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Self-introduction: Shinji Ito (伊藤伸志), PhD
• Affiliation : NEC Corporation, Data Science Laboratory 

          RIKEN AIP, Sequential Decision-Making Team (Team Leader)

• Short bio.:
• As a graduate student (~2015), SI worked on research on numerical calculations and 

inverse problems, and completed my master's degree
• 2015~  NEC Corporation

• 2015 - 2017 : Research and development of price optimization
• 2018 ‒ Present:

• Research and development of online learning
• Got a PhD (Information Science and Engineering)

• Research interests:
       Applied mathematics, especially decision-making under uncertainty 

🍙Demand _ 

🍞Demand 
_

🍙Discount _



Offline learning and online learning
• Offline (batch) learning / data-driven decision-making
• Learning process with batch data
• 👍 stability and consistency
• 👎 difficulty in real-time adaptation

• Online learning / sequential decision-making:
• Learning via repetitive interactions with the environment
• 👍 flexibility, memory efficiency
• 👎 sensitivity to noise, difficulty in tuning 🧠🤖 🌏

Agent / 
ML model Environment

Action/Prediction

Feedback data, reward/loss

🌏 🧠🤖
Environment ML modelData

Data collection Learning



Scope and goal in this lecture
• Topics in sequential decision-making
• Online learning
• Bandit algorithms
• Regret analysis
• Reinforcement learning
• Continual learning
• Repeated games
• Competitive analysis
• …

• Goal:
• Introduce the basics of online learning and the idea of regret by looking at 

simple examples, such as the expert problem and multi-armed bandit
• Explore the analysis methods and the results of Best-of-both-worlds bounds

Scope of this lecture
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Outline of the talk
• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment 

with adversarial corruption)
• Other recent developments
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Outline of the talk
• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment 

with adversarial corruption)
• Other recent developments



• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
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N experts

Expert problem (prediction with expert advice)

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)



😀

round 1 2 3 4 ... T total
🤓 ...
🐵 ...
👺 ...
😀 ...

😀

🤓Tell me

🤓🐵👺👻

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
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N experts

Expert problem (prediction with expert advice)

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀 🤓🐵👺👻 😀👂✋🤓 🐵👺👻
🗨

🤓Tell me

9

round 1 2 3 4 ... T total
🤓 1.0 1.0
🐵 0.5 0.5
👺 0.2 0.2
😀 1.0 1.0

😀

N experts

Expert problem (prediction with expert advice)

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀

👺Tell me

🤓🐵👺👻

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.

😀

😀
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round 1 2 3 4 ... T total
🤓 1.0 1.0
🐵 0.5 0.5
👺 0.2 0.2
😀 1.0 1.0

N experts

Expert problem (prediction with expert advice)

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀

👺Tell me

🤓🐵👺👻 😀👂✋👺 🤓🐵 👻
🗨

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.

😀

😀
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round 1 2 3 4 ... T total
🤓 1.0 0.6 1.6
🐵 0.5 0.1 0.6
👺 0.2 0.3 0.5
😀 1.0 0.3 1.3

N experts

Expert problem (prediction with expert advice)

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀

🐵Tell me

🤓🐵👺👻 😀👂✋🐵 🤓 👺👻
🗨

😀

😀

😀
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round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 2.4
🐵 0.5 0.1 0.6 1.2
👺 0.2 0.3 0.9 1.4
😀 1.0 0.3 0.6 1.9

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
• For T races, I 😀 choose one friend and buy the same betting ticket as that 

friend (and then disclose all friends' results)

N experts

Expert problem (prediction with expert advice)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀 🤓🐵👺👻

Repeat. ．． ．．

😀

😀

😀

😀

😀

13

round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 0.1 ・・・ 0.2 26.1
🐵 0.5 0.1 0.6 1.0 ・・・ 0.2 20.3
👺 0.2 0.3 0.9 0.7 ・・・ 0.8 30.6
😀 1.0 0.3 0.6 0.7 ・・・ 0.2 27.8

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
• For T races, I 😀 choose one friend and buy the same betting ticket as that 

friend (and then disclose all friends' results)

N experts

Expert problem (prediction with expert advice)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
N experts

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (and then disclose all friends' results)

😀

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)

😀

🤓🐵👺👻

😀

😀

😀

😀

I want to find out who is the best and minimize my losses as much as possible…
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Expert problem (prediction with expert advice)

round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 0.1 ... 0.2 26.1
🐵 0.5 0.1 0.6 1.0 ... 0.2 20.3
👺 0.2 0.3 0.9 0.7 ... 0.8 30.6
😀 1.0 0.3 0.6 0.7 ... 0.2 27.8



round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 0.1 ... 0.2 26.1
🐵 0.5 0.1 0.6 1.0 ... 0.2 20.3
👺 0.2 0.3 0.9 0.7 ... 0.8 30.6
😀 1.0 0.3 0.6 0.7 ... 0.2 27.8

Evaluation measure: Regret 𝑅!

Me 😀 I wish if I had trusted 🐵 from the beginning. . .

A value that quantifies this regret:
𝑅! 	= 	∑"#$! 	ℓ"%! − min

%∗∈ '
∑"#$! ℓ"%∗ = 27.8 − 20.3 = 7.5

𝑖!: 😀's chosen friend
𝑖∗: 🐵 luckiest friend

Luckiest friend 🐵 🐵's overall score (cumulative loss) was 20.3.

𝑅# is small ⇒ The result is close to the result if you continue to take the best option

😀

😀

😀

😀

😀

15

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



😀

😀

😀

😀

😀
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Problem settings and regrets
round	𝑡 = 1,2, … , 𝑇

𝑖 = 1
𝑖 = 2
𝑖 = 3

expert

• ℓ!$: Loss for choosing expert 𝑖 at round 𝑡 
• Assume ℓ!$ ∈ [0,1]

• 𝑖!: Expert selected by the algorithm 😀 at round 𝑡 
• 𝑅# 	= 	∑!%&# 	ℓ!$! − min

$∗∈ (
∑!%&# ℓ!$∗ : regret

• If 𝑅# = 𝑜 𝑇  is achieved, it can be said to be a good algorithm in a sense.

• Note: Regret 𝑅# is based on comparison with best expert 𝑖∗ fixed over all rounds.
               If we want to track the round-wise best expert 𝑖!∗, we need to use different notion
              of regret, such as adaptive regret and dynamic regret

inferior linear regret , no-regret, vanishing regret, etc. as	 lim
#→*

+#
# = 0	

round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 0.1 ... 0.2 26.1
🐵 0.5 0.1 0.6 1.0 ... 0.2 20.3
👺 0.2 0.3 0.9 0.7 ... 0.8 30.6
😀 1.0 0.3 0.6 0.7 ... 0.2 27.8



Expert problems : various applications

round 1 2 3 4 ... T total
✊ Rock ...
✌ Scissors ...
✋ Paper ...
Which move will you make? ...

