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Roadmap

1. LLMs today

2. Language modeling

3. Neural architectures – RNN/Transformer
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Language models in the spotlight

Language models growing in relevance and capabilities



Plotting

Text example from [Bubeck et al 2023]



Math

Text example from [Bubeck et al 2023]



Underlying this: rapid progress on benchmarks

Kiela et al

It’s an exciting time: extremely rapid, sudden improvements in NLP



Major driver: foundation models and internet data
What is the big change these last 10 years? What enabled recent advances in GenAI?

[Bommasani et al 2021]

Intuition: learn ‘task-agnostic’ structures (syntax of language, common sense) from freely available internet data. 

‘Foundation models’ that can effectively leverage vast amounts of internet data



How do LLMs work?

Step 1 - Pretraining: learn to autocomplete text on the internet

Maybe we don’t just want to mimic users on the internet..



How do LLMs work?
Step 2 – Post-training: explicitly reinforce desired behaviors identified by annotators

[Ouyang 2020]



Language Modeling is the task of predicting what word comes next

    the students opened their ______

More formally: given a sequence of words                                 ,
compute the probability distribution of the next word             :

where            can be any word in the vocabulary

A system that does this is called a Language Model

Language Modeling

exams

mind
s

laptops
book

s
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Language Modeling
You can also think of a Language Model as a system that 

assigns a probability to a piece of text

For example, if we have some text                          , then the probability of 
this text (according to the Language Model) is:

11

This is what our LM provides

[Slide from CS224n]



n-gram Language Models
 the students opened their  ______

Question: How to learn a Language Model?
Answer (pre- Deep Learning): learn an n-gram Language Model!

Definition: An n-gram is a chunk of n consecutive words.
§ unigrams: “the”, “students”, “opened”, ”their”
§ bigrams: “the students”, “students opened”, “opened their”
§ trigrams: “the students opened”, “students opened their”
§ four-grams: “the students opened their”

Idea: Collect statistics about how frequent different n-grams are and use these to predict next word.

12 [Slide from CS224n]



n-gram Language Models: Example
Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 

times
• à P(exams | students opened their) = 0.1

Should we have discarded 
the “proctor” context?

13 [Slide from CS224n]



Generating text with a n-gram Language Model

14

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size… [Slide from CS224n]



How to build a neural language model?
Recall the Language Modeling task:
§ Input: sequence of words
§ Output: prob. dist. of the next word 

How about a window-based neural model?

15

in Paris are amazingmuseums

LOCATION

[Slide from CS224n]



A fixed-window neural Language Model

the student
s

opened their

books
laptops

concatenated word 
embeddings

words / one-hot 
vectors 

hidden layer

a zo
o

output distribution 
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A fixed-window neural Language Model

the student
s

opened their

books
laptops

a zo
o

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-

grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊 
• Window can never be large enough!
• 𝑥(") and 𝑥($) are multiplied by 

completely different weights in 𝑊.
No symmetry in how the inputs are 
processed.

We need a neural architecture 
that can process any length input17

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

[Slide from CS224n]



A Simple RNN Language Model

the student
s

opened theirwords / one-hot vectors 

books
laptops

word 
embeddings 

a zo
o

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state
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RNN Language Models

the student
s

opened their

books
laptops

a zo
o

RNN Advantages:
• Can process any length input
• Computation for step t can (in 

theory) use information from 
many steps back

• Model size doesn’t increase 
for longer input context

• Same weights applied on 
every timestep, so there is 
symmetry in how inputs are 
processed.

RNN Disadvantages:
• Recurrent computation is 

slow
• In practice, difficult to access 

information from many steps 
back 

More on 
these 
later

19 [Slide from CS224n]



Training an RNN Language Model
Get a big corpus of text which is a sequence of words
Feed into RNN-LM; compute output distribution         for every step t.
§ i.e., predict probability dist of every word, given words so far

Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

Average this to get overall loss for entire training set:

20 [Slide from CS224n]



Evaluating Language Models
The standard evaluation metric for Language Models is perplexity.

This is equal to the exponential of the cross-entropy loss          :

21

Inverse probability of corpus, according to Language Model

Normalized by 
number of words

Lower perplexity is 
better! [Slide from CS224n]



RNNs greatly improved perplexity over what came before

n-gram 
model

Increasingly 
complex 

RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-
words/
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https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/


Problems with RNNs: Vanishing and Exploding Gradients

23 [Slide from CS224n]



Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further
24 [Slide from CS224n]



Vanishing gradient proof sketch (linear case)
Recall: 
What if      were the identity function,                   ? 

