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Language models in the spotlight

Language models growing in relevance and capabilities

INPUT

Glossier

We're creating the new beauty essentials: easy-to-use skincare and makeup that
form the backbone to your routine. Try it out this Christmas.

RESULTS

Hey, guess what. It’s a present for you! Christmas is right around the
corner and we're delightfully excited to share the gift of Glossier with

you. @4

I} Glossier gift boxes are back in stock and are the perfect stocking
stuffers, or just a treat for yourself. Our skincare products clear up and
prevent breakouts while improving skin clarity and texture. # Our

keup line includes i i high ge, dewy foundations that
you can wear alone or as a base for other powder or liquid formulas. &
The perfect Christmas gift!

This Christmas, give your friends and family a stack of Glossier goodie
bags. Try out our minimalist ski and makeup and give your new
routine a try when 2021 rolls around.

https://www.copy.ai

GPT-3

OMG! What Will Happen
When A.l. Makes BuzzFeed

Quizzes?

The site announced plans to use tools from the creator of

ChatGPT to create content. Former quiz writers aren’t surprised.

ChatGPT: Optimizing

Language Models
for Dialogue

Exam results ( by GPT-3.5 per gpta
Estimated percentile lower bound (among test takers) gpt-4 (no vision)
100% gpt3.5

80% —
60% —
40% -

20% -




Plotting

Prompt: Can you generate a pyplot for the following data: = = [1,3,5,6,8],y1 = [2,3,5,18,1],y2 = [3,5,6,8,1],43 =
[5,1,2,3,4],y4 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but 33 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be "bob”, y2 to be "alice”, y3 to be "bilbo”, y4 to be "allie”. I want the z-axis to be
labeled with "time” and y axis to be labeled with "money”. I want to add a 10 %-40% random error bar to each curve,
through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three
plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Bob and Alice Bilbo Bob and Alice Bilbo

— alice

04— alice 6
5

Alie Fractions at time 3.26 Allie Fractions at time 7.86

adice

12 alice o

Bibo

Text example from [Bubeck et al 2023]



Math

Prompt: Suppose g(z) = f~'(x),9(0) = 5,9(4) = 7,9(3) = 2,9(7) = 9,9(9) = 6 what is f(f(f(6)))?

GPT-4: There are different ways to approach this problem, but one possible method is to use the fact that g(z) =
f~Y(x) implies that f(g(z)) = = for any z in the domain of g. That is, applying f to both sides of the equation
g(z) = f~1(z) gives f(g(z)) = f(f~'(x)) = . This means that we can undo the effect of f by applying g, and vice
versa. Using this idea, we can try to find f(6) by looking for the value of z such that g(z) = 6. From the given
information, we see that g(9) = 6, so f(6) = f(g(9)) = 9. Similarly, we can find f(9) by looking for the value of = such
that g(z) = 9. We see that ¢g(7) =9, so f(9) = f(g(7)) = 7. Finally, we can find f(7) by looking for the value of z such
that g(z) = 7. We see that g(4) = 7, so f(7) = f(g(4)) = 4. Therefore, f(f(f(6))) = f(f(9)) = f(7) =4.

Text example from [Bubeck et al 2023]



Underlying this: rapid progress on benchmarks

It’s an exciting time: extremely rapid, sudden improvements in NLP

0.2 l ~—— Human
g 2/ —— MNIST
§ 0.01 — ~—— Switchboard
uw —— ImageNet
S e SQuAD 1.1
E - SQuAD 2.0
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Kiela et al



Major driver: foundation models and internet data

What is the big change these last 10 years? What enabled recent advances in GenAl?

‘Foundation models’ that can effectively leverage vast amounts of internet data

Tasks

Question 9
s, Answering ,,'
Data Sentiment
>/ & '_) Analysis
Text
‘L 4N @
T Ny )
M V' @ Information \«
_ d Images Extraction
. 2 Adaptation
Speech'% ) Training | Foundation £ Image
Model 6 Captioning W
. Structured
- Data
- Object
. = &‘ Recognition
3D Signals 9 ‘

v Instruction
. Following .. %
& Y

Intuition: learn ‘task-agnostic’ structures (syntax of language, common sense) from freely available internet data.

