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Success of deep learning 2

AlphaGo/Zero

Image recognition

Deep learning has shown 
great performances in 
the AI research field.
→ Why?

[Silver et al. (Google Deep Mind): Mastering the game of Go with 
deep neural networks and tree search, Nature, 529, 484—489, 2016]

[He, Gkioxari, Dollár, Girshick: Mask R-CNN, ICCV2017] 

[Brown et al. “Language Models are Few-Shot Learners”, NeurIPS2020]

[Alammar: How GPT3 Works - Visualizations and 
Animations, 
https://jalammar.github.io/how-gpt3-works-
visualizations-animations/]

Performance of few-shot 
learning against model size
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Large language model

Generative models (diffusion models)

Jason Allen "Théâtre D'opéra
Spatial“ generated by Midjourney. 
Colorado State Fair’s fine art competition, 
1st prize in digital art category

[Ho, Jain, Abbeel: Denoising Diffusion Probabilistic Models. 2020]

Generated by NovelAI

Stable diffusion, 
2022.



What we need to solve?

Why does deep learning work well?
• Several theoretical work has been conducted. 

• There are still many things that should be explored.
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Criticism that DL is “alchemy.”

Issue in academic conference Issue in industries

Ali Rahimi’s talk at NIPS2017 (test of time award). 
“Random features for large-scale kernel methods.”

• We don’t want to use black-box 
system. 

• Accountabilities of companies.

• Clarification of principle of deep learning
• What is essential to realize a “good” learning system?

→We may find a new method beyond DL.

Deep learning theory



Role of mathematics 4

Physics

Mathematicsphysical phenomenon

• Theory of Relative
➢ Riemannian geometry

• Quantum mechanics
➢ Functional analysis

Machine learning

Deep learning Mathematics

• Prob. theory
• Functional anal.
• Wasserstein geom.
• Diffusion equation

• Statistics
• Optimization
• Numerical 

analysis

Several mathematicians/physicists
join the ML community.



Layers of deep learning theory 5

Interpretability：
Accountability, visualization, 
easier maintenance 

Analysis of several techniques：
Analysis of architecture, loss function 
design, analysis of optimization technique

Principle of deep learning：
Representation ability, generalization 
ability, convergence analysis of opt.

Essence of learning：
Characterization of “good” learning 
methods, unified theory，beyond DL

Application

Foundation

Understanding 
behaviors of DL
➢ Accountability
➢ Clarifying possibility 

and limitations
➢ Guideline for 

designing a learning 
method

Today’s topic



3 issues of deep learning theory

Representation ability

What kind of functions can 
DNN approximate?
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Generalization ability

How well can DL generalize 
from finite observations?

Optimization ability

How fast can we find the 
optimal parameter?
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Outline 8

1. Representation ability + Generalization 
ability
➢Universal approximator

➢Depth separation

➢Adaptivity of deep learning
➢ Inhomogeneity of smoothness

➢Curse of dimensionality

➢Foundation models
➢Diffusion model

➢Transformer

2. Optimization ability
➢Noisy gradient descent

➢Mean field Langevin

➢CSQ lowerbound



Representation ability 
of neural networks

9

Representation
ability

Generalization
ability

Optimization



Representation ability 10

Universal approximator
Neural networks can approximate 

“any function” with “any precision”.

[Hecht-Nielsen,1987][Cybenko,1989]

Year Basis function Space

1987 Hecht-Nielsen Depending on the target 𝐶(𝑅𝑑)

1988 Gallant & White Cos 𝐿2(𝐾)

Irie & Miyake integrable 𝐿2(𝑅
𝑑)

1989 Carroll & Dickinson Continuous sigmoidal 𝐿2(𝐾)

Cybenko Continuous sigmoidal 𝐶(𝐾)

Funahashi Monotone & bounded 𝐶(𝐾)

1993 Mhaskar + Micchelli Polynomial growth 𝐶(𝐾)

2015 Sonoda + Murata Unbounded, admissible 𝐿1 𝑅𝑑 , 𝐿2 𝑅𝑑

is any compact set.

2-layer NNs can approximate any function,

by increasing the number of neurons.



What are we missing?

• [Theory] Kernel method is also a 
universal approximator．

• [Practice] DL performs better.

→ Why?
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→ We compare “accuracy” of estimation/approximation.

Trainable

Fixed

Trainable

Trainable

Kernel method
(linear model) Deep model

(in some case)

Deep learning



Feature learning

• Linear model
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• Kernel model

• Neural network
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TrainableFixed

TrainableTrainable
Trainable

Fixed
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𝜑1

𝜑2

Kernel model with fixed basis

Radius

Target function

Huge radius
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𝜑1

𝜑2

Kernel model with fixed basis

NN with 𝜑(𝑥; 𝜃1)

NN with 𝜑(𝑥; 𝜃2)

Target function

Radius



Deep network is exponentially powerful15

𝐿’𝐿 =

Exponentially large width is required.

[Arora, Basu, Mianjy, Mukherjee: Understanding Deep Neural Networks with Rectified Linear Units. 
ICLR2018.]

Width  vs  Depth



Curse of dimensionality/Barron class 16

where

• Random feature model with 𝑴 neurons

• Mean field model defined by 𝜋

Curse of dimensionality (To obtain 𝜖 accuracy, 𝑀 = 𝜖−Ω(𝑑) is required)

Generated randomly
(fixed independent of the target)

：set of NNs

The first layer can be tuned

• Neural network model with 𝑴 neurons

[E, Ma, Wu: A comparative analysis of optimization and generalization properties of two-layer neural network and random feature models under gradient descent dynamics. Science China 
Mathematics volume 63, 1235–1258 (2020)][E, Ma, Wu: A priori estimates of the population risk for two-layer neural networks. COMMUN. MATH. SCI. 17(5), 1407–1425 (2019)]

Approx. error



Outline 17

1. Representation ability + Generalization 
ability
➢Universal approximator

➢Depth separation

➢Adaptivity of deep learning
➢ Inhomogeneity of smoothness

➢Curse of dimensionality

➢Foundation models
➢Diffusion model

➢Transformer

2. Optimization ability
➢Noisy gradient descent

➢Mean field Langevin

➢CSQ lowerbound



Analysis in nonparametric regression
-Superiority of deep learning-

18

Representation
ability

Generalization
ability

Optimization



Non-parametric regression 19

Non-parametric regression

where 𝜉𝑖 ∼ 𝑁(0, 𝜎2) and 𝑥𝑖 ∈ 0,1 𝑑 ∼ 𝑃(𝑋) (i.i.d.).

We estimate 𝑓o from 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 .

A similar argument can be applied to classification.

Estimation error:



Bias-Variance decomposition 20

Predictive error =   
𝑀

𝑛
   +  [Approx. error]

Model ℱ: 𝑑-dimensional parameter
𝑛: data size

(mean squared error)

ℱ

Variance Model Bias

Model’s degrees of freedom

• Bias-variance trade-off
Large model is not necessarily good

• 𝑑 can be replaced by an “intrinsic” 
dimensionality.

• Several learning theory is reduced to 
evaluate the bias and variance terms.

[Gine&Nickl: Mathematical Foundations of Infinite-
Dimensional Statistical Models. 2015]
[Schmidt-Hieber, 2017;Hayakawa&Suzuki, 2020]



Bias-Variance decomposition 21

Model ℱ: 𝑑-dimensional parameter
𝑛: data size

(mean squared error)

ℱ

Variance Model Bias

• Bias-variance trade-off
Large model is not necessarily good

• 𝑑 can be replaced by an “intrinsic” 
dimensionality.

• Several learning theory is reduced to 
evaluate the bias and variance terms.

(covering number)

[Gine&Nickl: Mathematical Foundations of Infinite-
Dimensional Statistical Models. 2015]
[Schmidt-Hieber, 2017;Hayakawa&Suzuki, 2020]



Covering number 22

The smallest number of balls with radius 𝜖 measured 
by the norm ‖ ⋅ ‖∞ to cover the function class ℱ.

• The covering number measures how large the space ℱ is. 
• In other words, it represents “complexity” of the model.



