
LLMs
INTRO + L ANGUAGE MODEL ING + P RETRA IN ING

Many slides from Chris Manning, John Hewitt, and Anna Goldie’s CS224n slides

Tatsunori Hashimoto

Roadmap

1. LLMs today

2. Language modeling

3. Neural architectures – RNN/Transformer

4. Pretraining (part 1)

Language models in the spotlight

Language models growing in relevance and capabilities

Plotting

Text example from [Bubeck et al 2023]

Math

Text example from [Bubeck et al 2023]

Underlying this: rapid progress on benchmarks

Kiela et al

It’s an exciting time: extremely rapid, sudden improvements in NLP

Major driver: foundation models and internet data
What is the big change these last 10 years? What enabled recent advances in GenAI?

[Bommasani et al 2021]

Intuition: learn ‘task-agnostic’ structures (syntax of language, common sense) from freely available internet data.

‘Foundation models’ that can effectively leverage vast amounts of internet data

How do LLMs work?

Step 1 - Pretraining: learn to autocomplete text on the internet

Maybe we don’t just want to mimic users on the internet..

How do LLMs work?
Step 2 – Post-training: explicitly reinforce desired behaviors identified by annotators

[Ouyang 2020]

Language Modeling is the task of predicting what word comes next

 the students opened their ______

More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

A system that does this is called a Language Model

Language Modeling

exams

mind
s

laptops
book

s

10 [Slide from CS224n]

Language Modeling
You can also think of a Language Model as a system that

assigns a probability to a piece of text

For example, if we have some text , then the probability of
this text (according to the Language Model) is:

11

This is what our LM provides

[Slide from CS224n]

n-gram Language Models
 the students opened their ______

Question: How to learn a Language Model?
Answer (pre- Deep Learning): learn an n-gram Language Model!

Definition: An n-gram is a chunk of n consecutive words.
§ unigrams: “the”, “students”, “opened”, ”their”
§ bigrams: “the students”, “students opened”, “opened their”
§ trigrams: “the students opened”, “students opened their”
§ four-grams: “the students opened their”

Idea: Collect statistics about how frequent different n-grams are and use these to predict next word.

12 [Slide from CS224n]

n-gram Language Models: Example
Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100

times
• à P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

13 [Slide from CS224n]

Generating text with a n-gram Language Model

14

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size… [Slide from CS224n]

How to build a neural language model?
Recall the Language Modeling task:
§ Input: sequence of words
§ Output: prob. dist. of the next word

How about a window-based neural model?

15

in Paris are amazingmuseums

LOCATION

[Slide from CS224n]

A fixed-window neural Language Model

the student
s

opened their

books
laptops

concatenated word
embeddings

words / one-hot
vectors

hidden layer

a zo
o

output distribution

16 [Slide from CS224n]

A fixed-window neural Language Model

the student
s

opened their

books
laptops

a zo
o

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-

grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(") and 𝑥($) are multiplied by

completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input17

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

[Slide from CS224n]

A Simple RNN Language Model

the student
s

opened theirwords / one-hot vectors

books
laptops

word
embeddings

a zo
o

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

18 [Slide from CS224n]

RNN Language Models

the student
s

opened their

books
laptops

a zo
o

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from
many steps back

• Model size doesn’t increase
for longer input context

• Same weights applied on
every timestep, so there is
symmetry in how inputs are
processed.

RNN Disadvantages:
• Recurrent computation is

slow
• In practice, difficult to access

information from many steps
back

More on
these
later

19 [Slide from CS224n]

Training an RNN Language Model
Get a big corpus of text which is a sequence of words
Feed into RNN-LM; compute output distribution for every step t.
§ i.e., predict probability dist of every word, given words so far

Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

Average this to get overall loss for entire training set:

20 [Slide from CS224n]

Evaluating Language Models
The standard evaluation metric for Language Models is perplexity.

This is equal to the exponential of the cross-entropy loss :

21

Inverse probability of corpus, according to Language Model

Normalized by
number of words

Lower perplexity is
better! [Slide from CS224n]

RNNs greatly improved perplexity over what came before

n-gram
model

Increasingly
complex

RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-
words/

22 [Slide from CS224n]

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Problems with RNNs: Vanishing and Exploding Gradients

23 [Slide from CS224n]

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
24 [Slide from CS224n]

Vanishing gradient proof sketch (linear case)
Recall:
What if were the identity function, ?

Consider the gradient of the loss on step , with respect
to the hidden state on some previous step . Let

25

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.
http://proceedings.mlr.press/v28/pascanu13.pdf

(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets
exponentially problematic as becomes large

(value of)

[Slide from CS224n]

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

26 [Slide from CS224n]

Issues with recurrent models: Linear interaction distance
O(sequence length) steps for distant word pairs to interact means:
§ Hard to learn long-distance dependencies (because gradient problems!)
§ Linear order of words is “baked in”; we already know linear order isn’t the

right way to think about sentences…

27

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

[Slide from CS224n]

Issues with recurrent models: Lack of parallelizability
Forward and backward passes have O(sequence length)

unparallelizable operations
§ GPUs can perform a bunch of independent computations at once!
§ But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed
§ Inhibits training on very large datasets!