[Bommasani et al 2021]



How do LLMs work?

Step 1 - Pretraining: learn to autocomplete text on the internet

Output

Input

recite the @ first law $ I ’ ‘

Maybe we don’t just want to mimic users on the internet.. |




How do LLMs work?

Step 2 - Post-training: explicitly reinforce desired behaviors identified by annotators

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our it

Explain the moon
prompt dataset. landing to a 6 year old

'

A labeler

demonstrates the @

desired output y;

behavior. Some pec‘vpls went
to the moon...

This data is used SET

to fine-tune GPT-3 25

. . S

with supervised W

learning. 2
EEE

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model e
Explain the moon
outputs are landing to a 6 year old
sampled. o o
Explain gravity. Explain war.

Moon s natural Paople went to
5 e mosn.

A labeler ranks

the outputs from @
best to worst.

This data is used M
to train our SR
reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from wﬂtzm
the dataset. about frogs
The policy D
generates 08,
-
an output. '\.'\9{/'

Once upon a time...

v

RM

The reward model

calculates a o9

reward for '(f?'\;?‘

the output. *

The reward is

used to update I —
the policy

using PPO.

[Ouyang 2020]



Language Modeling
Language Modeling is the task of predicting what word comes next
book
the students opened their ______ / s (laptops
\\ exams
mind

More formally: given a sequence of words e @ g
compute the probability distribution of the next wizHD

t+1 t 1
P(w( + )| z® . ))
where"™ can be any word in the vocabulaV = {wy, ..., wyy |}

A system that does this is called a Language Model

10 [Slide from CS224n]



Language Modeling

You can also think of a Language Model as a system that
assigns a probability to a piece of text

For example, if we have some text =V,...,z(™) | then the probability of

this text (according to the Language Model) is:

P, . M) = PxW) x P(x@| M) x .. x P(x™] TV .. =)

P®] 2D, ... z0)

=

o+
Il

1

(N J
Y

This is what our LM provides

11 [Slide from CS224n]



n-gram Language Models

the students opened their ______

Question: How to learn a Language Model?
Answer (pre- Deep Learning): learn an n-gram Language Model!

Definition: An n-gram is a chunk of n consecutive words.
= unigrams: “the”, “students”, “opened”, "their”

= bigrams: “the students”, “students opened”, “opened their”
= trigrams: “the students opened”, “students opened their”

= four-grams: “the students opened their”

Idea: Collect statistics about how frequent different n-grams are and use these to predict next word.

12 [Slide from CS224n]



n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

mmmﬁedudvﬁe students opened the/r _____

discard

condltlon on this

count(students opened their w)
count(students opened their)

P(w|students opened their) =

For example, suppose that in the corpus:
*  “students opened their” occurred 1000 times

*  “students opened their books” occurred 400 times '
« > P(books | students opened their) = 0.4 > Should we have discarded
« “students opened their exams” occurred 100 the “proctor” context?
times )

. + > P(exams | students opened their) = 0.1 [Slide from CS224n]



Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...butincoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,

) and increases model size... (slide from CS224n]



How to build a neural language model?

Recall the Language Modeling task:
= Input:sequence of words M £® . . £®
= Output: prob. dist. of the nextword  P(z®*tV| z®, ... zM)

How about a window-based neural model?

LOCATION

'u

000000000000
A

w
0000 0000 0000 0000 0000

) ) ) ) )

museums in Paris are  amazing

15 [Slide from CS224n]



A fixed-window neural Language Model

books
laptops
output distribution
§ = softmax(Uh + by) € RV - _
a A 0
(0]
U
hidden laver
000000000000
h = f(We + b1) —
%%
concatenated word
(D). .(2). L(3). L (4) 0000 0000 0000 0000
6_[6 ;€ €75 € ] N N Yy, N

words / one-hot the  student opened  their
202 z®) z® 20 L@ a3

16 [Slide from CS224n]
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A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM:
* No sparsity problem
* Don’t need to store all observed n-

grams

Remaining problems:

Fixed window is too small
Enlarging window enlarges W
Window can never be large enough!
x and x® are multiplied by
completely different weightsin W.
No symmetry in how the inputs are

processed.

books

laptops

»

A %
o
U
000000000000
N

0000 0000 0000 0000

We need a neural architecture
that can process any length input

T

the student opened  their
e (2 23 2@

[Slide from CS224n]
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9@ = P(x®|the students opened their)

. books
A Simple RNN Language Model laptops
output distribution
g® = softmax <Uh(t) + bg) e RWVI = =
a 20
(o]
U
h(0) rD h(2) h3) h®
hidden states ® ® ® @ ®
O (t-1) ® oW, |0 W, |[@| Wi |@|Wr |@®
h'Y =0 (Whh + W.e'" + b1> o o ’l @ ’l @ ’l @
h(9) is the initial hidden state ) ) () () ()
7 7\ 7 7}
w, W, W, w,
o o o o
word (V) 8 e@| O B[O O
e — Ep®s o o o
o o o o
words / one-hot vectors the  student opened  their
m(t) (- Rlvl m(l) w(2) m(3) m(4)
Note: this input sequence could be much / [Slide from CS224n]
longer now!




9@ = P(x®|the students opened their)

RNN Language Models A
RNN Advantages:
« Can process any length input LL

 Computation for step t can (in 3 20
theory) use information from U’
many steps back X0 R B2 B3 h®

* Model size doesn’t increase O - ® - ] - ) - ]
for longer input context : iIN : 1N : 2N : iIN :

» Same weights applied on ) o ) ) )
every time§tehp, S0 thereis /\We w. w. w.
symmetrﬁ In how Inputs are 8 8 8 8

rocessed. 1 (2) (3) (4)
P e o o e o e o
. > o o o o
RNN Disadvantages: T
* Recurrent computation is More on .
g the  student opened  their

slow these D ) 5 o
« In practice, difficult to access | 'ater
19 information from many steps ~ [Slide from CS224n]




Training an RNN Language Model

Get a big corpus of text which is a sequence of words =z, ...,z™)
Feed into RNN-LM; compute output distribution 9 %or every step t.
= i.e., predict probability dist of every word, given words so far

Loss function on step tis cross-entropy between predicted probability
distributicg® , and the true next wo ¥ (one-hot fz(*+9 );

JO©0) = CE@®,50) = — ¥ y®1og g = —log g

Ti41
weV

Average this to get overall loss for entire training set:

1 < 1 <

0 =720 = 1) ~logdi),,

20 [Slide from CS224n]



Evaluating Language Models

The standard evaluation metric for Language Models is perplexity.

T 1/T
_ 1
perplexity = | | (PLM(a:<t+1>| z®, . ,w(l))) "7 Normalized by
t=1 number of words

\. J
Y

Inverse probability of corpus, according to Language Model

This is equal to the exponential of the cross-entropy loss

J(9)

T 1/T T
1 1 NO
= H <Q(t—)> = exp (T Z —logymm) = exp(J(0))

t=1

Lower perplexity is
21 better! [Slide from CS224n]
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RNNs greatly improved perplexity over what came before

Model Perplexity

n-gram _— Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
model RNN-1024 + MaxeEnt 9-gram (Chelba et al., 2013) 51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
Increasingly g?arsgoﬁgr)l—negative Matrix factorization (Shazeer et 52.9
complex LSTI:1-2048 (Jozefowicz et al., 2016) 43.7
RNNs 2-Tayer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9

L | Ours large (2-layer LSTM-2048) 39.8 15

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

[Slide from CS224n]



https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Problems with RNNs: Vanishing and Exploding Gradients

J® ()
A
h( h( h3) 118))
[ [ [ [
0 w_ |e w _|e w |e
[ 10 10 10
[ [ [ [

23 [Slide from CS224n]



Vanishing gradient intuition

J®(0)
h h®2) h3)
0
: w : w o
e 4_ o) o)
o o o

9JW  |on® a.J™

onM ~ |an® * 9h®

Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further

24 [Slide from CS224n]




Vanishing gradient proof sketch (linear case)