• (Complete information type) Repeated game

17



Expert problems : various applications

round 1 2 3 4 ... T total
✊ Rock 1 ...
✌ Scissors -1 ...
✋ Paper 0 ...
Which move will you make? ...

• (Complete information type) Repeated game

18

✋👩



Expert problems : various applications

round 1 2 3 4 ... T total
✊ Rock 1 0 ...
✌ Scissors -1 1 ...
✋ Paper 0 -1 ...
Which move will you make? ...

• (Complete information type) Repeated game

19

✋👩 ✊👩



Expert problems : various applications

Round (monthly) 1 2 3 4 ... T total
company A's stock +$100 ...
Reserve in investment trust -$200 ...
held in cash $0 ...
What to invest in? ...

• (Complete information type) Repeated game
• Investment in stocks etc.

20



Expert problems : various applications

round (date) 1 2 3 ... T total
100 pieces Opportunity loss ×20 ...
120 pieces 0 ...
140 pieces Waste loss ×20 ...
How many products should I order? ...

• (Complete information type) Repeated game
• Investment in stocks etc.
• Selecting the order quantity of the product

21



Expert problems : various applications

Round (test data) 1 2 3 ... T total
linear model Prediction error : 0.3 ...
DNN Prediction error : 0.5 ...
BGDT Prediction error : 0.2 ...
Which model should I use? ...

• (Complete information type) Repeated game
• Investment in stocks etc.
• Selecting the order quantity of the product
• Model selection/integration in online prediction

22



Expert problems : various applications
• (Complete information type) Repeated game
• Investment in stocks etc.
• Selecting the order quantity of the product
• Model selection/integration in online prediction
• Parameter selection in online prediction

23

Round (test data) 1 2 3 4 ... T total
Learning rate 0.1, batch size 10 ...
Learning rate 0.3, batch size 10 ...
Learning rate 0.3, batch size 30 ...
Which model should I use? ...



Multi-armed bandit problem

24

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
N experts

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (only the chosen friend will tell you which ticket is bought)



Multi-armed bandit problem

😀

round 1 2 3 4 ... T total
🤓 ...
🐵 ...
👺 ...
😀 ...

😀

🤓Tell me

🤓 🐵 👺👻

25

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
N experts

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (only the chosen friend will tell you which ticket is bought)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



Multi-armed bandit problem

😀

😀

🤓 🐵 👺👻 😀👂✋🤓 🐵 👺👻
🗨 💬💬💬

round 1 2 3 4 ... T total
🤓 1.0 ...
🐵 ? ...
👺 ? ...
😀 1.0 ... 1.0

🤓Tell me
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• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
N experts

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (only the chosen friend will tell you which ticket is bought)

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)



round 1 2 3 4 ... T total
🤓 1.0 ? ? ? ... 0.2
🐵 ? ? 0.6 ? ... ?
👺 ? 0.3 ? 0.7 ... ?
😀 1.0 0.3 0.6 0.7 ... 0.2 27.8

Multi-armed bandit problem

😀

😀

😀

😀

😀

27

• I 😀 decided to imitate my friends 🤓🐵👺👻...🐶 and try horse racing.
N experts

• For T races, I 😀 choose one friend and buy the same betting ticket as that 
friend (only the chosen friend will tell you which ticket is bought)

😀

Friends’ performance  (The numbers in the table represent loss or (-1) x profit)

🤓🐵👺👻

I want to find out who is the best and minimize my losses as much as possible…



Evaluation measure: Regret

𝑅! 	= 	∑"#$! 	ℓ"%! − min
%∗∈ '

∑"#$! ℓ"%∗ = 27.8 − 20.3 = 7.5 𝑖!: 😀's chosen friend
𝑖∗: 🐵 luckiest friend

• The definition of regret is the same as the expert problem.
• Although the loss ℓ!$ for 𝑖 ≠ 𝑖! cannot be observed, it is assumed that it is generated in advance.
• Note that, 𝑖∗  or min

$∗∈ (
∑!%&# ℓ!$∗ cannot be observed in general even after the process is over.

       Therefore, the value of 𝑅# cannot be known (even after the 𝑇-th round)

round 1 2 3 4 ... T total
🤓 1.0 ? ? ? ... 0.2 26.1
🐵 ? ? 0.6 ? ... ? 20.3
👺 ? 0.3 ? 0.7 ... ? 30.6
😀 1.0 0.3 0.6 0.7 ... 0.2 27.8

😀

😀

😀

😀

😀
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Friends’ performance  (The numbers in the table represent loss or (-1) x profit)
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment with 

adversarial corruption)
• Other recent developments



Two models for loss sequences (environments)

1. Stochastic environment model:
     Losses and rewards are i.i.d.
(Values in cells of the same color follow an identical distribution) 

time

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
(the distribution may changes even in the cells of the same color)

loss 
value

round 1 2 3 4 ... T total
🤓 ...
🐵 ...
👺 ...
😀 ...

time30



Expert problem : two loss models
Round (test data) 1 2 3 4 ... T total
linear model ...
DNN ...
BGDT ...
Which model should I use? ...

model selection
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1. Stochastic environment model:
     Losses and rewards are i.i.d.
(Values in cells of the same color follow an identical distribution) 

time

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
(the distribution may changes even in the cells of the same color)

loss 
value

time



round (date) 1 2 3 4 ... T total
100 pieces ...
120 pieces ...
140 pieces ...
How many items ordered? ...

daily necessities, ✏ 🔋
food etc. 🍙🍞

seasonal products etc.
🍨🍦 🌂

Order quantity optimization

32

Expert problem : two loss models

1. Stochastic environment model:
     Losses and rewards are i.i.d.
(Values in cells of the same color follow an identical distribution) 

time

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
(the distribution may changes even in the cells of the same color)

loss 
value

time



round 1 2 3 4 ... T total
✊ Rock ...
✌ Scissors ...
✋ Paper ...
Which move will you make? ...

? ?Rock, paper, scissors

33

Expert problem : two loss models

✊ 👩 Random? ✊ 👩 Strategic?

