
LLMs
P RETRA IN ING +  POSTTRA IN ING

Many slides from Jesse Mu’s 224n slides

Tatsunori Hashimoto



Roadmap

1. Pretraining (continued - Scaling)

2. Post-training

3. Statistical ML + LLMs



Pretraining through language modeling [Dai and Le, 2015]
Recall the language modeling task:
• Model 𝑝! 𝑤" 𝑤#:"%#), the probability 

distribution over words given their past 
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:
Train a neural network to perform language 

modeling on a large amount of text.

Save the network parameters.
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Decoder
(Transformer, LSTM, ++ )

Iro
h

goes to make tasty tea

goes to make tasty tea END

[Slide from CS224n]

https://arxiv.org/pdf/1511.01432.pdf


The Pretraining / Finetuning Paradigm
Pretraining can improve NLP applications by serving as parameter initialization.
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(Transformer, LSTM, ++ )

Iro
h

goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language 
modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)
Not many labels; adapt to the task!

(Transformer, LSTM, ++ )

J/L

… the movie was … 

[Slide from CS224n]



Stochastic gradient descent and pretrain/finetune
Why should pretraining and finetuning help, from a “training neural nets” 
perspective?

• Consider, provides parameters $𝜃 by approximating min
!
	ℒ&'()'*+, 𝜃 .

  (The pretraining loss.)

• Then, finetuning approximates min
!
	ℒ-+,().,( 𝜃 , starting at $𝜃.

  (The finetuning loss)
• The pretraining may matter because stochastic gradient descent sticks 

(relatively) close to $𝜃 during finetuning.
  So, maybe the finetuning local minima near $𝜃 tend to generalize well!
  And/or, maybe the gradients of finetuning loss near $𝜃 propagate nicely!

5 [Slide from CS224n]



Pretraining decoders
It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their 𝑝! 𝑤" 𝑤#:"%#)!
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This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time! 

• Dialogue (context=dialogue history)
• Summarization (context=document)

ℎ#, … , ℎ/ = 	Decoder 𝑤#, … , 𝑤/
𝑤" ∼ 𝐴ℎ"%# + 𝑏

Where 𝐴, 𝑏 were pretrained in the language 
model!

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4

[Note how the linear layer has been 
pretrained.]

𝐴, 𝑏

ℎ!, … , ℎ"

𝑤# 𝑤0 𝑤1 𝑤2 𝑤3



Pretrained decoders can be used in their capacities as language models.
GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce 
relatively convincing samples of natural language.

Increasingly convincing generations (GPT2) [Radford et al., 2018]

[Slide from CS224n]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


GPT-3, In-context learning, and very large models

Circa 2010s – we interact with LMs in two ways:
 Sample from the distributions they define (maybe providing a prompt)
 Fine-tune them on a task we care about, and take their predictions.

Emerging idea: leverage these models without explicit parameter adaptation
 Very large language models seem to perform some kind of learning without gradient 
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters. 
GPT-3 has 175 billion parameters.

8 [Slide from CS224n]



GPT-3, In-context learning, and very large models
Very large language models seem to perform some kind of learning without gradient steps 
simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional 
distribution mocks performing the task to a certain extent.
Input (prefix within a single Transformer decoder context):
“ thanks -> merci
 hello -> bonjour
 mint -> menthe
 otter -> ” 
Output (conditional generations):
 loutre…”

9 [Slide from CS224n]



GPT-3, In-context learning, and very large models
Very large language models seem to perform some kind of learning without gradient steps 
simply from examples you provide within their contexts.

10 [Slide from CS224n]



Larger and larger models

11 https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress



Trained on more and more data

12

# tokens seen during training

https://babylm.github.io/

[Slide from CS224n]



Where does this data come from?

Model Training Data
BERT BookCorpus, English 

Wikipedia

GPT-1 BookCorpus

GPT-3 CommonCrawl, WebText, 
English Wikipedia, and 2 
book databases (“Books 1” 
and “Books 2”)

GPT-
3.5+

Undisclosed



Why scale? Scaling laws

Empirical observation: scaling up models leads to reliable gains in perplexity



Data vs performance 
What’s a data scaling law?