Recall: h® = o (Whh(t_l) + W,z + bl)
What if owere the identity function, ¢(z) =z ?
oh® . - ,
aRe-D = diag (0' (WihD + Woa® + bl)) Wi (chainrule)

:IWhZWh

Consider the gradient of the loss J®)(9) on step 3, with respect
to the hidden staten(’) on some previous stepj.Llet{ =1 — j

0JD(9)  9JD(0) oh® .
ET O ) 10) H HRG—D (chain rule)
i<t<i
87 (6) CEARIC) PYR0)
= W, = \%%4
G jl_[m .0 Th (value of =)

If W, is “small”, then this term gets

exponentially problematic as€ becomes large [Slide from €S224n]

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.
25 http://proceedings.mlr.press/v28/pascanul3.pdf

(AarnA ciinnlamantal mmararialel A+ it/ frmvrmrmmdimeoe malv mvrmrce DO lmacramit 1D crimm AE



http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?
J2)(0) J®(0)

A1)

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

26

[Slide from CS224n]




Issues with recurrent models: Linear interaction distance

O(sequence length) steps for distant word pairs to interact means:
= Hard to learn long-distance dependencies (because gradient problems!)

= Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

FH::::J:::;::

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

27 [Slide from CS224n]




Issues with recurrent models: Lack of parallelizability

Forward and backward passes have O(sequence length)
unparallelizable operations

= GPUs can perform a bunch of independent computations at once!

= But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

= Inhibits training on very large datasets!

—>000 000 ——>h—»>
—>000 000 —>—»

hl h hT [Slide from CS224n]

Numbers indicate min # of steps before a state can be computed

28




Attention

Attention provides a solution to the bottleneck problem.

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence

First, we will show via diagram (no equations), then we will show with equations

29 [Slide from CS224n]



The starting point: mean-pooling for RNNs

positive How to compute
sentence encoding?

: Usually better:
Sentence o) Take element-wise
encoding o max or mean of all
hidden states
o o o o) o o) o)
o S| @ S| @ | @ S| @ S| @ S| @
Y 10 10 ‘1@ 10 10 10
) ) ) _% e !f ®
overall / enjoye the movie a lot
d

Starting point: a very basic way of ‘passing information from the encoder’ is to average

30 [Slide from CS224n]



Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average - this is very powerful if the weights are learned!

In attention, the query matches all keys
softly, to a weight between 0 and 1. The keys’
values are multiplied by the weights and

summed.

keys values Weighted

Sum
vl

v2
query output

: o ¥ [

v5
31

In a lookup table, we have a table of
keys that map to values. The query
matches one of the keys, returning its

value.
keys values

e v

qery LB V2
¢ - v output
v4 % v4

e

[Slide from CS224n]



Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on
a particular part of the source sequence

32

dot product

Attention
scores
—

()

S

il a m’ entarté <START

\ J >
Y

Source sentence (input) [Slide from CS224n]

Encod
er
RNN
—
%,_I
NN¥ 412p029Q
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Sequence-to-sequence with attention

dot product

Attention

il a m’ entarté <START

\ J >
Y

Source sentence (input)

H_I
NN J9p023(

[Slide from CS224n]




Sequence-to-sequence with attention

dot product

Attention

H_I
NN J9p023(

il a m’ entarté <START

\ J >
Y

34 Source sentence (input)

[Slide from CS224n]



Sequence-to-sequence with attention

dot product

Attention

H_I
NN J9p023(

il a m’ entarté <START

\ J >
Y

Source sentence (input)

35 [Slide from CS224n]
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Sequence-to-sequence with attention

On this decoder timestep, we’re

mostly focusing on the first
/ encoder hidden state (*he”)

Attention
distributio
n
~—

1

Take softmax to turn the
scores into a probability
distribution

Attention
scores

> entarté <START

il a m
1\ J >

Y
Source sentence (input)

H_I
NN J9p023(

[Slide from CS224n]
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Sequence-to-sequence with attention