1. Stochastic environment model:
     Losses and rewards are i.i.d.
(Values in cells of the same color follow an identical distribution) 

time

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
(the distribution may changes even in the cells of the same color)

loss 
value

time



Expert problem : two loss models
round 1 2 3 4 ... T total
🤓 ...
🐵 ...
👺 ...
😀 ...
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1. Stochastic environment model:
     Losses and rewards are i.i.d.
(Values in cells of the same color follow an identical distribution) 

time

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
(the distribution may changes even in the cells of the same color)

loss 
value

time

Choice of environmental model is highly non-
trivial, which requires expertise in the application
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment with 

adversarial corruption)
• Other recent developments



Notes on definitions and assumptions
• In the following slides, when the algorithms and/or the environments contains 

randomness, we consider the regret defined by

𝑅! = E 7
"#$

!

ℓ"%! − min
%∗∈[']

E 7
"#$

!

ℓ"%∗

• E[⋅] means expectation w.r.t. randomness in algorithms and environments
• This definition allows us to handle standard regret notions in both 

stochastic and adversarial environment models in a unified way.

• In the analysis for evaluating 𝑅!, we omit E ⋅  for simplicity
• For example, 𝑅! ≤ E 𝐴 + 𝐵 +⋯  can be simply written as 𝑅! ≤ 𝐴 + 𝐵 +⋯
• This omission is allowed only when there is no problem in doing so, e.g., 

the case in which we can apply Jensen’s inequality.

36



• It is important to choose the right algorithm for the environments 

Two loss models and two algorithms

37

1.  Stochastic environments:
     loss vectors ℓ! are i.i.d. 

regret
L

J

2.  Adversarial environments:
ℓ! !"#

$  is an arbitrary sequence in 0,1 %

L

J

loss

2. Algorithms for adv.

1. Algorithms for sto.
2. Algorithms for adv.

1. Algorithms for sto.

time step 𝑡

time step 𝑡

regret

loss

time step 𝑡

time step 𝑡



Follow-the-leader (FTL) algorithm

😀𝑖 = 1
😀

😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

Follow-the-leader (FTL) algorithm:
At each round 𝑡, choose an expert 𝑖" from 𝑆", the set of experts with the top 
overall performance until the last round (𝑡 − 1) so far:

𝑖" ∈ 𝑆" ≔ arg min
%∈[']

7
0#$

"1$

ℓ0%

round 1 2 3 4 ... T total
🤓 ... 0.0
🐵 ... 0.0
👺 ... 0.0
😀 ... 0.0

38



😀𝑖 = 1
😀

😀 😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

round 1 2 3 4 ... T total
🤓 1.0 ... 1.0
🐵 0.5 ... 0.5
👺 0.2 ... 0.2
😀 1.0 ... 1.0

39

Follow-the-leader (FTL) algorithm:
At each round 𝑡, choose an expert 𝑖" from 𝑆", the set of experts with the top 
overall performance until the last round (𝑡 − 1) so far:

𝑖" ∈ 𝑆" ≔ arg min
%∈[']

7
0#$

"1$

ℓ0%

Follow-the-leader (FTL) algorithm



Follow the leader algorithm

😀

😀

𝑖 = 1
😀

😀 😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

round 1 2 3 4 ... T total
🤓 1.0 0.6 ... 1.6
🐵 0.5 0.1 ... 0.6
👺 0.2 0.3 ... 0.5
😀 1.0 0.3 ... 1.3

40

Follow-the-leader (FTL) algorithm:
At each round 𝑡, choose an expert 𝑖" from 𝑆", the set of experts with the top 
overall performance until the last round (𝑡 − 1) so far:

𝑖" ∈ 𝑆" ≔ arg min
%∈[']

7
0#$

"1$

ℓ0%



Follow the leader algorithm

😀

😀

𝑖 = 1
😀

😀 😀

😀𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 ... 2.4
🐵 0.5 0.1 0.6 ... 1.2
👺 0.2 0.3 0.9 ... 1.4
😀 1.0 0.3 0.6 ... 1.9

41

Follow-the-leader (FTL) algorithm:
At each round 𝑡, choose an expert 𝑖" from 𝑆", the set of experts with the top 
overall performance until the last round (𝑡 − 1) so far:

𝑖" ∈ 𝑆" ≔ arg min
%∈[']

7
0#$

"1$

ℓ0%



Follow the leader algorithm

😀

😀

😀

𝑖 = 1
😀

😀 😀

😀𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

round 1 2 3 4 ... T total
🤓 1.0 0.6 0.8 0.1 ... 0.2 26.1
🐵 0.5 0.1 0.6 1.0 ... 0.2 20.3
👺 0.2 0.3 0.9 0.7 ... 0.8 30.6
😀 1.0 0.3 0.6 0.7 ... 0.2 ???

42

Follow-the-leader (FTL) algorithm:
At each round 𝑡, choose an expert 𝑖" from 𝑆", the set of experts with the top 
overall performance until the last round (𝑡 − 1) so far:

𝑖" ∈ 𝑆" ≔ arg min
%∈[']

7
0#$

"1$

ℓ0%



Assumptions (stochastic environment ) :
   For each 𝑖 ∈ [𝑁], there exists a distribution 𝐷% over the interval [0,1] such that
   ℓ"% follows 𝐷% independently for all 𝑡 ∈ 𝑇 	

• 𝜇% = E ℓ"% : the expected value of a random variable ℓ"% ∼ 𝐷%
• 𝑖∗ ∈ arg min

%∈ '
	 𝜇%: the optimal expert (in expectation),   Δ% ≔ 𝜇% − 𝜇%∗

expected single-round 
regret for choosing 𝑖

43

𝜇$

𝑖 = 1 𝑖 = 2
   = 𝑖∗

𝑖 = 3 𝑖 = 4

𝜇$∗

Δ$ Δ% 

Analysis of FTL in stochastic environments

Δ&



Assumptions (stochastic environment ) :
   For each 𝑖 ∈ [𝑁], there exists a distribution 𝐷% over the interval [0,1] such that
   ℓ"% follows 𝐷% independently for all 𝑡 ∈ 𝑇 	

• 𝜇% = E ℓ"% : the expected value of a random variable ℓ"% ∼ 𝐷%
• 𝑖∗ ∈ arg min

%∈ '
	 𝜇%: the optimal expert (in expectation),   Δ% ≔ 𝜇% − 𝜇%∗

• Δ567 = min
%∈ ' ∖{%∗}

Δ%
• Assume Δ567 > 0 for simplicity

expected single-round 
regret for choosing 𝑖

44

𝜇$

𝑖 = 1 𝑖 = 2
   = 𝑖∗

𝑖 = 3 𝑖 = 4

𝜇$∗

Δ$
Δ& = Δ'()