Scaling law 23
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[Kaplan et al.: Scaling Laws for Neural Language Models, 2020]

[Henighan et al.: Scaling Laws for Autoregressive Generative Modeling, 2020]

Fixed model size

（Data size）

[Brown et al.: Language Models are Few-Shot Learners, 2020] ←Analysis of GPT-3

log(Predictive error)=−𝛼 log 𝑛 + log(𝐶)



Analysis of kernel model 24

Model

log Pred. error = − 𝑎
1+𝑎log 𝑛 + log(𝐶)

BiasVariance

Observation:

Least squares estimator

Optimal rate

Training method 

Assumption

𝑀 𝑀−𝑎

(ONS in L2)

Variance=(dim of model)/n

Bias=L2-norm of residual

𝑴 dimensional model

Predictive error
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log(Predictive error) = − 𝑎
1+𝑎

log 𝑛 + log(𝐶)

log(𝒏)

log(Pred. error)
Predictive error for model size M

Predictive error with the optimal model size

Larger dataSmaller data (data size)

Better
prediction

Worse 
prediction



Statistical learning theory of kernel methods

• Caponnetto and De Vito. Optimal Rates for the Regularized Least-
Squares Algorithm. Foundations of Computational Mathematics,  
volume 7, pp.331–368 (2007).

• Steinwart and Christmann. Support Vector Machines. 2008.

Related recent papers

• Mei, Misiakiewicz, Montanari. Generalization error of random features 
and kernel methods: hypercontractivity and kernel matrix 
concentration. arXiv:2101.10588.

• Bordelon, Canatar, Pehlevan. Spectrum Dependent Learning Curves in 
Kernel Regression and Wide Neural Networks. ICML, 1024-1034, 2020.

• Canatar, Bordelon, Pehlevan. Spectral Bias and Task-Model Alignment 
Explain Generalization in Kernel Regression and Infinitely Wide Neural 
Networks. Nature Communications, volume 12, Article number: 2914 
(2021).

26



Predictive error of deep neural network

• Barron class

• Hölder class

• Sobolev class

• Besov class

27

To bound the predictive error of deep learning, 
we evaluate 
➢ Variance of a DL estimator (Sample variance)
➢ Bias of the model (Approximation error)

Approximation theory: 
• Mhaskar: Neural networks for localized approximation of real functions. In Neural Networks for 

Processing III, Proceedings of the 1993 IEEE-SP Workshop, 190–196, 1993.
• Pinkus: Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143–195, 1999.
• Mhaskar: Neural networks for optimal approximation of smooth and analytic functions. Neural 

Computation, 8(1):164–177, 1996.

Typical function class



Why deep?

• There are many theories...

28
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Reduced rank 
regression

If there is low 
dimensional 
representation, 
deep is better.

Piece-wise 
smooth function

Deep is better 
to estimate a 
discontinuous 
function.

Besov space

To estimate 
functions with 
non-uniform 
smoothness, 
DL is better.

Low dimensional 
data structure

If data are 
distributed on low 
dim-manifold, DL 
is better.

[Suzuki, 2019]
[Schmidt-Hieber, 2019] [Nakada&Imaizumi, 
2019][Chen et al., 2019][Suzuki&Nitanda, 2019][Imaizumi&Fukumizu, 2019]

E
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Typical situation 29

Non-smooth

Smooth

•Approximation by Gaussian kernel

Same Gaussian width→Less efficient

•Approximation by NN

Different resolution depending on location
→More efficient

•Approximation by Gaussian kernel

Kernel method cannot specify 
informative directions.
→Curse of dimensionality

•Approximation by NN

Informative directions is extracted in 
internal layers.
→Avoids curse of dimensionality



Spatial inhomogeneity

Smoothness

Hölder, Sobolev, Besov space 30

0



Spatial inhomogeneity

Smoothness

Hölder, Sobolev, Besov space 31

0

Intuition Smoothness

Uniformity of smoothness



Deep learning has adaptivity 32

≫

(𝑛: sample size，𝑝: uniformity of smoothness，𝑠: smoothness)

Linear estimator (Shallow method) Deep learning

• DL constructs basis function “adaptively”.
→Efficient learning

• Shallow learning should use “redundant” model.
→Inefficient learning (affected by redundant noise)

Convergence rate of estimation error (mean squared error E መ𝑓 − 𝑓∗
2

)

- The rate of error decrease as the sample size 𝑛 → ∞. 

[Suzuki: Adaptivity of deep ReLU network for learning in Besov and mixed 
smooth Besov spaces: optimal rate and curse of dimensionality, ICLR2019]

Uniform 
resolution

Adaptive 
resolution

Suboptimal Optimal

e.g., kernel ridge regression:

𝑓∘ ∈ 𝐵𝑝,𝑞
𝑠 ( 0,1 𝑑): “Besov space”



Linear estimator 33

Example
• Kernel ridge estimator
• Sieve estimator
• Nadaraya-Watson estimator
• k-NN estimator

Linear estimator: linear to the observation 𝑌 = 𝑦𝑖 𝑖=1
𝑛 .

linear

Kernel ridge regression:
“Shallow” learning methods

(feature map)

Fixed

Trainable

Fixed

Gram matrix (kernel function)

(see also [Imaizumi&Fukumizu, 2019])

Nadaraya-Watson estimator:



Relation to sparse estimation 34

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

Resolution

𝑗 = 1

𝑗 = 1 𝑗 = 2

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

𝛼0,1

𝛼1,1 𝛼1,2

𝛼2,1 𝛼2,4𝛼2,3𝛼2,2

Non-uniform smoothness 
over the space

Small 𝑝 = Sparse coefficient

(0 < 𝑝)

Wavelet basis decomposition

(informal)

High
frequency

Low 
frequency

Sparse linear combination of wavelet 
basis functions is effective to capture 
input-dependent smoothness

Wavelet basis



Relation to sparse estimation 35

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

Resolution

𝑗 = 1

𝑗 = 1 𝑗 = 2

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

𝛼0,1

𝛼1,1 𝛼1,2

𝛼2,1 𝛼2,4𝛼2,3𝛼2,2

Non-uniform smoothness 
over the space

Small 𝑝 = Sparse coefficient

(0 < 𝑝)

Wavelet basis decomposition

(informal)

High
frequency

Low 
frequency

Sparse linear combination of wavelet 
basis functions is effective to capture 
input-dependent smoothness

Wavelet basis

Wavelet-shrinkage



Proof strategy

• Step 1 : Find basis function expansion.

36

• Step 2 : Approximate basis functions.

⋅ 𝐿2 ≤ 𝑁−𝑠/𝑑

: Approximation by DNN.

: linear combination.

≤ 𝑁−𝑠/𝑑≤ O(𝑒−𝐿)

• Step 3: Combine the bounds of Step 1 and 2.

∵ Adaptive approximation by 
B-Spline [DeVore & Popov, 1988; Dung, 2011]



Bias variance decomposition 37

Depth Width Sparseness
(# of non-zero parameters)

Upper bound of absolute value 
of each parameter

Choose the network size 𝑁 to balance bias and variance:
𝑁 = ෨𝑂(𝑛 Τ2𝑑 2𝑠+𝑑 ).

[Local Rademacher complexity bound]

Classic analysis on nonparametric regression. 
See [Schmidt-Hieber, 2019; Hayakawa&Suzuki,2020] for the analysis of DNN.



Hardness: Convex hull argument 38

[Satoshi Hayakawa and Taiji Suzuki: 2020]

Ex. Piecewise constant function with 3 jumps.

+ =

0.5x 0.5x

3 jumps

Deep:1/𝑛, Kernel: 1/ 𝑛

[Donoho & Johnstone, 1994]

3 jumps 6 jumps

A function with a property that is destroyed by convex combination 
is hard to estimate by linear estimators.
e.g., “Spatial inhomogeneity of smoothness”

(This can be extended to Q-hull for the fixed design setting)

• Linear estimator should prepare redundant basis functions.

Theorem



General theory 39

Reduced rank 
regression

Piece-wise smooth Besov space

Low dim. data

Non-convexity
sparsity

Variable smooth
Besov space



Curse of dimensionality

Estimation error bound：

→ Curse of dimensionality

40

MNIST: 784 dim/13.4 intrinsic-dim
[Facco et al. 2017]



Dimensionality: Manifold regression41

• Classic nonparametric method: Bickel & Li (2007); Yang & Tokdar
(2015); Yang & Dunson (2016).

• Deep learning:  Nakada & Imaizumi (2019); Schmidt-Hieber (2019); 
Chen et al. (2019).

-dim -dim

MNIST: 
784 dim/13.4 intrinsic-dim
[Facco et al. 2017]



More realistic setting 42

Invariant 
direction

Variable
direction

𝑠1, 𝑠2, 𝑠3: smoothness

(non-smooth) 𝑠1, 𝑠2 ≪ 𝑠3 (smooth)

• Smoothness could depend on directions.
• Local coordinate.