28

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

[Slide from CS224n]

Attention
Attention provides a solution to the bottleneck problem.

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence

First, we will show via diagram (no equations), then we will show with equations

29 [Slide from CS224n]

The starting point: mean-pooling for RNNs

30

Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoye
d

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

[Slide from CS224n]

Attention is weighted averaging, which lets you do lookups!

31

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of
keys that map to values. The query
matches one of the keys, returning its
value.

In attention, the query matches all keys
softly, to a weight between 0 and 1. The keys’
values are multiplied by the weights and
summed.

[Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
dot product

32

Core idea: on each step of the decoder, use direct connection to the encoder to focus on
a particular part of the source sequence

[Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
dot product

33 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
dot product

34 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
dot product

35 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”he”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the
scores into a probability

distribution

36 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.

37 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state,
then use to compute !𝑦!	as
before

!𝑦!	

he

38 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

he

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!𝑦#	

hit

39

Sometimes we take the
attention output from
the previous step, and
also feed it into the
decoder (along with the
usual decoder input).
We do this in
Assignment 4. [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit

!𝑦$	

me

40 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me

!𝑦%	

with

41 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit with

!𝑦&	

a

me

42 [Slide from CS224n]

Sequence-to-sequence with attention

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me with a

!𝑦'	

pie

43 [Slide from CS224n]

Attention: in equations
We have encoder hidden states
On timestep t, we have decoder hidden state
We get the attention scores for this step:

We take softmax to get the attention distribution for this step (this is a probability distribution and
sums to 1)

We use to take a weighted sum of the encoder hidden states to get the attention output

Finally we concatenate the attention output with the decoder hidden
state and proceed as in the non-attention seq2seq model

44 [Slide from CS224n]

Attention is great!
Attention solves the bottleneck problem
§ Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with the vanishing gradient problem
§ Provides shortcut to faraway states
Attention provides some interpretability
§ By inspecting attention distribution, we see what the decoder was focusing on
§ We get (soft) alignment for free!
§ This is cool because we never explicitly trained an alignment system
§ The network just learned alignment by itself

45

he hi
t

m
e

w
ith

a pi
e

il

a

m’

entarté

[Slide from CS224n]

Do we even need recurrence at all?

46

Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural network
input. (ℎ#)

§ This is also exactly what RNNs are used for – to pass information!
§ Can we just get rid of the RNN entirely? Maybe attention is just a better way to

pass information!

2014-2017ish
Recurrence

Lots of trial
and error

2021
??????

[Slide from CS224n]

The building block we need: self attention

47

What we talked about – Cross attention: paying attention to the input x to generate 𝑦#

En
co

d
er

RN

N

Source sentence (input)

<START
>

il a m ’ entarté

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit m e

!𝑦!	

w
it
h

• What we need – Self attention: to generate 𝑦%, we need to pay attention to 𝑦&%

[Slide from CS224n]

Self-Attention Hypothetical Example

48 [Slide from CS224n]

Self-Attention: keys, queries, values from the same sequence

49

Let 𝒘$:& 	be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘' 	, let 𝒙' = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ)×|,| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ)×)

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆#$ = 𝒒𝒊&𝒌𝒋 𝜶#$ =
exp(𝒆#$)	

∑$(exp(𝒆#$!)

3. Compute output for each word as weighted sum of values

𝒒# = 𝑄𝒙𝒊 (queries) 𝒌# = 𝐾𝒙𝒊 (keys) 𝒗# = 𝑉𝒙𝒊 (values)

𝒐# =3
𝒋

𝜶#$ 𝒗#

[Slide from CS224n]

Barriers
• Doesn’t have an inherent

notion of order!

Barriers and solutions for Self-Attention as a building block

50

Solutions

[Slide from CS224n]

Fixing the first self-attention problem: sequence order
• Since self-attention doesn’t build in order information, we need to encode the order of

the sentence in our keys, queries, and values.
• Consider representing each sequence index as a vector

𝒑' ∈ ℝ) , for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝' are made of yet!
• Easy to incorporate this info into our self-attention block: just add the 𝒑' to our inputs!
• Recall that 𝒙' is the embedding of the word at index 𝑖. The positioned embedding is:

!𝒙6 = 𝒙6 +𝒑6
In deep self-attention networks, we
do this at the first layer! You could
concatenate them as well, but
people mostly just add…

51 [Slide from CS224n]

• Learned absolute position representations: Let all 𝑝' be learnable parameters!
Learn a matrix 𝒑 ∈ ℝ)×& , and let each 𝒑' be a column of that matrix!