Δ% 

Analysis of FTL in stochastic environments



Assumptions (stochastic environment ) :
   For each 𝑖 ∈ [𝑁], there exists a distribution 𝐷% over the interval [0,1] such that
   ℓ"% follows 𝐷% independently for all 𝑡 ∈ 𝑇 	

• 𝜇% = E ℓ"% : the expected value of a random variable ℓ"% ∼ 𝐷%
• 𝑖∗ ∈ arg min

%∈ '
	 𝜇%: the optimal expert (in expectation),   Δ% ≔ 𝜇% − 𝜇%∗

• Δ567 = min
%∈ ' ∖{%∗}

Δ%
• Assume Δ567 > 0 for simplicity

• Regret is bounded even if 𝑇 approaches ∞!
• This can be shown via Hoeffding’s inequality

expected single-round 
regret for choosing 𝑖

45

𝜇$

𝑖 = 1 𝑖 = 2
   = 𝑖∗

𝑖 = 3 𝑖 = 4

𝜇$∗

Δ$
Δ& = Δ'()

Δ% 

Theorem : In stochastic environment,
FTL achieves 𝑅! = 𝑂 min ;<= '

>)*+
, 𝑇 log𝑁

Analysis of FTL in stochastic environments



round 1 2 3 4 5 6 ... T total
🤓 ... 0
😈 ... 0
👺 ... 0
😀 ...

N

46

If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 ... 0
😈 ... 0
👺 ... 0
😀 ...

😀

N 😀

😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 ... 1
😈 0.5 ... 0.5
👺 1 ... 1
😀 1 ...

😀

N 😀

😀

😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 0 ... 1
😈 0.5 1 ... 1.5
👺 1 1 ... 2
😀 1 1 ...

😀

N 😀

😀

😀

😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 0 1 ... 2
😈 0.5 1 0 ... 1.5
👺 1 1 1 ... 3
😀 1 1 1 ...

😀

😀N 😀

😀

😀

😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 ... 2
😈 0.5 1 0 1 ... 2.5
👺 1 1 1 1 ... 4
😀 1 1 1 1 ...

😀

😀N 😀

😀

😀 😀

😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 ... 3
😈 0.5 1 0 1 0 ... 2.5
👺 1 1 1 1 1 ... 5
😀 1 1 1 1 1 ...

😀

😀N 😀

😀

😀 😀

😀 😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1
😈 0.5 1 0 1 0 1 ... 0
👺 1 1 1 1 1 1 ... 1
😀 1 1 1 1 1 1 ... 1

😀

😀

😀

N 😀

😀

😀 😀

😀 😀
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If 😀 uses FTL in an adversarial environment:

𝑡 = 1, 2, 3, … , 𝑇

FTL for adversarial environments



FTL for adversarial environments

😀

😀

😀

N

If 😀 uses FTL in an adversarial environment:

😀

😀

😀 😀

😀 😀

😀’s cumulative loss ≈ 𝑇;   😈’s cumulative loss of ≈ 𝑇/2

54

𝑡 = 1, 2, 3, … , 𝑇

𝑅! 	= 	∑"#$! 	ℓ"%! − min
%∗∈[']

∑"#$! 	ℓ"%∗ ≈ 𝑇 − !
? =

!
? ≥ Ω(𝑇)

Suffers linear regret!

round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1 ≈ 𝑇/2 
😈 0.5 1 0 1 0 1 ... 0 ≈ 𝑇/2 
👺 1 1 1 1 1 1 ... 1 = 𝑇 
😀 1 1 1 1 1 1 ... 1 ≈ 𝑇 



time

time

regret

1.FTL:𝑂 !"# $
%!"#

L

J time

regret
L 1.FTL:𝑂(𝑇)

J

Two environment models and two algorithms

55

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily

loss 
value

FTL works great in stochastic environments, but it can be terrible in adversarial environment



time

time

regret

1.FTL:𝑂 !"# $
%!"#

L

J time

regret
L 1.FTL:𝑂(𝑇)
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Two environment models and two algorithms

56

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily

loss 
value

2.Hedge:𝑂 𝑇 log𝑁

2.Hedge:𝑂 𝑇 log𝑁

FTL works great in stochastic environments, but it can be terrible in adversarial environment



[LW94], [AHK12]

round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1 ≈ 𝑇/2 
😈 0.5 1 0 1 0 1 ... 0 ≈ 𝑇/2 
👺 1 1 1 1 1 1 ... 1 = 𝑇 
😀 ≈ 𝑇 

😀𝑖 = 1
😀

😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

• Set learning rate 𝜂 > 0, initialize the weight (reliability) by 𝑤&$ = 1 for each 𝑖 ∈ 𝑁
• In each round 𝑡, choose expert with a probability proportional to 𝑤!$
    After observing the loss, each weight is updated with  𝑤!,&,$ = 𝑤!$ exp(−𝜂ℓ!$)

😀

😀

57

Hedge Algorithm

Hedge Algorithm:



[LW94], [AHK12]

round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1 ≈ 𝑇/2 
😈 0.5 1 0 1 0 1 ... 0 ≈ 𝑇/2 
👺 1 1 1 1 1 1 ... 1 = 𝑇 
😀 ≈ 𝑇 

😀𝑖 = 1
😀

😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

😀

😀
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Hedge Algorithm

If loss ℓ"%	is large, the reliability of 𝑖 
is decreased.

• Set learning rate 𝜂 > 0, initialize the weight (reliability) by 𝑤&$ = 1 for each 𝑖 ∈ 𝑁
• In each round 𝑡, choose expert with a probability proportional to 𝑤!$
    After observing the loss, each weight is updated with  𝑤!,&,$ = 𝑤!$ exp(−𝜂ℓ!$)

Hedge Algorithm:



[LW94], [AHK12]

round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1 ≈ 𝑇/2 
😈 0.5 1 0 1 0 1 ... 0 ≈ 𝑇/2 
👺 1 1 1 1 1 1 ... 1 = 𝑇 
😀 ≈ 𝑇 

😀𝑖 = 1
😀

😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

• Set learning rate 𝜂 > 0, initialize the weight (reliability) by 𝑤&$ = 1 for each 𝑖 ∈ 𝑁
• In each round 𝑡, choose expert with a probability proportional to 𝑤!$
    After observing the loss, each weight is updated with  𝑤!,&,$ = 𝑤!$ exp(−𝜂ℓ!$)

As a result, the weight is determined as 

Expert 𝑖 is chosen with probability  𝑝!$ =
.!*

∑+,-
. .!+

𝑤!$ = exp −𝜂 ℓ&$ + ℓ0$ +⋯+ ℓ!1&,$

😀

😀
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Hedge Algorithm

Hedge Algorithm:



[LW94], [AHK12]

round 1 2 3 4 5 6 ... T total
🤓 1 0 1 0 1 0 ... 1 ≈ 𝑇/2 
😈 0.5 1 0 1 0 1 ... 0 ≈ 𝑇/2 
👺 1 1 1 1 1 1 ... 1 = 𝑇 
😀 ≈ 𝑇 

😀𝑖 = 1
😀

😀

𝑖 = 2
𝑖 = 3

𝑡 = 1, 2, 3, … , 𝑇

• Set learning rate 𝜂 > 0, initialize the weight (reliability) by 𝑤&$ = 1 for each 𝑖 ∈ 𝑁
• In each round 𝑡, choose expert with a probability proportional to 𝑤!$
    After observing the loss, each weight is updated with  𝑤!,&,$ = 𝑤!$ exp(−𝜂ℓ!$)

As a result, the weight is determined as 

Expert 𝑖 is chosen with probability  𝑝!$ =
.!*

∑+,-
. .!+

𝑤!$ = exp −𝜂 ℓ&$ + ℓ0$ +⋯+ ℓ!1&,$

😀

😀1/3
1/3
1/3
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Hedge Algorithm ≈ 
1/2
1/2
0 

Hedge Algorithm:



Analysis of Hedge Algorithm

Expert 𝑖 is chosen with probability  𝑝!$ =
.!*

∑+,-
. .!+

𝑤!$ = exp −𝜂 ℓ&$ + ℓ0$ +⋯+ ℓ!1&,$ ,

Theorem :
       Suppose that 𝜂 ∈ [0, 1]. For any loss sequence ℓ" "#$

! ∈ 0,1 ' !,  
       Hedge achieves 𝑅! ≤

$
D log𝑁 +

D
E𝑇

Corollary:

        When setting 𝜂 = min 1, 2 ;<= '
! , Hedge achieves 𝑅! ≤ 𝑇 log𝑁 

• Hedge Algorithm:

61
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment with 

adversarial corruption)
• Other recent developments



• It is important to choose the right algorithm for the environment 

Two loss models and two algorithms

63

time

time

regret

1.FTL:𝑂 !"# $
%!"#

L

J time

regret
L 1.FTL:𝑂(𝑇)

J

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily

loss 
value

2.Hedge:𝑂 𝑇 log𝑁

2.Hedge:𝑂 𝑇 log𝑁
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stochastic environment hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  

Hedge 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 Ω 𝑇 log𝑁  

Table 1: Regret bounds for expert problems

(almost) tight upper 
bound

• FTL/Hedge is optimal in each of stochastic and adversarial environments.

• To obtain the best results, it is necessary to choose an algorithm that 
matches the environment.

Expert problem: Summary so far

[LW94], [AHK12]
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stochastic environment hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  

Hedge [LW94], [AHK12] 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 Ω 𝑇 log𝑁  

Stochastic setting adversarial setting
UCB etc. [ACBF02] 𝑂 ∑454∗

/01 6
3*

 𝑂 𝑇  

Exp3 [ACBFS02] 𝑂 𝑇𝑁 log𝑁  𝑂 𝑇𝑁 log𝑁  

regret lower bound Ω ∑454∗
/01 6
3*

 Ω 𝑇𝑁  

Table 1: Regret bounds for expert problems

Table 2: Regret bounds for multi-armed bandit problem

(almost) tight upper 
bound

• Similar results have been provided for the multi-armed bandit problem.



1.Stochastic environment model :

time

regret 2. Algorithms for adv. 

1. Algorithms for sto. 

L

J

2. Adversarial environment model :

time

regret
L 1. Algorithms for sto.

J

After all, which one should we use?

66

2. Algorithms for adv.



1.Stochastic environment model :

time

regret 2. Algorithms for adv. 

1. Algorithms for sto. 

L

J

2. Adversarial environment model :

time

regret
L 1. Algorithms for sto.

• Arguments supporting stochastic environments
• The real world does not change that often. It can be 

approximated sufficiently well by a stochastic model.
• Considering the worst case in an adversarial model is 

overly pessimistic and conservative. In reality, 
situations that correspond to the worst case are rare.

J

After all, which one should we use?
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2. Algorithms for adv.

• Arguments supporting adversarial environments
• Adversarial models include stochastic models and 

are more general-purpose.
• Guaranteed worst-case performance is useful 

because it means stability for any input sequence.
• In reality, losses and rewards are rarely i.i.d.



1.Stochastic environment model :

time

regret 2. Algorithms for adv. 
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L
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2. Adversarial environment model :

time

regret
L 1. Algorithms for sto.

• Arguments supporting stochastic environments
• The real world does not change that often. It can be 

approximated sufficiently well by a stochastic model.
• Considering the worst case in an adversarial model is 

overly pessimistic and conservative. In reality, 
situations that correspond to the worst case are rare.
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After all, which one should we use?

68

2. Algorithms for adv.

• Arguments supporting adversarial environments
• Adversarial models include stochastic models and 

are more general-purpose.
• Guaranteed worst-case performance is useful 

because it means stability for any input sequence.
• In reality, losses and rewards are rarely i.i.d.

View of statistical learning theory and information theory (?) View of theoretical computer science, optimization theory, etc. (?)

• The basic concepts and research communities seem different. Depending on our standpoint, both can be 
criticized/justified.



1.Stochastic environment model :

time

regret 2. Algorithms for adv. 

1. Algorithms for sto. 

L

J

2. Adversarial environment model :

time

regret
L 1. Algorithms for sto.

• Arguments supporting stochastic environments
• The real world does not change that often. It can be 

approximated sufficiently well by a stochastic model.
• Considering the worst case in an adversarial model is 

overly pessimistic and conservative. In reality, 
situations that correspond to the worst case are rare.

J

After all, which one should we use?
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2. Algorithms for adv.

• Arguments supporting adversarial environments
• Adversarial models include stochastic models and 

are more general-purpose.
• Guaranteed worst-case performance is useful 

because it means stability for any input sequence.
• In reality, losses and rewards are rarely i.i.d.

View of statistical learning theory and information theory (?) View of theoretical computer science, optimization theory, etc. (?)

• The basic concepts and research communities seem different. Depending on our standpoint, both can be 
criticized/justified.