Data are hardly distributed exactly on low-dim manifold.



Anisotropic Besov space 43

(finite difference)

(modulus of smoothness)

Def. (Anisotropic Besov space)

(𝑠1 times differentiable)

(𝑠2 times differentiable) 𝐿𝑝-norm of 𝑠𝑖-times derivative.

• 𝑠𝑖: smoothness to the -th coordinate.
• 𝑝: Uniformity of smoothness over 

the input space.



Anisotropic Besov space 44

(finite difference)

(modulus of smoothness)

Def. (Anisotropic Besov space)

(𝑠1 times differentiable)

(𝑠2 times differentiable) 𝐿𝑝-norm of 𝑠𝑖-times derivative.

• 𝑠𝑖: smoothness to the -th coordinate.
• 𝑝: Uniformity of smoothness over 

the input space.
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𝑆1: small𝑆2: large

𝑥1
𝑥2

𝑦



Estimation error bound 46

DNN

（Affected by dimension）

Linear

• Linear estimator cannot find important directions. 
Then, the rate of convergence is strongly affected 
by the most non-smooth (𝑠1) parameter.

• We used a “convex hull argument” to show the 
rate of convergence.

Theorem

(least squares estimator)
※ Here, we do not discuss optimization ability. 

,Let

The rate of convergence is determined by smoothness parameters. 

When 𝑯 = 𝟏, Comparison to linear estimator：

If 𝑠𝑖s are small (non-smooth) toward 
small numbers of directions and 
large toward other directions, DNN 
can avoid the curse of dimensionality.

If 𝒔𝟐 = ⋯ = 𝒔𝒅 = ∞, then 𝒏
−

𝟐𝒔𝟏
𝟐𝒔𝟏+𝟏 .



Comparison to linear estimator 47

𝑓∘ depends only 𝐷-dimensional subspace.

(𝑛−
2𝑠+𝑑

2𝑠+2𝑑 when 𝐷 = 1 and 𝑝 = 1)

Deep Linear estimator

≪

(𝑛−
2𝑠

2𝑠+1 when 𝐷 = 1)

Deep can ease curse of dim.,
but linear estimators directly 
suffers from curse of dim. 

𝑐 = 1 if 𝐷 < 𝑑/2, 𝑐 = 0 if 𝐷 ≥ 𝑑/2.

SuboptimalOptimal

𝑊
𝑊



Outline 48

1. Representation ability + Generalization 
ability
➢Universal approximator

➢Depth separation

➢Adaptivity of deep learning
➢ Inhomogeneity of smoothness

➢Curse of dimensionality

➢Foundation models
➢Diffusion model

➢Transformer

2. Optimization ability
➢Noisy gradient descent

➢Mean field Langevin

➢CSQ lowerbound



Analysis of diffusion model

49

• Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are 
Minimax Optimal Distribution Estimators. ICML2023.



Diffusion model 50

Jason Allen "Théâtre D'opéra Spatial“ generated by Midjourney. 
Colorado State Fair’s fine art competition, 1st prize in digital art 
category

Generated by NovelAI

「An astronaut riding a 
horse in a 
photorealistic style」

DALL·E: [Aditya Ramesh, Mikhail 
Pavlov, Gabriel Goh, Scott Gray, 
Chelsea Voss, Alec Radford, Mark 
Chen, Ilya Sutskever: Zero-Shot 
Text-to-Image Generation. 
ICML2021.] 
DALL·E2:[Aditya Ramesh, Prafulla 
Dhariwal, Alex Nichol, Casey Chu, 
Mark Chen: Hierarchical Text-
Conditional Image Generation with 
CLIP Latents. arXiv:2204.06125]

Stable diffusion, 2022.



Movie generation

• SORA (OpenAI, 2024)

51

➢ Diffusion Transformer

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears 

a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red 

lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the 
colorful lights. Many pedestrians walk about.



Diffusion model 52

Forward process：Convert the target distribution to a noise distribution (e.g., Gaussian)

Reverse process：Convert the noise distribution to the target distribution

[Vahdat, Kreis, Kautz: Score-based Generative Modeling in Latent Space. arXiv:2106.05931]

(𝑌𝑡 ∼ 𝑋𝑇−𝑡)

[Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021]



Forward process 53

Forward process:

where 𝜇𝑡 = exp −𝑡 , 𝜎𝑡
2 = 1 − exp −2𝑡 .

OU process

The forward process converges to the noise distribution (standard 
normal) exponentially:

[Vahdat, Kreis, Kautz: Score-based 
Generative Modeling in Latent Space. 
arXiv:2106.05931]OU-process

Standard normal



Reverse process 54

Reverse process:

[Haussmann & Pardoux, 1986]

Fact：𝑌𝑡’s distribution=𝑋 ത𝑇−𝑡’s distribution

By following the forward process in reverse, noise that follows a (nearly) normal 
distribution can be gradually modified to reproduce the original distribution of the 
images.

(𝑡 ∈ [0, ത𝑇])

That is, 𝑌𝑡 ∼ 𝑝𝑇−𝑡

𝑌0 ∼ 𝑝𝑇

StartGoal



Benefit of diffusion model

We can sample from multimodal distribution 
efficiently. 

➢“Easy distribution” →”Difficult distribution”

55

• Even though the score of the original distribution is complex, the 
distribution of the diffused 𝑋𝑡 is smooth → easy to estimate → 
easy to generalize.

• Learning is more stable because it uses information of the 
intermediate distribution 𝑝𝑡 instead of directly learning end-to-
end mapping from the noise to the source distribution.

If we try to sample directly from 
the original distribution, then it 
could not get over the “gap”.



Toy data 56

[https://github.com/Kei18/tiny-tiny-diffusion]

This is not generating an image of a dinosaur but the shape of the 
density function looks like a dinosaur. Each point corresponds to 
each image (𝑋𝑡).



Score estimation 57

Reverse process:

⇒ 𝑌𝑡 ∼ 𝑝𝑇−𝑡
[Haussmann & Pardoux, 1986]

(unknown)

Theorem (Girsanov’s theorem)

⇒ It suffices to estimate the score function 𝛻log(𝑝𝑡) as accurate 
as possible.

Approximated process (generative model):

(unknown)

(𝑁(0, 𝐼) is close to 𝑝𝑇)

𝒀ഥ𝑻 ∼ 𝒑𝟎



Score matching 58

Unknown. We cannot calculate.

(𝑋 ത𝑇−𝑡と𝑌𝑡は同じ分布)

Reference



Score matching 59

Reference



Score matching 60

Observation (𝑛 data points 𝐷𝑛 = 𝑥𝑖 𝑖=1
𝑛 ):  

Empirical score matching loss:

Explicit form is availableCan be sampled via OU process 



Error analysis of diffusion models

• Reverse SDE characterization: Song et al. (2021)

[Approximation error analysis]

• KL-divergence bound via Girsanov’s theorem: Chen et al. (2022)

• Error bound with LSI: Lee et al. (2022a)
➢ With smoothness: Chen et al. (2022) and Lee et al. (2022b)

• Error propagation with manifold assumption: Pidstrigach (2022)

[Generalization analysis]

• Wasserstein distance bound: O(𝑛−
1

𝑑) with manifold assumption: De 
Bortoli (2022) 

61

Q:
1. How accurately can we estimate the score functions?
2. How strongly does the estimation error of score functions affect 

the final result? 



is sufficiently smooth on the edge of the

support

Problem setting 62

Assumption 1

The true distribution 𝑝0 is supported on −1,1 𝑑 and                                                

with 𝑠 > Τ1 𝑝 − Τ1 2 + as a density function on −1,1 𝑑. 

Assumption2

Very smooth

Besov space

Besov space (𝐵𝑝,𝑞
𝑠 (Ω))

Smoothness Spatial inhomogeneity



is sufficiently smooth on the edge of the

support

Problem setting 63

Assumption 1

The true distribution 𝑝0 is supported on −1,1 𝑑 and                                                

with 𝑠 > Τ1 𝑝 − Τ1 2 + as a density function on −1,1 𝑑. 