Data scaling laws : simple formula that maps dataset size (n) to error

What do we expect out of scaling laws?

Monotonic, logistic-
like curves

[Hestness+ 2017]



Data scaling laws for language models
First, an empirical observation

Te
st

 L
os

s

Loss and dataset size is linear on a log-log plot

“Scale-free” or
“Power law”

(For language modeling, from Kaplan+ 2020)



Scaling laws: past works and other areas

Scaling laws hold in many domains

Machine translation Speech

Hestness et al 2017.

Language modeling

Kaplan et al 2020.

Object recognition

Rosenfeld 2020.

Data scaling has been known for a while 
Kolachina+ 2012 for machine translation, Hestness+ 2017 for neural



Conceptual foundations of data scaling laws.
Q: Why do scaling laws show up?

 We know error should be monotone

But why is it a power law / linear in log-log?

A: Estimation error naturally decays polynomially.

But this answer may take a moment to understand. Let’s work through an example.

Example: If our task is to estimate the mean of a dataset, what’s the scaling law?



Toy example: mean estimation

Input: 𝑥# 	… 𝑥5	 ∼ 𝑁(𝜇, 𝜎0)

Task: estimate the average as -𝜇 = ∑! 7!
5

What’s the error? By standard arguments..

 E -𝜇 − 𝜇 0 = 8"

5
 

This is a sample complexity bound and also a scaling law
log(𝐸𝑟𝑟𝑜𝑟) = −log 𝑛 + 2 log 𝜎

 More generally, any polynomial rate 1/𝑛9 is a scaling law



Scaling law exponents: an intriguing mystery
Similar arguments show most ‘classical’ models (regression, etc) have #

5
 or #

5
scaling

This means we should see y = −𝑥 + 𝐶 or 𝑦 = −0.5𝑥 + 𝐶
What do we find in neural scaling laws?

Machine translation Speech Language modeling

Why? – still somewhat an open question



Detour: scaling laws for (nonparametric) learning
Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: 𝑥#…𝑥5	uniform in 2D unit box. 𝑦: = 𝑓 𝑥: + 𝑁(0,1)
Task: estimate f(x)

Approach: cut up the 2D space into boxes with length 𝑛%
#
$, average in each box

What’s our estimation error?
 Informally, we have 𝑛 boxes, each box gets 𝑛 samples.

𝐸𝑟𝑟𝑜𝑟 ≈
1
𝑛
+ 𝑜𝑡ℎ𝑒𝑟	𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠	𝑡𝑒𝑟𝑚𝑠

In 𝑑-dimensions, this becomes 𝐸𝑟𝑟𝑜𝑟 = 𝑛%#/<   - This means scaling is 𝒚 = − 𝟏
𝒅
𝒙 + 𝑪

Takeaway: flexible ‘nonparametric’ learning has dimension dependent scaling laws.



Intrinsic dimensionality theory of data scaling laws
In case that was a bit too low-level..

1. Scaling laws arise due to polynomial rates of learning !
"!

2. Some argue the slope 𝛼 is closely connected to the intrinsic dimensionality of the data.

Some recent work (Bahri+ 2021) have tried to verify this empirically.. though no smoking gun



Scaling laws for model engineering
Scaling underlies many ‘systematic’ design choices for LMs

Our motivation: how can we efficiently design huge LMs?
• LSTMs vs Transformers
• Adam vs SGD

How should we allocate our limited resources?
• Train models longer vs train bigger models?
• Collect more data vs get more GPUs?

Scaling laws provide a simple procedure to answer these.



Model size data joint scaling
Q: Do we need more data or bigger models?

Clearly, lots of data is wasted on small models

Joint data-model scaling laws describe how the two relate

From Rosenfeld+ 2020, 
𝐸𝑟𝑟𝑜𝑟 = 𝑛#$ + 𝑚#% + 𝐶

From Kaplan+ 2021
𝐸𝑟𝑟𝑜𝑟 = 𝑚#$ + 𝑛#! %

Provides surprisingly good fits to model-data joint error.



