @ stands as the most deadly ...

Watermarks manipulate the randomness
to make outputs detectable



Development of a distortion-free, robust watermark.

In recent work [Kuditipudi et al 2023], we derive a distortion free and robust watermark.

Generate (for each token y;)
* Draw arandom sequence ¢; € [0,1], call this the key
» Sample according to min —logé;/p; (From Aaronson)
l

This is distortion free (i.e. the marginal distribution over ¢ is p)

Detect
* Find the min-Levenshtein cost with d(y,$) = X;log(1 —¢;,,.)
* Compare vs the min-Levenshtein cost w/ random &

This is robust (i.e. can detect under small Levenshtein edits)

[Kuditipudi et al 2023]



Many interesting watermarks for language models

 Kirchenbauer et al. bias next token distribution towards a
pseudorandom “green list”

« Aaronson samples next token as a pseudorandom function of
previous k tokens

* Christ et al. varying k depending on token probabilities to reduce
hash collisions - smart choice of k makes outputs effectively
distortion free



Watermark detectability

Varying text length Robust to random deletions

0.4 S el 0.4
—— KGW-1.0
KGW-2.0
g [}
=2 >
g 0.3 ‘_>" 0.3
g a
8 <
T 0.2 kel
(7] [r) 0.2
= =
0.1 01
0.0

5 10 15 20 25 30 35 40
Text length (m)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of substitutions



What is in the training data of a LLM?

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

.. But maybe your
test set is in here?
ls CODEFORCES
Pile-CC Sponsored by TON
ArXiv

PubMed Central

StackExchange
PMA Github
FreeLaw USPTO NIH [OpenWebText2 Wikipedia m

Language models derive their strength from massive, lightly-curated pretraining data



We need third party, provable audits of contamination

Horace He
@cHHillee

| suspect GPT-4's performance is influenced by data contamination, at

least on Codeforces.

Of the easiest problems on Codeforces, it solved 10/10 pre-2021
problems and 0/10 recent problems.

This strongly points to contamination.

g's Race implementation, math
nd Ch lat implementation, math
triangle! brute force, geometry, math

greedy, implementation, math

greedy, implementation

at? implementation, strings
Actions
data structures, greedy, implementation, math

Interview Problem

brute force, implementation, strings

Susan Zhang &
@suchenzang

I think Phi-1.5 trained on the benchmarks. Particularly, GSM8K.

Susan Zhang & @suchenzang - Sep 12
Let's take github.com/openai/grade-s...

If you truncate and feed this question into Phi-1.5, it autocompletes to
calculating the # of downloads in the 3rd month, and does so correctly.

Change the number a bit, and it answers correctly as well.

/8

Many public claims (and heuristic tests) of contamination - but no proof or audits



The goal: provably detecting test set contamination

Goal: provide a provable (false positive) guarantee
for detecting test set contamination.

Our setup:
Given a test set and access to log-probabilities from a language model
Return a statistical test for contamination with type-I error rate at most «

1. The null hypothesis is that the test set and model are independent r.v.s
2. The error guarantee should hold w.r.t draws of the datasets



Our approach: exploit the exchangeability of datasets

Our starting observation: most test sets are exchangeable.

Contamination Test

Pre-training Data
Shuffled Order

Canonical Order

The music was composed by Hitoshi Sakimoto, who had also & A
2 A Sy
worked on the previous Valkyria Chronicles games... Does a fr°g Jump out of b°111ng water? Does a frog jump out of b°111ng water?

Is it possible to create mass from energy? Q Is it possible to create mass from energy? o

Does a frog jump out of boiling water? .J, J,
Test Set Is it possible to create mass from energy? Is there a movie with @ on rotten tomatoes? Q Is the jaguar S type rear wheel drive? °
Contamination | g there a movie with 8 on rotten tomatoes? l l
Is the jaguar S type rear wheel drive? Is the jaguar S type rear wheel drive? QO | Bl ol ortar R tonatoss? (]
P S e e @ high model log-probability @ 1low model log-probability
the late 193@s. Originally, it formed the routing... % = e = % 5
e - Differences in log-probability between orderings reveal contamination.