Assumption2

Very smooth

Besov space

Besov space (𝐵𝑝,𝑞
𝑠 (Ω))

Smoothness Spatial inhomogeneity

Intuition Smoothness

Uniformity of smoothness



Convergence rate result 64

Theorem (Estimation error in TV-distance)

Let 𝑇 = 𝑛−𝑂(1), 𝑇 = 𝑂(log(𝑛)). Then, the empirical risk minimizer Ƹ𝑠 
in DNN satisfies

This is minimax optimal, that is, it holds 

Although Ƹ𝑠(𝑥, 𝑡) is a function with 𝑑 + 1-dimensional input, there appears “𝑑” in the 
bound instead of 𝑑 + 1. This is because Gaussian convolution induces smoothness. 

𝑇 𝑇



B-spline basis decomposition 65

Cardinal B-spline of order :

→ Piece-wise polynomial of order m.

• B-spline decomposition of a Besov function 𝑝0

Approximate each term by DNNs

Tensor product B-spline:

Reference



Cardinal B-spline interpolation (DeVore & Popov, 1988)

• Atomic decomposition:

66

such that 
(where )

(Norm equivalence)
DNN can approximate each 
B-spline basis efficiently.

(see also Bolcskei, Grohs, Kutyniok, Petersen: Optimal Approximation with Sparsely Connected Deep Neural Networks. 2018)

k=0

k=1

k=2

k=3

Scale j=1

j=1 j=2

j=1 j=2 j=3 j=4

𝛼0,1

𝛼1,1 𝛼1,2

𝛼2,1 𝛼2,4𝛼2,3𝛼2,2

Wavelet/multi-resolution expansion

𝑁 terms (should be appropriately chosen depending on 𝑓)

𝑓 ∈ 𝐵𝑝,𝑞
𝑠  can be decomposed into

Reference



Proof outline (1) 67

• B-spline decomposition of a Besov function 𝑝0

Approximate each term by DNNs

• Diffused B-spline basis expansion of 𝑝𝑡

Decompose

=:𝐸𝑎𝑗,𝑏𝑗 (𝑥, 𝑡) Diffused B-spline

➢ We approximate Diffused B-splines by DNNs.

Approximation error



Approximation error of Diffused B-spline68

There exists a deep neural network ෠𝜙:ℝ𝑑 × ℝ+ → ℝ𝑑 such that

with depth 𝐿 = 𝑂 log4 𝜖−1 , width 𝑊𝑖 = 𝑂(log6(𝜖−1)), sparsity (# 
of non-zero parameters) 𝑆 = 𝑂(log(𝜖−1)), and ℓ∞-norm bound 𝐵 =
𝑂(exp(𝑂(log2 𝜖−1 ))) on parameters.

Lemma (Approximation error of diffused B-spline)

≤ 𝑁−𝑠/𝑑≤ O(𝑒−𝐿)

: Deep neural network

# of non-zero parameters:



Error bound of score 69

Non-smooth Smooth Very smooth

𝑡𝑇 𝑡∗ ത𝑇

• Bound by diffused B-spline approximation

• A tighter bound on the smooth part  (𝑡 > 𝑡∗)

(take 𝑘 = 𝑠 + 1)

➢ Similar argument is applied to 𝛻𝑝𝑡:

- Useful for W1 bound.
- Smoothness around the 
edge (A2) is not requires.

EasyDifficult

(𝜎𝑡
2= 1 − exp −2𝑡 )



Error decomposition 70

Score matching loss

Truncation loss

at 𝑇.  
Truncation loss

at 𝑇. 

𝑇 𝑇

Bias Variance

(Pinsker’s inequality)



Low dimensional structure 71

The estimated distribution is never absolutely 
continuous to the target distribution.
→ Wasserstein distance

The support of the target distribution is 
in a low dimensional subspace. 

ℝ𝑑

ℝ𝑑′



𝑾𝟏-distance convergence rate 72

Theorem (Estimation error in W1-distance)

For any fixed 𝛿 > 0, by slightly changing the estimator, the 
empirical risk minimizer Ƹ𝑠 in DNN satisfies

This is also known as minimax optimal (up to 𝛿) [Niles-Weed & Berthet

(2022)].

• 𝑑′ appears instead of 𝑑: Diffusion model can avoid curse of 
dimensionality. 

• The minimax rate of Wasserstein distance is faster than that of TV 
distance, which makes it difficult to establish the bound. 
➢ We need more precise estimate of the score around 𝑡 = 0.

(TV) (W1)



73

Lemma (tighter bound on W1 distance error)

• For large 𝑡, we can estimate the score more accurately. 
• For small 𝑡, the error does not propagate so much due 

to the term 𝑡.
→ Better rate.



Bound for W1 distance 74

𝑡
𝑇 ത𝑇 = 2𝐾

∗
𝑡∗𝑡∗ 2𝑡∗ 4𝑡∗

𝑌𝑇−𝑡
𝑖

𝑡
Ƹ𝑠𝛻log(𝑝𝑡)

𝑡𝑖 (= 2𝑖𝑡∗)

(negligible) (exp(−𝑇))

,



Transformer 75

Theorem (estimation error)

➢ It achieves polynomial order convergence 
even though input is infinite-dimensional.

(almost minimax optimal)

⋯ 𝑥−1 𝑥0 𝑥1 𝑥2 ⋯

⋯ 𝑌−1 𝑌0 𝑌1 𝑌2 ⋯

⋮⋮⋮⋮

Self-attention

FNN

Properties of Transformer
• It can output a value from wide 

rage of tokens.
 → Curse of dimensionality?
• It can choose important tokens 

depending on input.
 → Can avoid curse of dim!

[Shokichi Takakura, Taiji Suzuki: Approximation and Estimation Ability of Transformers for Sequence-to-Sequence Functions 
with Infinite Dimensional Input. ICML2023]

𝐹∘

𝑌

𝑋 This is a pen.

これはペンです．

We showed minimax optimality to estimate  
a sequence-to-sequence function.



Remark on the rate of convergence

Even if the rate is better, the method does 
not necessarily achieve better prediction. 

76

Predictive error

Sample sizeMethod blue is better 
at this sample size. 

Method red is better 
at this sample size. 

Deep learning

Shallow learning

Remark：



Outline 77

1. Representation ability + Generalization 
ability
➢Universal approximator

➢Depth separation

➢Adaptivity of deep learning
➢ Inhomogeneity of smoothness

➢Curse of dimensionality

➢Foundation models
➢Diffusion model

➢Transformer

2. Optimization ability
➢Noisy gradient descent

➢Mean field Langevin

➢CSQ lowerbound



Optimization of NN

78

Representation
ability

Generalization
ability

Optimization



Optimization of NN 79

We should “optimize” the parameters.

Loss function：degree of fit to the data

Loss function for the 𝑖-th data 
point.

𝑊: parameter

Loss function optimization

(W could be billions dimensional)

Usually, stochastic 
gradient descent is used. Optimal



Local optimality

• For linear deep NN, every local optimal is global optimal：
Kawaguchi, 2016; Lu&Kawaguchi, 2017.

※True only for linear NN.

80

Global optimal

Local optimal

Objective function of deep learning is non-convex.

Sufficient conditions that a critical point is a global optimal 
was also derived by Yun, Sra&Jadbabaie (2018). 

• Low rank matrix completion has no spurious local 
minimum：Ge, Lee&Ma, 2016; Bhojanapalli, Neyshabur&Srebro, 2016.

Critical point

→



Loss landscape
Wide neural network does not have any isolated local minimum.

(a local optimal solution is connected to global optimal solutions)

81

[Venturi, Bandeira, Bruna: Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes. 
JMLR, 20:1-34, 2019.]

Theorem

Suppose that we are given 𝑛-training data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 , and the loss 

function ℓ is convex.

For two layer NN model 𝑓 𝑎,𝑊 (𝑥) = σ𝑚=1
𝑀 𝑎𝑚 𝜂(𝑤𝑚

⊤𝑥)with 

continuous activation function, if the width is not smaller than the 
data size (𝑀 ≥ 𝑛), every arcwise connected component of a level 

set of the empirical loss ෠𝐿 𝑎,𝑊 = 1

𝑛
σ𝑖=1
𝑛 ℓ(𝑦𝑖 , 𝑓 𝑎,𝑊 (𝑥𝑖)) contains 

the global optimal solution. 

This does not happen This happens

(not connected)

※This does not indicate GD can reach the global optimal. 



Overparameterization

Wide neural network does not have spurious 
local minima. 

82

• Two types of analysis
➢ Neural Tangent Kernel (NTK)

➢ Mean-field analysis

…

Narrow network

Wide network

Since the model complexity is 
increased, the initial solution is 
already close to the global optimal.