Scaling can help identify model size – data tradeoffs

Modern observation: train a big model that’s not fully converged.



Caution #2 – ‘Optimal’ scaling laws are hard to get
‘Linear fits’ can be quite deceiving

Minor changes to hyperparameters result in different scaling

Hoffman+ 2022



Scaling Efficiency: how do we best use our compute
GPT-3 was 175B parameters and trained on 300B tokens of text.
Roughly, the cost of training a large transformer scales as parameters*tokens
Did OpenAI strike the right parameter-token data to get the best model? No.

27
This 70B parameter model is better than the much larger other models!

[Slide from CS224n]



Scaling laws for many other interesting architecture decisions

Predictable scaling helps us make intelligent decisions about architectures etc.



Scaling laws for models and compute

Log-linearity extends to model parameters and compute!

Lets us set the following based on small models
- Pick optimizer

- Pick architecture and model sizes

Also lets us make smart resource tradeoffs
- Big models vs more data?



Language models as world models?

30

Language Models as Agent Models [Andreas, 2022]

Language models may do rudimentary modeling of agents, beliefs, and actions:

[Slide from CS224n]



Language models as world models?

31

https://www.khanacademy.org/test-prep/sat/x0a8c2e5f:untitled-
652

…math:

[Slide from CS224n]



Language models as world models?

32
https://github.com/features/copilot

…code:

[Slide from CS224n]



Language models as world models?

33

[Larnerd, 2023]

…medicine:

[Slide from CS224n]



Language models as multitask assistants?

34

[Microsoft Bing]

(Also see OpenAI’s ChatGPT,
Google’s Bard, Anthropic’s Claude)

[Slide from CS224n]



Language models as multitask assistants?

35

How do we get from this

to this?

Stanford University is located in __________

[Slide from CS224n]



Language modeling ≠ assisting users

36

Language models are not aligned with user intent [Ouyang et al., 2022].

[Slide from CS224n]



Scaling up finetuning
Pretraining can improve NLP applications by serving as parameter initialization.

37

Decoder
(Transformer, LSTM, ++ )

Iro
h

goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language 
modeling)

Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++ )

J/L

Step 2: Finetune (on many tasks)
Not many labels; adapt to the tasks!

… the movie was … 

[Slide from CS224n]



Instruction finetuning

38

Collect examples of (instruction, output) pairs across many tasks and finetune an LM

[FLAN-T5; Chung et al., 2022]

• Evaluate on unseen tasks

[Slide from CS224n]



A huge diversity of instruction-tuning datasets

The release of LLaMA led to open-source attempts to `create’ instruction tuning data



What have we learned from this?
You can generate data 

synthetically (from bigger 
LMs)

You don’t need many samples to 
instruction tune

Crowdsourcing can be pretty 
effective!



musicaladventure

Limitations of instruction finetuning?

41

• One limitation of instruction finetuning is obvious: it’s expensive to collect ground-
truth data for tasks.

• But there are other, subtler limitations too. Can you think of any?
• Problem 1: tasks like open-ended creative generation have no right answer.

• Write me a story about a dog and her pet grasshopper.
• Problem 2: language modeling penalizes all token-level mistakes equally, but some 

errors are worse than others.
• Even with instruction finetuning, there

a mismatch between the LM
objective and the objective of
“satisfy human preferences”!

• Can we explicitly attempt to satisfy 
human preferences?

LM

Avata
r

is a fantas
y

TV show

is a fantas
y

TV show END
adventure musical

[Slide from CS224n]



Optimizing for human preferences
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• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample 𝑠, imagine we had a way to obtain a human reward of that 

summary: 𝑅 𝑠 ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
𝔼"̂~$&(") 𝑅(𝑠̂)

SAN FRANCISCO, 
California (CNN) -- 
A magnitude 4.2 
earthquake shook 
the San Francisco
...
overturn unstable
objects.

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but 
is prone to 
earthquakes and 
wildfires.