Key idea:
Language model preference for ‘canonical’ orderings must come from contamination



Our approach: exploit the exchangeability of datasets

Key idea:

Language model preference for ‘canonical’ orderings must come from contamination

Proposition 1. Let seq(X) be a function that takes a dataset X and concatenates the examples to
produce a sequence, and let X,. be a random permutation of the examples of X where 7 is drawn
uniformly from the permutation group. For an exchangeable dataset X and under H,

log g (seq(X)) < log pg(seq(Xr))-

Proof This follows directly from the definitions of exchangability and Hy. Since X is ex-
changable, seq(X) 4 seq(Xr) and by the independence of 6 from X under H,, we know that

(0,seq(X)) 2 (0,seq(Xr)). Thus, the pushforward under log py(seq(X)) must have the same
invariance property. 0



This leads to a simple test for contamination

Shuffle and compute log probs

Pre-training Data Contamination Test

Canonical Order Shuffled Order

The musi ed by Hitoshi Sakimoto, who had al oo
o e e g e ey | L2EES © S ST G 67 BRI (R Does a frog jump out of boiling water?
Does a frog jump out of boiling water? Is it possible to create mass from energy? ° Is it possible to create mass from energy? o

Test Set Is it possible to create mass from energy? | 1o thore a movie with @ on rotten tomatoes? @ | 1s the jaguar S type rear wheel drive? [}
Contamination | 1s there a movie with 8 on rotten tomatoes? J; l

Is the jaguar S type rear wheel drive? Is the jaguar S type rear wheel drive? o Is there a movie with @ on rotten tomatoes? Q

iR L Gl G 6 @ iy forern & high model log-probability @ 1low model log-probability

the late 1936s. Originally, it formed the routing... . 2 s : 2 §
SRR ) ) Differences in log-probability between orderings reveal contamination.

Gives exact p-values

. iz 1{logpe(seq(X)) < logpe(seq(Xr,.))} +1
p-= m+1 '



Result #1 - detection in known settings

Can we detect known contamination?

We pretrained a 1.4B param, 20B token LM w/ known contamination

Name \ Size  Dup Count Permutation p Sharded p
BoolQ 1000 1 0.099 0.156
HellaSwag 1000 1 0.485 0.478
OpenbookQA 500 1 0.544 0.462
MNLI 1000 10 0.009 1.96e-11
Natural Questions 1000 10 0.009 1e-38
Truthful QA 1000 10 0.009 3.43e-13
PIQA 1000 50 0.009 1e-38
MMLU Pro. Psychology | 611 50 0.009 le-38
MMLU Pro. Law 1533 50 0.009 le-38
MMLU H.S. Psychology | 544 100 0.009 1e-38

100% detection rate on > 10 duplication count datasets



Result #2 - detection even in low duplication count

Log(p value) vs Dataset Duplication Count

-5

o) \

=

g -10 |

Q. '

§ - o dataset's log(p value)

L - mean log(p value)

per dup count
=201 ---- log(p=0.05) $

| | |
1 2 4 7

Dataset Duplication Count

Around 50% detection rate between 2 to 4 duplicates



Result #3 - contamination in the wild

Dataset Size LLaMA2-7B Mistral-7B  Pythia-1.4B  GPT-2 XL BioMedLM
AI2-ARC 2376 0.318 0.001 0.686 0.929 0.795
BoolQ 3270 0421 0.543 0.861 0.903 0.946
GSMS8K 1319 0.594 0.507 0.619 0.770 0.975
LAMBADA 5000 0.284 0.944 0.969 0.084 0.427
Natural QA 1769 0.912 0.700 0.948 0.463 0.595
OpenBookQA | 500  0.513 0.638 0.364 0.902 0.236

PIQA 3084 0.877 0.966 0.956 0.959 0.619
MMLU' - 0.014 0.011 0.362 - -

* No evidence of contamination (except ARC+Mistral)
«  MMLU tests consistent with Touvron et al’s contamination test



Key ideas

* Pretraining: scaling laws enable targeted scaling

* Post-training: RLHF and instruction tuning lead to systems like
chatGPT that can follow user-instructions.

« Statsml + LLMs: Many interesting new problems that can be
addressed with precise, statistical tools