0

0



Two regimes

• Neural Tangent Kernel regime (lazy learning )

➢ 𝑎𝑗 = O(1/ 𝑀)

• Mean field regime

➢ 𝑎𝑗 = Ο(1/𝑀)

83

Different scaling of initial solution yields 
different behavior. 

[Nitanda & Suzuki (2017), Chizat & Bach 
(2018), Mei, Montanari, & Nguyen (2018)]

[Jacot+ 2018][Du+ 2019][Arora+ 2019]
(Xavier initialization/He initialization)
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NTK: Large scale initialization → features are (almost) 
freezed.

Mean field: Small scale initialization → features need to move 
significantly.

Optimization trajectory 
of first layer parameters 
in a 2-layer NN:

[Ba et al., 2022]

True function:



ABC-parameterization

• ABC-parameterization [Yang&Hu, 2021]

85

(1) Parameterization

(𝑤𝑙 is the actual trainable parameter)

(2) Initialization (3) Learning rate

𝑛: width

A B C

(Appropriate scaling)
[Yang&Hu: Tensor Programs IV: Feature Learning in Infinite-Width Neural Networks. ICML2021.]



86

[Yang et al.:Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer. arXiv:2203.03466]

The optimal hyper-parameter in a small size network can be transferred to huge 
model. 
It is used to train GPT-3.5. Billions of dollars cost could be saved. 

https://github.com/microsoft/mutransformers (𝜇P for Transformers)

https://github.com/microsoft/mutransformers


Implicit regularization 87

Optimization in the space of signed measures.

Binary classification with exp-loss: 

where

The solution converges to the max-margin solution under L1-norm constraint 
(if the sequence converges to a “global minimizer” direction): 

→ Sparse solution：implicit regularization

If we start from small initialization, only neurons that are 
necessary for classification “grow up.” 

[Chizat&Bach: Implicit Bias of 
Gradient Descent for Wide Two-layer 
Neural Networks Trained with the 
Logistic Loss. COLT2020.]

Optimization dynamics implicitly 
regularize the solution.



Gradient descent and implicit regularization

• Dynamics starting from a small initialization converges 
to the minimum norm solution.
→ Implicit regularization

88

[Gunasekar et al.: Implicit Regularization in Matrix Factorization, NIPS2017]
[Soudry et al.: The implicit bias of gradient descent on separable data. JMLR2018]
[Gunasekar et al.: Implicit Bias of Gradient Descent on Linear Convolutional Networks, NIPS2018]
[Moroshko et al.: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training 
Accuracy, arXiv:2007.06738]

Initialization
（around origin）

Set of solutions

The “simplest” solution

Optimization with gradient

Deeper network leads to “sparser” solution.



Implicit regularization in each regime 89

Regime Implicit regularization

NTK, kernel method 
with early stopping

L2-regularization

Mean-field L1-regularization

• Deep learning uses several “explicit regularization”.
→ Batch normalization, Dropout，Weight decay，MixUp，...

• On the other hand, the “implicit regularization” induced by 
the deep structure and optimization dynamics is also very 
important. 
→ Benign overfitting, Grokking, Flat-minimum, ... 



Grokking/Benign-overfitting 90

[Xu et al.: Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data. 
arXiv2310.02541]

See also [Meng et al.: Benign Overfitting in Two-Layer ReLU Convolutional 
Neural Networks for XOR Data. arXiv2310.01975]

Grokking: [Power et al.: Grokking: Generalization beyond overfitting on small 
algorithmic datasets. arXiv:2201.02177]

It is also called “hidden progress” [Barak et al. 2022].



Outline 91

1. Representation ability
➢Universal approximator

➢Adaptivity of deep learning
➢ Inhomogeneity of smoothness

➢Curse of dimensionality

2. Generalization ability
➢Double descent, Benign overfitting for 

overparameterized model

➢Generalization gap analysis
➢Norm based bound

➢Compression based bound

3. Optimization ability
➢Neural Tangent Kernel 

➢Dynamics in a feature learning regime

➢Mean field analysis



Noisy gradient descent and 
its global optimality

92



Noisy gradient descent 93

Noise

Gradient descent

The model is not linearly approximated. 
We need to solve “non-convex” optimization. 

SGD is a noisy gradient descent.
Noisy perturbation is helpful to escape local minimum. 



Sharp minima vs flat minima 94

It is said that SGD likely stay in “flat local minimum”
→ Gives good generalization error.

≅Normal distribution
→ Random walk is likely to be 
captured in a flat region.

• (criticism) The concept of “flat” 
depends on the choice of coordinate 
system.  (Dinh et al., 2017)
•PAC-Bayesian analysis (Dziugaite, Roy, 
2017)

Keskar, Mudigere, Nocedal, Smelyanskiy, Tang (2017): 
On large-batch training for deep learning: generalization gap and sharp minima.

This is not theory,
Just explanation.



SGD optimizes a “smoothed” objective:

Smoothing by noisy gradient 95

[Kleinberg, Li, and Yuan, ICML2018]

smoothing

Stochastic gradient ⇒ Noise is added ⇒ Objective is smoothed



GLD/SGLD

• Stochastic Gradient Langevin Dynamics (SGLD)

96

Stationary distribution：

(Gradient Langevin dynamics)

(Non-convex)

GLD:

SGLD:

Stochastic gradient

(Euler-Maruyama scheme)

Discretization [Gelfand and Mitter (1991); Borkar and 
Mitter (1999); Welling and Teh (2011)]



GLD as a Wasserstein gradient flow97

: Distribution of 𝑋𝑡 (we can assume it has a density)

PDE that describes 𝜇𝑡’s dynamics [Fokker-Planck equation]:

[linear w.r.t. 𝝁]

=  Stationary distribution

This is the Wasserstein gradient flow to minimize the following objective:

c.f., Donsker-Varadan duality formula

ℒ



Continuity equation 98

Continuity equation:

(∀𝑓: compact support，𝐶∞-class)

• Let 𝑇𝑡 be a map generated by the vector field 𝑣𝑡:
d𝑇𝑡

d𝑡
𝑥 = 𝑣𝑡 𝑇𝑡 𝑥 . 

• 𝜇𝑡 is the push-forward of 𝜇0 by a map 𝑇𝑡: R
𝑑 → R𝑑: 𝜇𝑡 = 𝑇𝑡#𝜇0.

 That is, 𝝁𝒕 is the distribution of 𝑻𝒕(𝒙) where 𝒙 ∼ 𝝁𝟎. 

The meaning of this equation

[continuity equation]



Stationary distribution 99

Stationary distribution of  the continuous time dynamics:

The stationary distribution 
concentrates around the 
optimal solution.



Wasserstein gradient flow 100

We neglect this term below

By the continuity equation 𝜇𝑡 = −𝛻 ⋅ [𝑣𝑡𝜇𝑡], it holds that

= 0



Wasserstein勾配流 101

In particular, if 

then this is the steepest gradient descent direction
such that

GLD is the Wasserstein gradient flow to minimize the KL-div from 𝝁∗.

(GLD)

Fisher divergence:

=:−𝑣𝑡



Log-Sobolev inequality 102

Stationary distribution: 

[Bakry, Gentil, and Ledoux: Analysis and Geometry of Markov Diffusion Operators. Springer, 2014. Th. 5.2.1]

Def (log-Sobolev inequality) 

Geometric ergodicity 𝜇𝑡: distribution of 𝑋𝑡

Linear convergence w.r.t. KL-div

There exists a constant 𝛼 > 0 such that 
for any probability measure 𝜈 (absolutely-continuous w.r.t. 𝜇∗)

E.g.：
• Quadratic+Bounded
• Weak Morse function

KL-div Fisher-div

(by log-Sobolev)



Sufficient condition for log-Sobolev inequality103

Bounded perturbation lemma (Hollley-Stroock):

[R. Holley and D. Stroock. Logarithmic sobolev inequalities and stochastic Ising models. Journal of statistical physics, 46(5-
6):1159–1194, 1987.]

𝛻𝛻⊤𝐿 𝑥 ≽ 𝜇𝐼 ⇒

Strongly convex (Bakry-Emery criterion):

[Bakry and Émery, 1985]

Ex.: OU-process．𝐿 𝑥 =
𝑥2

2
 ⇒ 𝜇 = 1

and 𝜇 satisfies 𝛼′-LSI, then

Ex.: 𝐿 𝑥 = ℓ 𝑥 + 𝜆1𝑥
2 and ℓ 𝑥 ≤ 𝐵, then 𝜇∗ satisfies LSI with 𝛼 = 2𝜆1

𝜆
exp(−4𝐵/𝜆).