𝑠'
𝑅 𝑠' = 8.0

𝑠(
𝑅 𝑠( = 1.2

Note: for mathematical simplicity 
we’re assuming only one “prompt” [Slide from CS224n]



High-level instantiation: ‘RLHF’ pipeline

First step: instruction tuning!
Second + third steps: maximize reward (but how??)



Optimizing for human preferences

44

• How do we actually change our LM parameters 𝜃 to maximize this?
𝔼"̂~$&(") 𝑅(𝑠̂)

• Let’s try doing gradient ascent!
𝜃)*' ≔ 𝜃) + 𝛼	∇+'𝔼"̂~$&'(") 𝑅(𝑠̂)

• Policy gradient methods in RL (e.g., REINFORCE; [Williams, 1992]) give us tools for 
estimating and optimizing this objective.

• We’ll describe a very high-level mathematical overview of the simplest policy 
gradient estimator.

What if our reward 
function is non-
differentiable??

How do we estimate 
this expectation??

[Slide from CS224n]



A (very!) brief introduction to policy gradient/REINFORCE [Williams, 1992]

45

(chain 
rule)

This is an 
expectation of this

⟹	 ∇+ 𝑝+ 𝑠 = 	𝑝+ 𝑠 	 ∇+ 	log	𝑝+ 𝑠

(defn. of expectation) (linearity of gradient)• We want to obtain

∇+𝔼"̂~$&(") 𝑅(𝑠̂) = ∇+:
"

𝑅(𝑠)𝑝+ 𝑠 =:
"

𝑅(𝑠)	∇+𝑝+ 𝑠

• Here we’ll use a very handy trick known as the log-derivative trick. Let’s try taking 
the gradient of log	𝑝+ 𝑠

	∇+ 	log	𝑝+ 𝑠 =
1

𝑝+ 𝑠 	∇+𝑝+ 𝑠 	

• Plug back in:

:
"

𝑅 𝑠 	∇+𝑝+ 𝑠 =:
"

𝑝+ 𝑠 𝑅 𝑠 	∇+ 	log	𝑝+ 𝑠 	

= 𝔼"̂~$&(") 𝑅 𝑠̂ 	∇+ 	log	𝑝+ 𝑠̂
[Slide from CS224n]



How do we model human preferences?

46

• Awesome: now for any arbitrary, non-differentiable reward function 𝑅 𝑠 , we can 
train our language model to maximize expected reward.

• Not so fast! (Why not?)
• Problem 1: human-in-the-loop is expensive!

• Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but 
is prone to 
earthquakes and 
wildfires.

𝑠'
𝑅 𝑠' = 8.0

𝑠(
𝑅 𝑠( = 1.2

Train an LM	𝑅𝑀, 𝑠  to 
predict human 
preferences from an 
annotated dataset, then 
optimize for 𝑅𝑀,  
instead.

💵 💵 [Slide from CS224n]



How do we model human preferences?

47

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which 

can be more reliable [Phelps et al., 2015; Clark et al., 2018] 

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

𝑠-
𝑅 𝑠- =	 ?

𝑅 𝑠- = 	 4.1? 	 6.6? 	 3.2?

[Slide from CS224n]



How do we model human preferences?

48

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which 

can be more reliable [Phelps et al., 2015; Clark et al., 2018] 

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but 
is prone to 
earthquakes and 
wildfires.

𝑠' 𝑠(

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

𝑠-

> >

Reward Model (𝑅𝑀,)

The Bay Area … ... wildfire
s

1.2

𝐽./ 𝜙 = −𝔼 "(,") ~1 log	𝜎(𝑅𝑀, 𝑠2 − 𝑅𝑀,(𝑠3))

“winning” 
sample

“losing” 
sample

𝑠2  should score
higher than 𝑠3  

Bradley-Terry [1952] paired comparison model



49
This is a penalty which prevents us from diverging too far from the pretrained model. In expectation, it is known as the Kullback-
Leibler (KL) divergence between 𝑝"#$(𝑠) and 𝑝%& 𝑠 .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price 
when 𝑝+.4 𝑠 >
𝑝56 𝑠