Consider the gradient of the loss              on step , with respect 
to the hidden state         on some previous step  . Let

25

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. 
http://proceedings.mlr.press/v28/pascanu13.pdf

(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets 
exponentially problematic as    becomes large

(value of               )

[Slide from CS224n]

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

26 [Slide from CS224n]



Issues with recurrent models: Linear interaction distance
O(sequence length) steps for distant word pairs to interact means:
§ Hard to learn long-distance dependencies (because gradient problems!)
§ Linear order of words is “baked in”; we already know linear order isn’t the 

right way to think about sentences…

27

The waschef who  …

Info of chef has gone through 
O(sequence length) many layers!

[Slide from CS224n]



Issues with recurrent models: Lack of parallelizability
Forward and backward passes have O(sequence length) 

unparallelizable operations
§ GPUs can perform a bunch of independent computations at once!
§ But future RNN hidden states can’t be computed in full before past RNN 

hidden states have been computed
§ Inhibits training on very large datasets!

28
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Numbers indicate min # of steps before a state can be computed
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Attention
Attention provides a solution to the bottleneck problem.

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a 
particular part of the source sequence

First, we will show via diagram (no equations), then we will show with equations

29 [Slide from CS224n]



The starting point: mean-pooling for RNNs

30

Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoye
d

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states

[Slide from CS224n]



Attention is weighted averaging, which lets you do lookups!

31

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of 
keys that map to values. The query 
matches one of the keys, returning its 
value.

In attention, the query matches all keys 
softly, to a weight between 0 and 1. The keys’ 
values are multiplied by the weights and 
summed.

[Slide from CS224n]



Sequence-to-sequence with attention
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Core idea: on each step of the decoder, use direct connection to the encoder to focus on 
a particular part of the source sequence

[Slide from CS224n]



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention

En
co

d
er

 
RN

N

Source sentence (input)

<START
>

il           a         m’      entarté

Decoder RNN
At
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nt

io
n 

sc
or

es
On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)

At
te

nt
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n 
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n

Take softmax to turn the 
scores into a probability 

distribution
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Sequence-to-sequence with attention
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Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention
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Concatenate attention output 
with decoder hidden state, 
then use to compute !𝑦!	as 
before

!𝑦!	

he
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Sequence-to-sequence with attention
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Sometimes we take the 
attention output from 
the previous step, and 
also feed it into the 
decoder (along with the 
usual decoder input). 
We do this in 
Assignment 4. [Slide from CS224n]



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Attention: in equations
We have encoder hidden states 
On timestep t, we have decoder hidden state 
We get the attention scores         for this step:

We take softmax to get the attention distribution        for this step (this is a probability distribution and 
sums to 1)

We use        to take a weighted sum of the encoder hidden states to get the attention output 

Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model

44 [Slide from CS224n]



Attention is great!
Attention solves the bottleneck problem
§ Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with the vanishing gradient problem
§ Provides shortcut to faraway states
Attention provides some interpretability
§ By inspecting attention distribution, we see what the decoder was focusing on
§ We get (soft) alignment for free!
§ This is cool because we never explicitly trained an alignment system
§ The network just learned alignment by itself

45
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Do we even need recurrence at all? 

46

Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural network 
input. (ℎ#)

§ This is also exactly what RNNs are used for – to pass information!
§ Can we just get rid of the RNN entirely? Maybe attention is just a better way to 

pass information!

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????

[Slide from CS224n]



The building block we need: self attention

47

What we talked about – Cross attention: paying attention to the input x to generate 𝑦#
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• What we need – Self attention: to generate 𝑦%, we need to pay attention to 𝑦&%
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Self-Attention Hypothetical Example

48 [Slide from CS224n]



Self-Attention: keys, queries, values from the same sequence

49

Let 𝒘$:& 	be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘' 	, let 𝒙' = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ)×|,| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ)×)

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆#$ = 𝒒𝒊&𝒌𝒋 𝜶#$ =
exp(𝒆#$)	

∑$( exp(𝒆#$!)

3. Compute output for each word as weighted sum of values

𝒒# = 𝑄𝒙𝒊 (queries) 𝒌# = 𝐾𝒙𝒊 (keys) 𝒗# = 𝑉𝒙𝒊 (values)

𝒐# =3
𝒋

𝜶#$ 𝒗#

[Slide from CS224n]



Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block

50

Solutions

[Slide from CS224n]



Fixing the first self-attention problem: sequence order
• Since self-attention doesn’t build in order information, we need to encode the order of 

the sentence in our keys, queries, and values.
• Consider representing each sequence index as a vector

𝒑' ∈ ℝ) , for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝'  are made of yet!
• Easy to incorporate this info into our self-attention block: just add the 𝒑'  to our inputs!
• Recall that 𝒙'  is the embedding of the word at index 𝑖. The positioned embedding is:

!𝒙6 = 𝒙6 +𝒑6
In deep self-attention networks, we 
do this at the first layer! You could 
concatenate them as well, but 
people mostly just add…

51 [Slide from CS224n]



• Learned absolute position representations: Let all 𝑝'  be learnable parameters!
Learn a matrix 𝒑 ∈ ℝ)×& , and let each 𝒑'  be a column of that matrix!