• From a practical viewpoint:   In any case, we want better performance ⇒	 Best-of-both-worlds algorithm

3. BOBW alg.

3. BOBW alg.
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment with 

adversarial corruption)
• Other recent developments



Best-of-both-worlds (BOBW) algorithm

71

stochastic environment hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  

Hedge 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁  

BOBW algorithm 𝑂 /01 2
3&'(

 𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 Ω 𝑇 log𝑁  

Table 1: Regret bounds for expert problems

(almost) tight upper 
bound

• Goal: Achieve optimal performance in both stochastic/adversarial 
environments

• Strategy: Introduce a framework that encompasses both of FTL and 
Hedge and (adaptively) interpolate them

[LW94], [AHK12]
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment with 

adversarial corruption)
• Other recent developments



Hedge: Interpretation with entropy regularization
• Δ' = {𝑝 ∈ 0,1 ': 𝑝 # = 1}:	 Probability simplex
• 𝐻 𝑝 = −∑("#' 𝑝( log 𝑝( :													Shannon entropy

• ℓ! =

ℓ!#
ℓ!)
⋮
ℓ!'

, 	 𝑝! =

𝑝!#
𝑝!)
⋮
𝑝!'

	 (𝑝!(: probability of choosing 𝑖 at round 𝑡)

The Hedge algorithm is given by:

𝑝! ∈ arg min2∈3.
L
4%&

!1&

ℓ4 , 𝑝 −
1
𝜂
𝐻 𝑝

73



Hedge: Interpretation with entropy regularization
• Δ' = {𝑝 ∈ 0,1 ': 𝑝 # = 1}:	 Probability simplex
• 𝐻 𝑝 = −∑("#' 𝑝( log 𝑝( :													Shannon entropy

• ℓ! =

ℓ!#
ℓ!)
⋮
ℓ!'

, 	 𝑝! =

𝑝!#
𝑝!)
⋮
𝑝!'

	 (𝑝!(: probability of choosing 𝑖 at round 𝑡)

The Hedge algorithm is given by:

𝑝! ∈ arg min2∈3.
L
4%&

!1&

ℓ4 , 𝑝 −
1
𝜂
𝐻 𝑝

In fact, from the first-order optimality condition,

L
4%&

!1&

ℓ4 −
1
𝜂 ∇𝐻 𝑝! + 𝜆!𝟏 = 0	 ⟹	 log 𝑝!$ = −𝜂L

4%&

!1&

ℓ4$ + 𝜂𝜆! − 1	 ⟹	 𝑝!$ ∝ exp −𝜂L
4%&

!1&

ℓ4!

74



Comparison of Hedge and FTL  

Hedge algorithm:

𝑝! ∈ arg min2∈3.
L
4%&

!1&

ℓ4 , 𝑝 −
1
𝜂
𝐻 𝑝

75

FTL algorithm:

𝑝! ∈ arg min2∈3.
L
4%&

!1&

ℓ4 , 𝑝

By adjusting 𝜂 adequately (optimizing 𝜂 itself) depending on 
observed data, we can interpolates between Hedge and FTL well⇒

• Hedge can be interpreted as FTL with regularization that increases entropy

• If 𝜂 is large enough, the behavior is close to FTL (cf. standard Hedge employs 𝜂 ≈ 567 (
#

)

• Δ' = {𝑝 ∈ 0,1 ': 𝑝 # = 1}:	 Probability simplex
• 𝐻 𝑝 = −∑("#' 𝑝( log 𝑝( :													Shannon entropy

• ℓ! =

ℓ!#
ℓ!)
⋮
ℓ!'

, 	 𝑝! =

𝑝!#
𝑝!)
⋮
𝑝!'

	 (𝑝!(: probability of choosing 𝑖 at round 𝑡)



Follow the regularized leader (FTRL)

FTRL algorithm: Define 𝑥" using convex function 𝜓:𝑋 → ℝ  as follows :
                                 𝑥" ∈ argminR∈S

∑0#$"1$𝑔0 , 𝑥 + $
D
𝜓 𝑥

Example :
• 𝑋 = Δ8, 𝑔! = ℓ!, 𝜓 𝑥 = −𝐻 𝑥 = ∑$%&8 𝑥$ log 𝑥$ Hedge
• 𝑓!: 𝑋 → ℝ (convex function), 𝑔! = ∇𝑓! 𝑥! , 	 𝜓 𝑥 = 𝑥 0

0 (a variant of) gradient descent
76

Hedge algorithm is given by:

         𝑝! ∈ arg min2∈3.
∑4%&!1& ℓ4 , 𝑝 − &

9
𝐻 𝑝 	 (𝐻 𝑝 = −∑$%&( 𝑝$ log 𝑝$: Shannon entropy)

Generalize region Δ( to any convex set and 𝐻(𝑝) to any regularizer

Eg. [Chapter 28, Tor La'more and 
Csaba Szepesvári. Bandit Algorithms, 
2020.]

[LS20] 



Hedge analysis
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Stability term Penalty term
• The magnitude of the variation of 

output distribution 𝑝!
• Corresponding to the bias due to 

regularization

Hedge algorithm:  𝑝! ∈ arg min2∈3.
∑4%&!1& ℓ4 , 𝑝 − &

9
𝐻 𝑝

Standard analysis method for FTRL decompose regret into the sum of stability and penalty terms

𝑅# ≤L
!%&

#
1
𝜂
𝐷:;(𝑝!||𝑝!,&) +

1
𝜂
𝐻 𝑝& ≤	L

!%&

#

𝜂𝑧! +
1
𝜂
log𝑁 ≤

𝜂𝑇
4
+
log𝑁
𝜂

e.g. [Chapter 28, LS20]

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms, 2020.



Hedge analysis
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Stability term Penalty term
• The magnitude of the variation of 

output distribution 𝑝!
• The stronger the regularization (the 

smaller 𝜂), the smaller the value
• 𝑧!: The variance of a random 

variable that takes value ℓ!( with 
probability 𝑝!(

• Corresponding to the bias due to 
regularization

• The weaker the regularization 
(the bigger 𝜂), the smaller the 
value

𝑧! =V
("#

'

𝑝!( ℓ!( − Wℓ!
) ≤

1
4	 ,

Wℓ! =V
("#

'

𝑝!( ,

Hedge algorithm:  𝑝! ∈ arg min2∈3.
∑4%&!1& ℓ4 , 𝑝 − &

9
𝐻 𝑝

Standard analysis method for FTRL decompose regret into the sum of stability and penalty terms

𝑅# ≤L
!%&

#
1
𝜂
𝐷:;(𝑝!||𝑝!,&) +

1
𝜂
𝐻 𝑝& ≤	L

!%&

#

𝜂𝑧! +
1
𝜂
log𝑁 ≤

𝜂𝑇
4
+
log𝑁
𝜂

e.g. [Chapter 28, LS20]