• Pros:
• Flexibility: each position gets to be learned to fit the data

• Cons:
• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Many systems use this!

• Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

52 [Slide from CS224n]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning! It’s all just
weighted averages

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to
the inputs

53 [Slide from CS224n]

Adding nonlinearities in self-attention
• Note that there are no elementwise

nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward
network to post-process each
output vector.

𝑚' = 𝑀𝐿𝑃 output' 	
 =	𝑊- ∗ ReLU 𝑊$	output' + 𝑏$ + 𝑏- The

𝑤$ 𝑤-
chef

𝑤.
who

𝑤&
food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

54

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence
• Like in machine

translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to
the inputs

• Easy fix: apply the same
feedforward network to each
self-attention output.

55 [Slide from CS224n]

Masking the future in self-attention
• To use self-attention in

decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

The chef
who

[START]

We can look at these
(not greyed out)
words

𝑒'/ =	;
𝑞'0𝑘/ , 𝑗 ≤ 𝑖
−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

56 [Slide from CS224n]

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence
• Like in machine

translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block
Solutions

• Add position representations to
the inputs

• Easy fix: apply the same
feedforward network to each
self-attention output.

• Mask out the future by artificially
setting attention weights to 0!

57 [Slide from CS224n]

• Self-attention:
• the basis of the method.

• Position representations:
• Specify the sequence order, since self-attention is

an unordered function of its inputs.
• Nonlinearities:

• At the output of the self-attention block
• Frequently implemented as a simple feed-forward

network.
• Masking:

• In order to parallelize operations while not
looking at the future.

• Keeps information about the future from
“leaking” to the past.

Necessities for a self-attention building block:

58 [Slide from CS224n]

Other components we wont cover

59

• Multi-head attention
• Have multiple, but smaller attention heads and

linearly mix the outputs

• Residual connections
• Have residual connections around the attention

and feed forward (addresses vanishing gradients)

• Layer norm
• Standardize the activation across the hidden

dimension coordinate.

The Transformer Decoder

60

• The Transformer Decoder is a
stack of Transformer
Decoder Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

[Slide from CS224n]

The pretraining revolution

Gains from pretrained language models

Pretraining has had a major, tangible impact on how well NLP systems work

Pretraining – scaling unsupervised learning on the internet

Key ideas in pretraining
• Make sure your model can process large-scale, diverse datasets
• Don’t use labeled data (otherwise you can’t scale!)
• Compute-aware scaling

63

What kinds of things does pretraining teach?

There’s increasing evidence that pretrained models learn a wide variety of things about the statistical properties of language.

Stanford University is located in __________, California. [Trivia]
I put ___ fork down on the table. [syntax]
The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
I went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]
Overall, the value I got from the two hours watching it was the sum total of the popcorn and the

drink. The movie was ___. [sentiment]
Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______. [some reasoning – this is harder]
I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic arithmetic;

they don’t learn the Fibonnaci sequence]
Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

[Slide from CS224n]

Pretraining through language modeling [Dai and Le, 2015]
Recall the language modeling task:
• Model 𝑝1 𝑤# 𝑤$:#2$), the probability

distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:
Train a neural network to perform language

modeling on a large amount of text.
Save the network parameters.

64

Decoder
(Transformer, LSTM, ++)

Iro
h

goes to make tasty tea

goes to make tasty tea END

[Slide from CS224n]

https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm
Pretraining can improve NLP applications by serving as parameter initialization.

65

(Transformer, LSTM, ++)

Iro
h

goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language
modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)
Not many labels; adapt to the task!

(Transformer, LSTM, ++)

J/L

… the movie was …

[Slide from CS224n]

Stochastic gradient descent and pretrain/finetune
Why should pretraining and finetuning help, from a “training neural nets”
perspective?

• Consider, provides parameters B𝜃 by approximating min
1
	ℒ34564789 𝜃 .

 (The pretraining loss.)

• Then, finetuning approximates min
1
	ℒ:8956;95 𝜃 , starting at B𝜃.

 (The finetuning loss)
• The pretraining may matter because stochastic gradient descent sticks

(relatively) close to B𝜃 during finetuning.
 So, maybe the finetuning local minima near B𝜃 tend to generalize well!
 And/or, maybe the gradients of finetuning loss near B𝜃 propagate nicely!

66 [Slide from CS224n]

Where does this data come from?

Model Training Data
BERT BookCorpus, English

Wikipedia

GPT-1 BookCorpus

GPT-3 CommonCrawl, WebText,
English Wikipedia, and 2
book databases (“Books 1”
and “Books 2”)

GPT-
3.5+

Undisclosed

Recap

68

1. Language modeling: generative learning of natural language (often autoregressive)

2. Transformers: scalable, easy to to train, parallelizable architecture for sequence modeling

3. Pretraining: language modeling over the internet in a task-agnostic manner.