Attention < Use the attention distribution to take a
output weighted sum of the encoder hidden
c O states.
o +
23
2 2 The attention output mostly contains
<o information from the hidden states that
= received high attention.
=
c
(0]
£
<
o
;
o @)
S 52 E S
e o =
L )
=
=

il a m’ entarté <START
\ ) >
Y
Source sentence (input) [Slide from CS224n]
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Sequence-to-sequence with attention

Attention he

output 1\ -
L Concatenate attention output
O ,,,,, . A . .
-é S e $1 ] with decoder hidden itate,
20 o A then use to compute J; as
L5 T before
+= 0 R
<5
c
2
-+
c
(]
£
<

il a m’ entarté <START

\ J >
Y

Source sentence (input)

NNy 412p02a(

[Slide from CS224n]




Sequence-to-sequence with attention

Attention
output

>
%:'_-

e,
‘e
.
N
v,

c 9
85'
5% °
£ 0 = D
<5

S5 D
s N

c

R
-+
c
Q
£
<

z

3.z ) S

2T Z Sometimes we take the @

. -

H attention output from =

the previous step, and =

also feed it into the
i o m entarté <START he 4| decoder (along with the
w y > usual decoder input).
Y _ We do thisin
39 Source sentence (input) Assignment 4. [Slide from CS224n]




Sequence-to-sequence with attention

Attention me

Attention
distributio

Attention

NNy 412p02a(

J

il a m’ entarté <START he hit

\ ) >
Y

40 Source sentence (input) [Slide from CS224n]
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Sequence-to-sequence with attention

Attention with
output

&l
.......
"y

®

Attention
distributio
n
~—

I}
1
v

Attention

il a m’ entarté <START he hit  me

\ J >
Y

Source sentence (input)

NNy 412p02a(

[Slide from CS224n]




Sequence-to-sequence with attention

Attention a
output
I Bl
o B = Vs
23 . A
22 e
x5 Y N

Attention

NNy 412p02a(

il a m’ entarté <START he hit  me  with

\ J >
Y

492 Source sentence (input)

[Slide from CS224n]
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Sequence-to-sequence with attention

Attention
output

> >3

co LB
S5
ST
=%
<5
c
R
-+
c
[}
+
4
<

J

entarté <START he hit me  with a

il a m
1\ J >

Y
Source sentence (input)

NNy 412p02a(

[Slide from CS224n]




Attention: in equations

We have encoder hidden states ~ h1,...,hy € R"
On timestep t, we have decoder hidden state s; € R”
We get the attention scores e’ r this step:

e! =[slhy,...,sThy] e RY

We take softmax to get the attention distribution o' or this step (this is a probability distribution and
sumsto 1)

o' = softmax(e’) € RY

We use ! to take a weighted sum of the encoder hidden states to get the attention outja,
N
a; = Z Ckfhz € Rh
i=1

Finally we concatenate the attention output a;'ith the decoder hidden
state s; and proceed as in the non-attention seq2seq model

44 [as; s¢] € R?h [Slide from CS224n]



Attention is great!

Attention solves the bottleneck problem

= Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with the vanishing gradient problem

= Provides shortcut to faraway states

Attention provides some interpretability

= Byinspecting attention distribution, we see what the decoder was focusing on
= We get (soft) alignment for free!

= Thisis cool because we never explicitly trained an alignment system

= The network just learned alignment by itself

with

hit
me
a
pie

Q =
W

45 [Slide from CS224n]



Do we even need recurrence at all?

Abstractly: Attention is a way to pass information from a sequence (x) to a neural network
input. (h;)

= Thisis also exactly what RNNs are used for - to pass information!

= Canwe just get rid of the RNN entirely? Maybe attention is just a better way to
pass information!

H * Lots of trial .
i’i’ and error

2014-2017ish 2021
Recurrence 222272

[Slide from CS224n]



The building block we need: self attention

What we talked about - Cross attention: paying attention to the input x to generate y;

«  What we need - Self attention: to generate y,, we need to pay attention to y_;

47 [Slide from CS224n]



Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I i

went to Stanford CS 224n and learned

48 [Slide from CS224n]



Self-Attention: keys, queries, values from the same sequence
Let w,.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

Foreachw; , let x; = Ew;, where E € R**!"l is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K,V , each in R4
q; = Qx; (queries) k; = Kx; (keys) v; = Vx; (values)
2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
2. exp(e;;r)

— T —

3. Compute output for each word as weighted sum of values

0; = Eaijvi

J
49 [Slide from CS224n]



Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have aninherent
notion of order!