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms, 2020.
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Stability term Penalty term
• The magnitude of the variation of 

output distribution 𝑝!
• The stronger the regularization (the 

smaller 𝜂), the smaller the value
• 𝑧!: The variance of a random 

variable that takes value ℓ!( with 
probability 𝑝!(

• Corresponding to the bias due to 
regularization

• The weaker the regularization 
(the bigger 𝜂), the smaller the 
value

𝑧! =V
("#

'

𝑝!( ℓ!( − Wℓ!
) ≤

1
4	 ,

Wℓ! =V
("#

'

𝑝!( ,

Hedge algorithm:  𝑝! ∈ arg min2∈3.
∑4%&!1& ℓ4 , 𝑝 − &

9
𝐻 𝑝

Standard analysis method for FTRL decompose regret into the sum of stability and penalty terms

Minimization of the right-
hand side:

𝜂 = 2 	+,- '
$

 

 𝑅$ ≤
.$
/
+ +,- '

.
= 𝑇 log𝑁

The setting of 𝜂 = 7	/01 2
6   

can also be interpreted as 
balancing the stability and 
penalty terms: 96

7
= /01 2

9
 

𝑅# ≤L
!%&

#
1
𝜂
𝐷:;(𝑝!||𝑝!,&) +

1
𝜂
𝐻 𝑝& ≤	L

!%&

#

𝜂𝑧! +
1
𝜂
log𝑁 ≤

𝜂𝑇
4
+
log𝑁
𝜂

e.g. [Chapter 28, LS20]

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms, 2020.
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Hedge with adaptive learning rate: 𝑝" ∈ arg min]∈>!
∑0#$"1$ ℓ0 , 𝑝 − $

D"
𝐻 𝑝

• Adaptively adjust the regularization strength (learning rate) parameter 𝜂 over rounds.
• The strength of regularization is varied monotonically:  𝜂& ≥ 𝜂0 ≥ 𝜂< ≥ ⋯ > 0
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Hedge with adaptive learning rate: 𝑝" ∈ arg min]∈>!
∑0#$"1$ ℓ0 , 𝑝 − $

D"
𝐻 𝑝

• Adaptively adjust the regularization strength (learning rate) parameter 𝜂 over rounds.
• The strength of regularization is varied monotonically:  𝜂& ≥ 𝜂0 ≥ 𝜂< ≥ ⋯ > 0
• Applying the standard analysis method of FTRL: 

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

𝐻 𝑝!,& +
1
𝜂&
𝐻 𝑝& ≤L

!%&

#

𝜂!𝑧! +
1

𝜂#,&
log𝑁

eg [Chapter 28, LS20]

Hedge with adaptive learning rate

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms, 2020.
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Hedge with adaptive learning rate: 𝑝" ∈ arg min]∈>!
∑0#$"1$ ℓ0 , 𝑝 − $

D"
𝐻 𝑝

• Adaptively adjust the regularization strength (learning rate) parameter 𝜂 over rounds.
• The strength of regularization is varied monotonically:  𝜂& ≥ 𝜂0 ≥ 𝜂< ≥ ⋯ > 0
• Applying the standard analysis method of FTRL: 

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

𝐻 𝑝!,& +
1
𝜂&
𝐻 𝑝& ≤L

!%&

#

𝜂!𝑧! +
1

𝜂#,&
log𝑁

• Adjusting 𝜂! using the information of 𝑧!: 𝜂! =
567 (

&,∑:,-!;- =:
 

∑!%&# 𝜂!𝑧! +
&

9#<-
log𝑁 = log𝑁∑!%&# =!

&,∑:,-!;- =:
+ log𝑁 ⋅ 1 + ∑!%&# 𝑧! ≤ 2 log𝑁 ⋅ 1 + ∑!%&# 𝑧!  

• Similar idea to optimization method AdaGrad.

eg [Chapter 28, LS20]

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms, 2020.
[CBMS07] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for prediction with 
expert advice. Machine Learning, 66:321–352, 2007. 

Hedge with adaptive learning rate

[CBMS07]



Corollary : The CBMS algorithm has the following regret upper bound
• In adversarial environments, 𝑅! = 𝑂 log𝑁 ⋅ 𝑇 	
• In stochastic environments, 𝑅! = 𝑂 ;<= '

>#$% 83

Theorem :

The CBMS algorithm achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"

The CBMS algorithm: 𝜂! =
567 (

&,∑:,-!;- =:
,  𝑝! ∈ arg min2∈3.

∑4%&!1& ℓ4 , 𝑝 − &
9!
𝐻 𝑝  

𝑧! =V
("#

'

𝑝!( ℓ!( − Wℓ!
) ≤

1
4
	 , Wℓ! =V

("#

'

𝑝!( ,

Regret upper bound for the CBMS algorithm



Corollary : The CBMS algorithm has the following regret upper bound
• In adversarial environments, 𝑅! = 𝑂 log𝑁 ⋅ 𝑇 	←  Clear from 𝑧" ≤ 1/4
• In stochastic environments, 𝑅! = 𝑂 ;<= '

>#$%
  ←  Nontrivial. Proof on next page
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Theorem :

The CBMS algorithm achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"

The CBMS algorithm: 𝜂! =
567 (

&,∑:,-!;- =:
,  𝑝! ∈ arg min2∈3.

∑4%&!1& ℓ4 , 𝑝 − &
9!
𝐻 𝑝  

𝑧! =V
("#

'

𝑝!( ℓ!( − Wℓ!
) ≤

1
4
	 , Wℓ! =V

("#

'

𝑝!( ,

Regret upper bound for the CBMS algorithm



Corollary : CBMS achieves 𝑅! = 𝑂 ;<= '
>#$%

 in stochastic environments
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Theorem : CBMS achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"

(Proof of Corollary)
• In a stochastic environment, 1 + ∑!%&# 𝑧! = 𝑂 	&

3=>?
𝑅#  holds

• 𝑧! ≔ ∑$%&( 𝑝!$ ℓ!$ − fℓ!
0	 ≤ ∑$%&( 𝑝!$ ℓ!$ − ℓ!$∗ 0 = ∑$?$∗ 𝑝!$ ℓ!$ − ℓ!$∗ 0 ≤ 1 − 𝑝!$∗

• In a stochastic environment, every time any suboptimal expert (other than 𝑖∗) is chosen, 
regret of at least Δ@AB is suffered in expectation:

     𝑅# = ∑!%&# ∑$%&( Δ$𝑝!$	 ≥ ∑!%&# ∑$?$∗ Δ@AB𝑝!$	 = Δ@AB∑!%&# 1 − 𝑝!$∗  
• Combining the above two points, we obtain 𝑅# ≥ Δ@AB∑!%&# 𝑧!