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 𝑝56(𝑠) 
• A reward model	𝑅𝑀,(𝑠) that produces scalar rewards for LM outputs, trained on 

a dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 𝑝+.4(𝑠) , with parameters 𝜃 we would like to 

optimize
• Optimize the following reward with RL:

𝑅 𝑠 = 𝑅𝑀,(𝑠) − 𝛽	log
𝑝+.4(𝑠)
𝑝56(𝑠) [Slide from CS224n]



RLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

𝑝56(𝑠) 

𝑝786(𝑠) 

𝑝.4(𝑠) 

50

[Slide from CS224n]



Controlled comparisons of “RLHF” style algorithms

Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for Human 
feedback. 

PPO (method in InstructGPT) does work
Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too

[Dubois et al 2023]



RLHF behaviors – clear stylistic changes

Significantly more detailed, nicer/clearer list like formatting

[Dubois et al 2023]
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Limitations of RL + Reward Modeling

• Human preferences are unreliable!
• ”Reward hacking” is a common 

problem in RL
• Chatbots are rewarded to 

produce responses that seem 
authoritative and helpful, 
regardless of truth

• This can result in making up facts 
+ hallucinations

https://www.npr.org/2023/02/09/1155650909/google-chatbot--error-bard-shares

https://news.ycombinator.com/item?id=34776508
https://apnews.com/article/kansas-city-chiefs-philadelphia-eagles-technology-

science-82bc20f207e3e4cf81abc6a5d9e6b23a [Slide from CS224n]

https://news.ycombinator.com/item?id=34776508


𝑅 𝑠 = 𝑅𝑀,(𝑠) − 𝛽	log
𝑝+.4(𝑠)
𝑝56(𝑠)
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Limitations of RL + Reward Modeling

• Human preferences are unreliable!
• ”Reward hacking” is a common 

problem in RL
• Chatbots are rewarded to 

produce responses that seem 
authoritative and helpful, 
regardless of truth

• This can result in making up facts 
+ hallucinations

• Models of human preferences are 
even more unreliable!

Reward model over-optimization

[Stiennon et al., 2020]



Removing the ‘RL’ from RLHF

You can replace the complex RL part with a very simple weighted MLE objective
Other variants (KTO, IPO) now emerging too

[Rafailov+ 2023]



What’s next?
RLHF is still a very underexplored and fast-

moving area!
RLHF gets you further than instruction 

finetuning, but is (still!) data expensive.
Recent work aims to alleviate such data 

requirements:
§ RL from AI feedback [Bai et al., 2022]
§ Finetuning LMs on their own outputs

[Huang et al., 2022; Zelikman et al., 
2022]

However, there are still many limitations of large 
LMs (size, hallucination) that may not be 
solvable with RLHF!

56

[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]

[Slide from CS224n]



Topics in LLMs + Statistical machine learning
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• Conformal inference + Language modeling

• Testing for benchmark contamination

• Watermarking language models



Language models work pretty well.. But.

Misuse and spam Untrustworthy evaluationsHallucinations



The big picture: we need better tools to study LLMs

We need more than heuristics for LMs

we want precise, controllable  
statistical guarantees.



Can we give guarantees on correctness?
We can never ensure 100% correctness, but what about high-probability guarantees?

With 95% probability, the following statement is correct:

Who is Michael Jordan?



How can we do this? Conformal prediction
Detour: conformal prediction is a powerful way to get (uncertainty) from black-box models

Can be used to provide tight confidence intervals when predicting proteins, galaxies with DNNs



What does conformal prediction have to do with LMs?
There’s a correspondence between correctness and uncertainty quantification

(Red shows falsehoods, 
blue is correct)



Key idea: use conformal prediction to “back off”
The algorithm:
1. Construct a sequence of “less specific” 𝑦"
2. Score each 𝑦"  via a confidence measure 𝑆(𝑦")
3. Select a cutoff 𝜏	for 𝑆(𝑦") using conformal prediction such that

𝑃 𝑦∗ ∈ 𝐸 𝑦: ≥ 1 − 𝛼

At inference time return 𝑦C -- this has a 1 − 𝛼 correctness guarantee



Does it work?