𝜇∗ satisfies 𝛼-LSI with 

Suppose that
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Related work: Graduated optimization

• Graduated non-convexity

105

Blake and Zisserman: Visual reconstruction, volume 2. MIT press Cambridge, 1987.

• Graduated optimization

• Convolution with Gaussian kernel
Z. Wu. The effective energy transformation scheme as a special 
continuation approach to global optimization with application to molecular 
conformation. SIAM Journal on Optimization, 6(3):748-768, 1996.

Hazan, Levy, and Shalev-Shwartz: On graduated optimization for 
stochastic non-convex problems. International conference on machine 
learning, pp. 1833-1841, 2016.

➢ 𝜎-nice property: ෠𝐿𝛿 𝑥 = E𝑢∼𝑈(B(R𝑑))[𝐿(𝑥 + 𝛿𝑢)]

Survey: 
Mobahi and Fisher III. On the link between gaussian homotopy
continuation and convex envelopes. Energy Minimization Methods 
in Computer Vision and Pattern Recognition, pp. 43-56, 2015.

➢ Polynomial time convergence.



Optimization theory
in mean field regime
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2-layer NN in mean-field scaling 107

• 2-layer neural network:

Non-linear with respect to parameters 𝑟𝑗 , 𝑤𝑗 𝑗=1

𝑀
.

where 𝑋(𝑗) = 𝑟𝑗 , 𝑤𝑗  and

Loss function: 

Non-convex

loss L2 regularization



Application of GLD 108

Noisy gradient descent update: 

Does it converge? 

Naïve application of existing theory in gradient Langevin dynamics yields 

iteration complexity to achieve 𝜖 error. 
→ Cannot be applied to wide neural network. 

[Raginsky, Rakhlin and Telgarsky, 2017; Xu, Chen, Zou, and Gu, 2018; Erdogdu, Mackey and Shamir, 2018; Vempala and Wibisono, 2019]

⇔



Mean field limit 109

Loss function (empirical risk + regularization):

𝑀 → ∞

…

★Mean field limit:

Non-linear with respect to the parameters 𝑟𝑗, 𝑤𝑗 𝑗=1

𝑀
.

Convex w.r.t. 𝜇 if the loss ℓ𝑖 is convex (e.g., squared / logistic loss).

[Nitanda&Suzuki, 2017][Chizat&Bach, 2018][Mei, Montanari&Nguyen, 2018][Rotskoff&Vanden-Eijnden, 2018]

Linear with respect to 𝜇.



General form of mean field LD 110

➢ SDE the Fokker-Planck equation of which corresponds to the Wasserstein GF:
𝐹

Gradient

convex strictly convex = strictly convex+

Mean field Langevin dynamics: 

The first variation 𝛿𝐹
𝛿𝜇
: 𝒫 × ℝ𝑑 → ℝ is defined as a continuous functional such as 

Definition (first variation)

GLD: , 



MF-LD to optimize mean field NN 111

Loss function:

(distribution of 𝑋𝑘)

Neuron 
ℎ𝑥(⋅)

𝑥

Discrete time MFLD: 



Proximal Gibbs measure 112

𝐹

Gradient

Minimizer

Proximal Gibbs measure

➢The proximal Gibbs measure is a kind of “tentative” target. 
➢ It plays important role in the convergence analysis.

Linearized objective at 𝝁: 



Entropy sandwich 113

Proximal Gibbs measure:

Theorem (Entropy sandwich) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

=

Optimality condition



Duality (informal)
114

Primal

Dual

=

(Fenchel’s duality theorem)

Primal-Dual variable correspondence: 

𝐹

Gradient

Duality gap and divergence: 

•

•
(optimality condition)

[Nitanda, Oko, Wu, Suzuki (ICML2023); Nitanda, Wu, Suzuki (AISTATS2022); Oko, Suzuki, 
Nitanda, Wu (ICLR2022)]

(P) (D) (P)

[Rockafellar (1967)]



Convergence rate 115

Proximal Gibbs measure:

Theorem (Linear convergence) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

Assumption (Log-Sobolev inequality)

KL-div Fisher-div

There exists 𝛼 > 0 such that for any probability measure 𝜈 (abs. cont. w.r.t. 𝑝𝜇),

If 𝑝𝜇𝑡 satisfies the LSI condition for any 𝑡 ≥ 0, then 

This is a non-linear extension of well known GLD convergence analysis.

c.f., Polyak-Lojasiewicz condition
𝑓 𝑥 − 𝑓 𝑥∗ ≤ 𝐶 𝛻𝑓 𝑥 2

The rate of convergence is characterized by LSI 
constant



Proof outline of convergence
• MF-LD obeys the following nonlinear Fokker-Planck 

equation:

116

Vector field: 𝑏(𝑥, 𝜇𝑡)

Mass: 𝜇𝑡(𝑥)

※ Since 𝛿𝐹(𝜇𝑡)
𝛿𝜇

nonlinearly depends on 𝜇𝑡, we say “nonlinear Fokker-Planck”.

(Definition of 𝑝𝜇𝑡)

=: −𝑣𝑡
Then, 

[Continuity equation]

(∵continuity 
equation)

LSI & Entropy sandwich



Log-Sobolev inequality 117

L2-regularized loss function for mean field 2-layer NN: 

Proximal Gibbs: 

If sup
𝑧

ℓ𝑖
′ 𝑓𝜇(⋅) ℎ𝑥(⋅) ≤ 𝐵, the proximal Gibbs measure 𝑝𝜇 satisfies the 

LSI with a constant 𝛼 with

∵ Bakry-Emery criterion (1985) and Holley-Strook bounded perturbation lemma (1987)

Bounded (≤ 𝐵) Strongly convex

where

GaussianBounded perturbation



Other applications 118

• Nonparametric density estimation via MMD minimization

𝑘: positive definite kernel

: Empirical distribution (training data)➢

➢

• Variational inference to approximate Bayesian posterior

Mean field Langevin dynamics can be applied to several 
problems where a distribution is optimized.

where 𝑘𝜇 = ∫ 𝑘 𝑥,⋅ 𝜇(d𝑥) (kernel embedding).

(KSD: Kernel Stein Discrepancy from a posterior distribution)

(see also Chizat (2022,TMLR))



Finite particles & 
discrete time algorithm

119



We have obtained a convergence of 

infinite width and continuous time dynamics.

Question:

Can we evaluate a finite particles & discrete time
approximation errors?

120

(distribution of 𝑋𝑡)

Neuron 

𝑥
(vector field)

(Finite particle approximation)



Difficulty

• SDE of interacting particles (McKean, Kac,…, 60’)

121

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

Finite particle approximation error can be amplified through time.
→ It is difficult to bound the perturbation uniformly over time.

The particles behave as if they are independent as 
the number of particles increases to infinity. 

Propagation of chaos [Sznitman, 1991; Lacker, 2021]:

• A naïve evaluation 
gives exponential 
growth on time: 

➢ Weak interaction/Strong 
regularization in existing 
work

exp 𝑡 /𝑀
[Mei et al. (2018, Theorem 3)]



Practical algorithm 122

• Time discretization: 𝑡 → 𝑘𝜂 (𝜂: step size, 𝑘: # of steps)

• Space discretization: 𝜇𝑡 is approximatd by 𝑀 particles

• Stochastic gradient: 𝛻 𝛿𝐹 𝜇

𝛿𝜇
→ 𝑣𝑘

𝑖

𝜇𝑡 → ො𝜇𝑘 =
1
𝑀σ𝛿𝑋𝑘

(𝑖)

where and

(stochastic gradient) (space discretization)

(time discretization)

➢ Noisy gradient descent on 2-layer NN with finite width.

𝑀 particles 𝑋𝑘
𝑖

𝑖=1

𝑀



Convergence analysis 123

Time
discr.

Space
discr.

Stochastic
approx.

Under smoothness and boundedness of the loss function, it holds that

Suppose that 𝑝𝜇 satisfies log-Sobolev inequality with a constant 𝛼.

Theorem (One-step update) [Suzuki, Wu, Nitanda (2023)]

: proximal Gibbs measure

1. 𝐹:𝒫 → ℝ is convex and has a form of 𝑭 𝝁 = 𝑳 𝝁 + 𝝀𝟏𝔼𝝁 𝒙 𝟐 .