• Pros:
• Flexibility: each position gets to be learned to fit the data

•  Cons:
• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Many systems use this!

• Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

52 [Slide from CS224n]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just 
weighted averages

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to 
the inputs

53 [Slide from CS224n]



Adding nonlinearities in self-attention
• Note that there are no elementwise 

nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward 
network to post-process each 
output vector.

𝑚' = 𝑀𝐿𝑃 output' 	
    =	𝑊- ∗ ReLU 𝑊$	output' + 𝑏$ + 𝑏- The

𝑤$ 𝑤-
chef

𝑤.
who

𝑤&
food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence
• Like in machine 

translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to 
the inputs

• Easy fix: apply the same 
feedforward network to each 
self-attention output.
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Masking the future in self-attention
• To use self-attention in 

decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

The chef
who

[START]

We can look at these 
(not greyed out) 
words

𝑒'/ =	;
𝑞'0𝑘/ , 𝑗 ≤ 𝑖
−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence
• Like in machine 

translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to 
the inputs

• Easy fix: apply the same 
feedforward network to each 
self-attention output.

• Mask out the future by artificially 
setting attention weights to 0!

57 [Slide from CS224n]



• Self-attention:
• the basis of the method.

• Position representations:
• Specify the sequence order, since self-attention is 

an unordered function of its inputs.
• Nonlinearities:

• At the output of the self-attention block
• Frequently implemented as a simple feed-forward 

network.
• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:

58 [Slide from CS224n]



Other components we wont cover

59

• Multi-head attention
• Have multiple, but smaller attention heads and 

linearly mix the outputs

• Residual connections
• Have residual connections around the attention 

and feed forward (addresses vanishing gradients)

• Layer norm
• Standardize the activation across the hidden 

dimension coordinate. 



The Transformer Decoder

60

• The Transformer Decoder is a 
stack of Transformer 
Decoder Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder

[Slide from CS224n]



The pretraining revolution

Gains from pretrained language models

Pretraining has had a major, tangible impact on how well NLP systems work



Pretraining – scaling unsupervised learning on the internet

Key ideas in pretraining
• Make sure your model can process large-scale, diverse datasets
• Don’t use labeled data (otherwise you can’t scale!)
• Compute-aware scaling 



63

What kinds of things does pretraining teach?

There’s increasing evidence that pretrained models learn a wide variety of things about the statistical properties of language. 

Stanford University is located in __________, California. [Trivia]
I put ___ fork down on the table. [syntax]
The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
I went to the ocean to see the fish, turtles, seals, and _____.  [lexical semantics/topic]
Overall, the value I got from the two hours watching it was the sum total of the popcorn and the 

drink. The movie was ___. [sentiment]
Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. 

Zuko left the ______. [some reasoning – this is harder]
I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____  [some basic arithmetic; 

they don’t learn the Fibonnaci sequence]
Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

[Slide from CS224n]



Pretraining through language modeling [Dai and Le, 2015]
Recall the language modeling task:
• Model 𝑝1 𝑤# 𝑤$:#2$), the probability 

distribution over words given their past 
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:
Train a neural network to perform language 

modeling on a large amount of text.
Save the network parameters.
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Decoder
(Transformer, LSTM, ++ )

Iro
h

goes to make tasty tea

goes to make tasty tea END

[Slide from CS224n]

https://arxiv.org/pdf/1511.01432.pdf


The Pretraining / Finetuning Paradigm
Pretraining can improve NLP applications by serving as parameter initialization.

65

(Transformer, LSTM, ++ )

Iro
h

goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language 
modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)
Not many labels; adapt to the task!

(Transformer, LSTM, ++ )

J/L

… the movie was … 

[Slide from CS224n]



Stochastic gradient descent and pretrain/finetune
Why should pretraining and finetuning help, from a “training neural nets” 
perspective?

• Consider, provides parameters B𝜃 by approximating min
1
	ℒ34564789 𝜃 .

  (The pretraining loss.)

• Then, finetuning approximates min
1
	ℒ:8956;95 𝜃 , starting at B𝜃.

  (The finetuning loss)
• The pretraining may matter because stochastic gradient descent sticks 

(relatively) close to B𝜃 during finetuning.
  So, maybe the finetuning local minima near B𝜃 tend to generalize well!
  And/or, maybe the gradients of finetuning loss near B𝜃 propagate nicely!
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Where does this data come from?

Model Training Data
BERT BookCorpus, English 

Wikipedia

GPT-1 BookCorpus

GPT-3 CommonCrawl, WebText, 
English Wikipedia, and 2 
book databases (“Books 1” 
and “Books 2”)

GPT-
3.5+

Undisclosed



Recap
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1. Language modeling: generative learning of natural language (often autoregressive)

2. Transformers: scalable, easy to to train, parallelizable architecture for sequence modeling

3. Pretraining: language modeling over the internet in a task-agnostic manner.