50 [Slide from CS224n]



Fixing the first self-attention problem: sequence order

51

Since self-attention doesn’t build in order information, we need to encode the order of
the sentence in our keys, queries, and values.

Consider representing each sequence index as a vector

p; € R4, fori € {1,2,...,n} are position vectors

Don’t worry about what the p; are made of yet!
Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
Recall that x; is the embedding of the word at index i. The positioned embedding is:

—~ In deep self-attention networks, we

X: = X: + p : do this at the first layer! You could
l l l

concatenate them as well, but

people mostly just add...

[Slide from CS224n]



Position representation vectors learned from scratch

* Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R**", and let each p; be a column of that matrix!

Pros:
* Flexibility: each position gets to be learned to fit the data

Cons:
 Definitely can’t extrapolate to indices outside 1, ..., n.

Many systems use this!

Sometimes people try more flexible representations of position:
 Relative linear position attention [Shaw et al., 2018]

» Dependency syntax-based position [Wang et al., 2019]
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
* Doesn’t have an inherent , * Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It’s all just
weighted averages

v
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Adding nonlinearities in self-attention

54

 Note that there are no elementwise

nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors
(Why? Look at the notes!)

« Easyfix: add a feed-forward
network to post-process each
output vector.

m; = MLP (output;)
= W, * ReLU(W; output; + b;) + b,

[]
T
FF
T

i

FF

[] []
t t
FF FF FF
t T t
self-attention
. o o o .
t t
FF FF FF
t . t
self-attention
[] [] A |
wy w3 Wy
chef who food

Intuition: the FF network processes the result of attention




Barriers and solutions for Self-Attention as a building block
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Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

e Likein machine
translation

* Orlanguage modeling

v

v

v

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each
self-attention output.
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Masking the future in self-attention We can look at these
(not greyed out)
 To use self-attentionin words |

decoders, we need to ensure
we can’t peek at the future.

[START]
« Atevery timestep, we could
change the set of keys and ”’
queries to include only past The
words. (Inefficient!) For encoding
these words
_J chef
* Toenable parallelization, we
mask out attention to future
words by setting attention who
scores to —oo. B qiTkj,]' <i
U7 )0, j > i
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Barriers and solutions for Self-Attention as a building block

Barriers

e Doesn’t have an inherent
notion of order!

* No nonlinearities for deep
learning magic! It’s all just
weighted averages

e Needtoensurewedon’t
“look at the future” when
predicting a sequence

e Likein machine
translation

57 « Orlanguage modeling

v

v

v

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each
self-attention output.

Mask out the future by artificially
setting attention weights to 0!

[Slide from CS224n]
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Necessities for a self-attention building block:

Self-attention:
e the basis of the method.
Position representations:

» Specify the sequence order, since self-attention is
an unordered function of its inputs.

Nonlinearities:
* At the output of the self-attention block

* Frequently implemented as a simple feed-forward
network.

Masking:
* Inorder to parallelize operations while not
looking at the future.

* Keeps information about the future from
“leaking” to the past.

Repeat for number
of encoder blocks

Probabilities

Softmax
N
Linear
N

Block

Add Position
Embeddings

Embeddings

Inputs
[Slide from CS224n]




Other components we wont cover

e Multi-head attention

* Have multiple, but smaller attention heads and
linearly mix the outputs

 Residual connections

* Have residual connections around the attention
and feed forward (addresses vanishing gradients)

« Layer norm

« Standardize the activation across the hidden
dimension coordinate.
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The Transformer Decoder

The Transformer Decoder is a
stack of Transformer
Decoder Blocks.

Each Block consists of:
+ Self-attention
* Add & Norm
* Feed-Forward
* Add & Norm

That’s it! We’ve gone through
the Transformer Decoder.