2. (smoothness) 𝛻
𝛿𝐿 𝜇

𝛿𝜇
𝑥 −𝛻

𝛿𝐿 𝜈

𝛿𝜇
𝑦 ≤ 𝐶(𝑊2 𝜇, 𝜈 + 𝑥 − 𝑦 ) and

(boundedness) 𝛻
𝛿𝐿 𝜇

𝛿𝜇
𝑥 ≤ 𝑅.

Assumption:

(+ second order differentiability)

Naïve bound:

[Suzuki, Wu, Nitanda: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. 
NeurIPS2023]

𝐎(𝟏/𝑴)



Uniform log-Sobolev inequality 124

𝑋𝑘
(1)

𝑋𝑘
(2)

𝑋𝑘
(𝑁) 𝒳𝑘 = 𝑋𝑘

𝑖

𝑖=1

𝑀
∼ 𝜇𝑘

𝑀
: Joint distribution 
of 𝑀 particles.

Potential of the joint distribution 𝝁𝒌
(𝑴)

on ℝ𝒅×𝑴 :

where

(Fisher divergence)

where

➢ The finite particle dynamics is the Wasserstein gradient flow that minimizes       .

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022]

Recall [Chen, Ren, Wang. Uniform-in-time propagation of chaos 
for mean field Langevin dynamics. arXiv:2212.03050, 2022.]

For any 𝑴,

Reference
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Time
discr.

Space
discr.

Stochastic
approx.

SG-MFLD

Iteration complexity:

to achieve 𝜖 + 𝑂(1/(𝜆2𝛼𝑁)) accuracy.

By setting                                                           , 
the iteration complexity becomes 

➢ 𝐵 = 1/(𝜆2𝛼𝜖) is the optimal mini-batch size. → 𝑘 = 𝑂 Τlog 𝜖−1 𝜖 .

(finite sum),

(stochastic gradient)

(Mini-batch size = 𝐵)

➢Approximation errors are uniform in time.
➢No exponential dependency on 𝑴 (number of 

neurons).



Numerical experiment 126

Test error v.s. Number of steps 
(regularization term: 𝑟 𝑥 = 𝑥 2)

𝑀 → ∞



Generalization error analysis

127



Generalization error analysis

So far, we have obtained convergence of 
MFLD.

⇒ How effective is the feature learning of 
MFLD in terms of generalization error? 

128

• Benefit of feature learning? 

Neural network vs Kernel method
(NTK vs mean field)



Classification task 129

Problem setting (classification): 

➢Logistic loss: ℓ 𝑦𝑓 = log(1 + exp(−𝑦𝑓))

➢Tanh activation: ℎ𝑥 𝑧 = ത𝑅 ⋅ [tanh 𝑥1, 𝑧 + 𝑥2 + 2 ⋅ tanh 𝑥3 ]/
3

Loss function and model:

(+1)

(-1)



Assumptions

There exists 𝜇∗ such that  

1. KL 𝜈, 𝜇∗ ≤ 𝑅,

2. 𝑌𝑓𝜇∗ 𝑍 ≥ 𝑐0
for some constants 𝑅, 𝑐0 > 0. 

130

Assumption

where 𝜈 = 𝑁(0, 𝜆/(2𝜆1)). 

Objective of MFLD:

The Bayes classifier is attained by 𝝁∗ with a bounded KL-div from 𝝂. 

(a. s. ),

KL-regularization

𝑐0 𝑌 = 1𝑌 = −1

𝑓𝜇∗(𝑧)

𝑧
supp(𝑃𝑍)supp(𝑃𝑍)

(+ classification calibration condition)



Main theorem 131

Suppose that 𝜆 = Θ( Τ1 𝑅), then it holds that  

with probability 1 − exp −𝑡 .

Class. error

Theorem 1

O
ത𝑅2𝑅

𝑛

• ℎ𝑥 𝑧 = ത𝑅 ⋅ [tanh 𝑥1, 𝑧 + 𝑥2 + 2 ⋅ tanh 𝑥3 ]/3

• 𝜇∗: KL 𝜈, 𝜇∗ ≤ 𝑅, 𝑌𝑓𝜇∗ 𝑍 ≥ 𝑐0

Existing bound:  Chen et al. (2020); Nitanda, Wu, Suzuki (2021)

Class. Error ≤ O
1

𝑛
. (Rademacher complexity bound)

• Our bound provides fast learning rate (faster than 1/ 𝑛). 

O Τ𝑅 𝑛 ≪ O Τ1 𝑛



Main theorem 2 132

Theorem 2

𝔼[Class. Error] ≤ O
𝑅

𝑛
.

then it holds that 

with probability 

Theorem 
1: 

𝔼[Class. Error] ≤ O exp(−O(𝑛/𝑅2))  if 𝑛 ≥ 𝑅2.Theorem 
2: 

Suppose that 𝜆 = Θ(1/𝑅) and

If we have sufficiently large training data, 
we have exponential convergence of test error. 

We only need to evaluate 𝑅 to obtain a test error bound.



Proof sketch 133

Expected loss

Local Rademacher complexity yields the following bound:

By setting 𝜆 = O(1/𝑅), 
• The term (I) gives the first bound: O Τ𝑅 𝑛 . 
• The term (II) gives the second bound: O exp(−O(𝑛/𝑅2)) . 

Adaptive to the KL-divergence



Example: k-sparse parity problem134

• 𝑘-sparse parity problem on high dimensional data

➢ 𝑍 ∼ Unif( −1,1 𝑑)    (up to freedom of rotation)

➢ 𝑌 = ς𝑗=1
𝑘 𝑍𝑗

Table 1 of [Telgarsky: Feature selection and low 
test error in shallow low-rotation ReLu networks, 
ICLR2023].

Q: Can we learn sparse 𝒌-parity with GD? 
Is there any benefit of neural network?

※ Assume we don’t know which coordinate corresponds to 𝑍𝑗.

𝑘 = 2: XOR problem 
𝑑 = 3, 𝑘 = 2

Complexity to learn XOR function (𝑘 = 2)



Generalization bound 135

𝔼[Class. Error] ≤ O
𝑅

𝑛
.Theorem 1: 

𝔼[Class. Error] ≤ O exp(−O(𝑛/𝑅2))Theorem 2: if 𝑛 ≥ 𝑅2.

𝜇∗: KL 𝜈, 𝜇∗ ≤ 𝑅, 𝑌𝑓𝜇∗ 𝑍 ≥ 𝑐0 (perfect classifier with margin 𝑐0)

Suppose that there exists 𝜇∗ such that 

For the 𝑘-parity problem, we may take

Then, 

Lemma

We can evaluate 𝑅 required for the 𝑘-sparse parity problem: 

Reminder



Generalization error bound

• Setting 2: 𝑛 > 𝑑2

136

• Setting 1: 𝑛 > 𝑑

➢ Test error (classification error) = 𝐎(exp(−𝒏/𝒅𝟐))

➢ Test error (classification error) = 𝐎( Τ𝒅 𝒏)

These are better than NTK (kernel method); 

Sample complexity of NTK 𝒏 = 𝛀 𝒅𝒌 vs NN 𝒏 = 𝐎(𝒅)
Trade-off between computational complexity and sample complexity. 

Our analysis provides
• better sample complexity
• discrete-time/finite-width analysis 
• 𝑑 and 𝑘 are “decoupled.” 

Corollary (Test accuracy of MFLD)

(Computational complexity is exp O 𝑑 (But, can be relaxed to O(1) if X is anisotropic))



Discussion

• The CSQ lower bound states that O 𝑑𝑘−1

sample complexity is optimal for methods with 
polynomial order computational complexity.  
[Abbe et al. (2023); Refinetti et al. (2021); Ben Arous et 
al. (2022); Damian et al. (2022)]

• On the other hand, our analysis is about full-batch GD. 

137

Minibatch 
size

# of iterations Sample 
complexity

Our analysis 𝒏 𝒆𝒅 𝒅

SGD 
(CSQ-lower bound) 1 𝑑𝑘−1 𝑑𝑘−1

We obtain a better sample complexity than O(𝑑𝑘−1) with higher 
computational complexity. 
→ We can obtain a polynomial order method with MFLD for 
anisotropic input. 



CSQ algorithm 138

A CSQ algorithm can access the data only via queries 𝜙:ℝ𝑑 → [−1,1] and 
returns 𝑔 ∈ ℝ𝑑 with tolerance 𝜏 such that

Def (Correlational Statistical Query (CSQ) algorithm)

Ex. Online SGD for a squared loss: 

(CSQ)

𝒌-parity: 

• Boolean case:

where 𝑆 = 𝑘.