One of our results: precise, finite-sample guarantees of factuality / correctness

Soundness: 𝐹! is the empty set for some t



Does it work?



Factuality on FactScore from 0% to 80%

Ordinal: remove the last claims
GPT-4: ask the LM for confidence
Frequency: sample + count claim freq.
Oracle: remove non-factual first

Note: hand-annotated first 50 samples +
used our own claim splits for data quality



Random FactScore examples



Provenance via watermarking

Watermarking enables tracking of LLM-generated text (Kirchenbauer et al)

Challenges:
• Watermarks induce distortion (hard sell for LLM vendors)
• Many watermarks highly non-robust (to deletion of a few words, or cropping)



How watermarking works (I)

World war 1

was the most deadly …. 

stands as the most deadly …. 

was trigged by …

🎲

LMs generate text stochastically



How watermarking works (II)

World war 1

was the most deadly …. 

stands as the most deadly …. 

was trigged by …
🎲

🔑
Watermark Key

Watermarks  manipulate the randomness
to make outputs detectable



Development of a distortion-free, robust watermark.
In recent work [Kuditipudi et al 2023], we derive a distortion free and robust watermark.

Generate (for each token 𝑦;) 
•    Draw a random sequence 𝜉; ∈ [0,1], call this the key
•    Sample according to min

;
	− log 𝜉;/𝑝;  (From Aaronson)

Detect
• Find the min-Levenshtein cost with 𝑑 𝑦, 𝜉 = ∑; log(1 − 𝜉;,<+)	
• Compare vs the min-Levenshtein cost w/ random 𝜉

This is distortion free (i.e. the marginal distribution over 𝜉 is p)

This is robust (i.e. can detect under small Levenshtein edits) 

[Kuditipudi et al 2023]



Many interesting watermarks for language models

• Kirchenbauer et al. bias next token distribution towards a 
pseudorandom “green list”

• Aaronson samples next token as a pseudorandom function of 
previous k tokens

• Christ et al. varying k depending on token probabilities to reduce 
hash collisions – smart choice of k makes outputs effectively 
distortion free



Watermark detectability

Varying text length Robust to random deletions



What is in the training data of a LLM?

Language models derive their strength from massive, lightly-curated pretraining data

.. But maybe your 
test set is in here?



We need third party, provable audits of contamination

Many public claims (and heuristic tests) of contamination – but no proof or audits



The goal: provably detecting test set contamination

Our setup:

Given a test set and access to log-probabilities from a language model

Return a statistical test for contamination with type-I error rate at most 𝛼
1. The null hypothesis is that the test set and model are independent r.v.s
2. The error guarantee should hold w.r.t draws of the datasets

Goal: provide a provable (false positive) guarantee
for detecting test set contamination.



Our approach: exploit the exchangeability of datasets

Our starting observation: most test sets are exchangeable.

Language model preference for ‘canonical’ orderings must come from contamination

Key idea:



Our approach: exploit the exchangeability of datasets

Language model preference for ‘canonical’ orderings must come from contamination

Key idea:



This leads to a simple test for contamination

Shuffle and compute log probs

Gives exact p-values



Result #1 – detection in known settings
Can we detect known contamination? 
 We pretrained a 1.4B param, 20B token LM w/ known contamination 

100% detection rate on ≥ 10 duplication count datasets



Result #2 – detection even in low duplication count

Around 50% detection rate between 2 to 4 duplicates



Result #3 – contamination in the wild

• No evidence of contamination (except ARC+Mistral)
• MMLU tests consistent with Touvron et al’s contamination test



Key ideas

• Pretraining: scaling laws enable targeted scaling

• Post-training: RLHF and instruction tuning lead to systems like 
chatGPT that can follow user-instructions.

• Statsml + LLMs: Many interesting new problems that can be 
addressed with precise, statistical tools