Probabilities

Softmax
N
Linear
N

Add & Norm

ey

|
Add & Norm

Repeat for number
of encoder blocks

Block

Add Position
Embeddings
Embeddings

Decoder Inputs )
[Slide from CS224n]




The pretraining revolution

o 0.2 J ——— Human
g /“ 7, || ST
5 0.0 — —— Switchboard
= ( —— ImageNet
g oz SQUAD 1.1
£-o.
o —— SQuAD 2.0
= GLUE
*3 -0.4 —— SuperGLUE
2
g -0.6
N
©
E_o0s
=}
4
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2000 2005 2010 2015 2020
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110 =
Reset zoom
100
AALBERT + DAAF + Verifier (ensemble) FPNet (ensemble)
90 BERT + ConvLSTM + MTL + Verifier (ensemble)———®—®—— ©
BERT finetune baseline (enseribie] ~ -
s 0 EERT(singIemo‘d‘ﬂ X )
¢ et sngémode) 3 Gains from pretrained language models
SAN (ensemble model) _~
70
60
50
Jan'18 May 18 Sep'18 Jan'19 May 19 Sep'19 Jan'20 May 20 Sep'20 Jan'21 May 21

Other models  -o- Models with highest EM

Pretraining has had a major, tangible impact on how well NLP systems work




Pretraining - scaling unsupervised learning on the internet

Tasks
1 Question 9
Q, Answering fb
Data J & ’ Sentiment
________________ Analysis
Text ,l
y ‘
N
f"\ \/ @7 Information @«
L= j Images 4 Extraction
- 2 Adaptation
G /\I\/\f\}; Training Foundation Q Image
% Model e Captioning W
Structured
* Dat
N Object
3D Signals “? @ ‘Recognltlon
Instruction

2
@ Following S/Q

Key ideas in pretraining
* Make sure your model can process large-scale, diverse datasets
* Don’t use labeled data (otherwise you can’t scale!)

+ Compute-aware scaling
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What kinds of things does pretraining teach?

There’s increasing evidence that pretrained models learn a wide variety of things about the statistical properties of language.

Stanford University is located in , California. [Trivia]

I put ___ fork down on the table. [syntax]

The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and

_____ . [lexical semantics/topic]

Overall, the value | got from the two hours watching it was the sum total of the popcorn and the
drink. The movie was ___. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny.
Zuko left the . [some reasoning - this is harder]

| was thinking about the sequence that goes 1,1, 2,3,5,8,13,21, ____ [some basic arithmetic;
they don’t learn the Fibonnaci sequence]

Models also learn - and can exacerbate racism, sexism, all manner of bad biases.
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Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(w;|w;.._;), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

Train a neural network to perform language
modeling on a large amount of text. ro  goes to make tasty tea

Save the network parameters. h
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https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language Step 2: Finetune (on your task)
modeling) Not many labels; adapt to the task!
Lots of text; learn general things!
goes to make tasty tea END ©/®
I )

Iro  goes to make tasty tea ... the movie was ...
h
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Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets”
perspective?

 Consider, provides parameters 8 by approximating mein Lyoretrain (6).
(The pretraining loss.)
* Then, finetuning approximates mein Leinetune (8), starting at 6.

(The finetuning loss)

* The pretraining may matter because stochastic gradient descent sticks
(relatively) close to 8 during finetuning.

So, maybe the finetuning local minima near 8 tend to generalize well!
And/or, maybe the gradients of finetuning loss near 8 propagate nicely!
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Where does this data come from?
Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
ArXiv

PubMed Central

StackExchange !!
PMA Github
FreeLaw USPTO NIH |OpenWebText2 Wikipedia DM Math I YT

Model |Training Data

BERT  BookCorpus, English
Wikipedia

GPT-1 | BookCorpus

GPT-3 CommonCrawl, WebText,
English Wikipedia, and 2
book databases (“Books 1”
and “Books 2”)

GPT-  Undisclosed

3.5+
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Recap

1. Language modeling: generative learning of natural language (often autoregressive)

2. Transformers: scalable, easy to to train, parallelizable architecture for sequence modeling

3. Pretraining: language modeling over the internet in a task-agnostic manner.