• Gaussian case:

Single index model: 

where 𝑔:ℝ → ℝ and 𝑤 ∈ ℝ𝑑.

[Ben-David, Itai, Kushilevitz, 1995; Kearns, 1998; Bshouty, Feldman, 2002]



CSQ lower bound 139

Hermite polynomial expansion of the link function:

Def (information exponent [Ben Arous, Gheissari, Jagannath, 2021])

For the Gaussian single index model, the information exponent plays 
an important role.

Theorem (CSQ lower bound [Abbe, Boix-Adser`, Misiakiewicz, 2023])

A CSQ algorithm with error tolerance 𝜏 requires at least 𝑁 queries 

to obtain an estimator መ𝑓 s.t. 𝔼 መ𝑓 − 𝑓∘
2
≤ 0.1 where  

The computational complexity of a CSQ algorithm is lower bounded as:

Note that the gradient 
computation at each 
iteration consumes 𝑂(𝑑)
queries. Thus, 𝑑𝑘−1

iterations are enough.  (we suppose 𝑘∗ > 2)



Recent progress 140

• Optimal SQ sample complexity to learn Gaussian 
single index model with the “generative” information 
exponent: 

• SGD with smoothing operation achieves the Gaussian 
optimal rate: 

Damien et al.: Smoothing the Landscape Boosts the Signal for SGD Optimal 
Sample Complexity for Learning Single Index Models. NeurIPS2023.

Damian, Pillaud-Vivien, Lee, Bruna: The Computational Complexity of 
Learning Gaussian Single-Index Models. arXiv:2403.05529.

• Near optimal complexity of SGD to learn XOR problem: 

Glasgow: SGD Finds then Tunes Features in Two-Layer Neural Networks 
with near-Optimal Sample Complexity: A Case Study in the XOR problem. 
ICML2024.



Feature learning 
with one-step gradient descent

141

[Ba, Erdogdu, Suzuki, Wang, Wu, Yang: High-dimensional Asymptotics of 
Feature Learning: How One Gradient Step Improves the Representation. 
NeurIPS2022]

The setting of 𝑘∗=1.



Gradient descent and kernel alignment142

Question：Can we obtain “good” features from data by updating the 

first layer parameter 𝑊 by gradient descent?
Result：GD with large step size can extract the leading term of the true 

function. Especially, for the single index model (𝑓∗ 𝑥 = 𝜎∗(〈𝑥, 𝑤∗〉)), the 
predictive risk provably outperforms random feature methods.
→ Kernel alignment, feature learning.

We consider the proportional limit (𝒏, 𝒅,𝑵 → ∞), and evaluate predictive 
risk of one-step GD.

➢ 𝜼 = 𝚯( 𝑵) can outperform random feature models.
➢ 𝜼 = 𝚯(𝟏) can outperform the initial setting of 𝑊.
➢ 𝜼 = 𝒐(𝟏) does not improve the performance.

Gaussian equivalence property + Random matrix theory 
→ Exact risk evaluation.

Dot: Simulation
Solid line: Theory



Related work

• Staircase function

143

• Benign overfitting with feature learning

Gradient descent in two-layer NN can yield benign 
overfitting and achieves almost the Bayes error in binary 
classification.

The first few step of GD with large learning rate can extract 
informative features.

[Abbe et al., NeurIPS2021; Abbe et al., arXiv2202.08658]

Small number of gradient descent can extract 
nonlinear features to estimate “staircase” function.
The trained features for GD can outperform random 
feature model. 

[Cao et al., arXiv:2202.06526; Frei et al., arXiv:2202.05928]



Problem setting 144

Observation model:

where 𝑥𝑖 ∼ 𝑁 0, 𝐼 , 𝜖𝑖 ∼ 𝑁(0,1), and 𝑥𝑖 ∈ 𝐑𝑑.

➢ We fit 2-layer NN of mean field scaling: 

where 𝑎𝑖 ∼ 𝑁(0,1/𝑁) and 𝑊𝑖𝑗 ∼ 𝑁(0,1/𝑑).

Mean field regime 𝑂(1/𝑁)
(∵ 𝑎𝑖 = 𝑂𝑝(1/ 𝑁))

Empirical risk: Predictive risk:

Question: Can we provably improve the predictive risk by gradient descent?
We analyze the risk especially for the single index model: 

var var



Feature learning with optimization guarantee145

We consider the proportional limit (𝒏, 𝒅,𝑵 → ∞ with Τ𝑛 𝑑 → 𝜓1, Τ𝑁 𝑑 → 𝜓2).

We evaluate predictive risk of one-step GD.

➢ 𝜼 = 𝚯( 𝑵) can get out of NTK regime and 
outperform random feature models.

➢ 𝜼 = 𝚯(𝟏) can outperform the initial setting of 𝑊.
➢ 𝜼 = 𝒐(𝟏) does not improve the performance.

Dot: Simulation
Solid line: Theory

[Outline of our result]

Take home message: 
GD with Large step-size can outperform any
random feature model by only one-step update.

It allows to derive precise risk.



Ridge regression with RF 146

• Conjugate kernel at initialization:

• NTK (Neural tangent kernel):

Random features (without feature learning):

RF ∈ {CK,NTK}

Precise asymptotics has 
been extensively studied. 
(e.g., 
[Louart, Liao, and Couillet, 
2018; Mei and Montanari, 
2019])

Feature learning   vs  Random feature

Trained feature: 



Limitation of RF 147

Theorem (Lower bound of predictive risk for RF)

where 𝑃≤1 is the projection operator in 𝐿2(𝑃𝑋) to the subspace 
consisting of linear functions and constants.

[El Karoui (2010); Ghorbani et al. (2019), Hu and Lu (2020), ...]

This is because in high dimensional setting, a central limit theorem yields

(linear function; 
Gaussian equivalence)

Remark: The same is true for “rotational invariant kernel” [El Karoui (2010)].

(1) Random feature models and 
(2) GD updates with small learning rate
can learn only linear functions in the proportional 
limit.

Nonlinear part cannot be trained!

If the step size is not large 𝜂 = Θ(1), then for any finite number steps 𝑡, we 
have 



Effect of large step-size update 148

Spectum of 𝑾𝟎

(remains unchanged)

Alignment with the linear 
component of 𝑓∗. 
(feature learning)

Spectral distribution of 𝑊1

Estimated signal

Theorem: almost rank 1



Improvement over the Initial CK 149

• 𝜂 = Θ( 𝑁) (large learning rate):

(measure for model misspecification)

Τ𝑛 𝑑 → 𝜓1, Τ𝑁 𝑑 → 𝜓2

Large learning rate yields feature learning and can be 
better than the small step size regime if 𝜏∗ ≪ 𝑃>1𝑓

∗ 2.

Known as maximal update parameterization (𝜇P) [Yang and Hu, 

2020].

• 𝜏∗ = 0 if 𝜎 = 𝜎∗ = erf.
• 𝜏∗ ≪1 if 𝜎 = 𝜎∗ = tanh.is assumed.

Initial kernel
Space of linear functions

True function

Best linear model 
(random feature, small step size GD)

Large step size GD update



Implications 150

If 𝜎 = 𝜎∗ = erf, then 𝜏∗ = 0. 

In particular, we have 𝑅𝑊1
𝜆 = Θ 𝜓1

−1 = Θ 𝑑/𝑛 .

Predictive risk of ridge regression on CK obtained by one step GD (empirical 
simulation, 𝑑 = 1024): brighter color represents larger step size scaled as 𝜂 = 𝑁𝛼

for 𝛼 ∈ [0,1/2]. We chose 𝜎 = 𝜎∗ = erf, 𝜓2 = 2, 𝜆 = 10−3, and 𝜎𝜖 = 0.1.

Corollary

Θ(𝑑/𝑛)

Small step size

Lower bound for RF models

Outperform any RF models



Summary

• Representation/Generalization ability
➢Depth separation
➢Adaptivity of deep learning: separation between linear 

(shallow) and deep methods

• Optimization ability
➢Overparameterization
➢Noisy gradient descent: a near global optimum

✓Estimation error separation between kernel and deep 
learning

➢Mean field Langevin
➢CSQ lower boun

151

Deep learning theory that makes DL white box that 
can be controllable.

It would reveal the essence of “good learning system” 
which would be useful to develop methods beyond DL.
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