• Substituting this into the result of the theorem, we obtain 𝑅# = 𝑂 567 (
3=>?

𝑅#

• Square both sides: 𝑅#0 = 𝑂 567 (
3=>?

𝑅# .    Divide both sides by 𝑅#:   𝑅# = 𝑂 567 (
3=>?

Regret upper bound for the CBMS algorithm



Corollary : CBMS achieves 𝑅! = 𝑂 ;<= '
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 in stochastic environments
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Theorem : CBMS achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"

(Proof of Corollary)
• In a stochastic environment, 1 + ∑!%&# 𝑧! = 𝑂 	&

3=>?
𝑅#  holds.

• 𝑧! ≔ ∑$%&( 𝑝!$ ℓ!$ − fℓ!
0	 ≤ ∑$%&( 𝑝!$ ℓ!$ − ℓ!$∗ 0 = ∑$?$∗ 𝑝!$ ℓ!$ − ℓ!$∗ 0 ≤ 1 − 𝑝!$∗

• In a stochastic environment, every time any suboptimal expert (other than 𝑖∗) is chosen, 
regret of at least Δ@AB is suffered in expectation:

     𝑅# = ∑!%&# ∑$%&( Δ$𝑝!$	 ≥ ∑!%&# ∑$?$∗ Δ@AB𝑝!$	 = Δ@AB∑!%&# 1 − 𝑝!$∗  
• Combining the above two points, we obtain 𝑅# ≥ Δ@AB∑!%&# 𝑧!

• Substituting this into the result of the theorem, we obtain 𝑅# = 𝑂 567 (
3=>?

𝑅# .

• Square both sides: 𝑅#0 = 𝑂 567 (
3=>?

𝑅# .    Divide both sides by 𝑅#:   𝑅# = 𝑂 567 (
3=>?

Regret upper bound for CBMS 
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(Proof sketch of Corollary)
• In a stochastic environment, 1 + ∑!%&# 𝑧! = 𝑂 +#

3=>?
 holds true.

• Substituting this into the inequality of Theorem, 𝑅# = 𝑂 567 (
3=>?

𝑅# , which implies 𝑅# = 𝑂 567 (
3=>?

Corollary : CBMS achieves 𝑅! = 𝑂 ;<= '
>#$%

 in stochastic environments

Theorem : CBMS achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"

Regret upper bound for CBMS 
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(Proof sketch of Corollary)
• In a stochastic environment, 1 + ∑!%&# 𝑧! = 𝑂 +#

3=>?
 holds true.

• Substituting this into the inequality of Theorem, 𝑅# = 𝑂 567 (
3=>?

𝑅# , which implies 𝑅# = 𝑂 567 (
3=>?

Behavior of learning rates 𝜂!:
• In a stochastic environment, 1 + ∑!%&# 𝑧! = 𝑂 +#

3=>?
= 𝑂 567 (

3=>?
@  

• Therefore, 𝜂! ≥ 𝜂#,& ≥ Ω 567 (
&,∑!,-# =!

≥ Ω(Δ@AB)

• ⇒ learning rate 𝜂! is bounded from below, and hence the algorithm behaves similarly to FTL

Corollary : CBMS achieves 𝑅! = 𝑂 ;<= '
>#$%

 in stochastic environments

Theorem : CBMS achieves 𝑅! = 𝑂 log𝑁 ⋅ 1 + ∑"#$! 𝑧"
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stochastic environment Intermediate environment (?) hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  𝑂 𝑇  

Hedge 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁 𝑂 𝑇 log𝑁  

CBMS 𝑂 /01 2
3&'(

 ?? 𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 ?? Ω 𝑇 log𝑁  

Table 1: Regret bounds for expert problems

(almost) tight upper 
bound

• The CBMS algorithm summary:
• Adaptively adjusting learning rate 𝜂" (similar to AdaGrad etc.)
• Achieving optimality for both environments
• Working to interpolate between FTL and Hedge

[CBMS07] [GSVE14]

[CBMS07] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for prediction with expert advice. 2007.
[GSVE14] Pierre Gaillard, Gilles Stoltz, and Tim Van Erven. A second-order bound with excess losses. In Conference on Learning Theory. 2014. 
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stochastic environment Intermediate environment (?) hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  𝑂 𝑇  

Hedge 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁 𝑂 𝑇 log𝑁  

CBMS 𝑂 /01 2
3&'(

 ?? 𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 ?? Ω 𝑇 log𝑁  

Table 1: Regret bounds for expert problems

(almost) tight upper 
bound

• The CBMS algorithm summary:
• Adaptively adjusting learning rate 𝜂" (similar to AdaGrad etc.)
• Achieving optimality for both environments
• Working to interpolate between FTL and Hedge

• Does it work well in an intermediate environment between stochastic 
and adversarial?

⇒

[CBMS07] [GSVE14]
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Outline of the talk

• Problem setup
• Prediction with expert advice and multi-armed bandit
• Two models for environments

• Basic results of regret analysis 
• Algorithms and regret analysis for the expert problem
• Comparison of regrets in stochastic and adversarial environments

• Best-of-both-worlds algorithms and analysis
• Hedge with adaptive learning rate
• Analysis between stochastic and adversarial (stochastic environment 

with adversarial corruption)
• Other recent developments
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3. Stochastic environment model with adversarial corruption:
   Between stochastic and adversarial
     

loss 
value

Generated from a stationary 
probability distribution     

time

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
loss 
value⋯

time

time
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3. Stochastic environment model with adversarial corruption:
   Between stochastic and adversarial
     

loss 
value

Generated from a stationary 
probability distribution     

Loss values after corruption 

time

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
loss 
value⋯

time

time
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3. Stochastic environment model with adversarial corruption:
   Between stochastic and adversarial
     

time

loss 
value

Generated from a stationary 
probability distribution     

Loss values after corruption 

time

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
loss 
value⋯

time

Corruption level 𝐶:
sum of amount of corruption
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3. Stochastic environment model with adversarial corruption:
   Between stochastic and adversarial
     

time

loss 
value

Generated from a stationary 
probability distribution     

Loss values after corruption 

Corruption level 𝐶:
sum of amount of corruption

𝐶 = 0 𝐶 = 𝑂(𝑇)

time

1. Stochastic environment model:
     Losses and rewards are i.i.d.

loss 
value

2. Adversarial environment model:
     Losses and rewards change arbitrarily
loss 
value⋯

time
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Adversarial   (𝐶 = 𝑇)

Stochastic (𝐶 = 0)

Stochastic with 𝐶-corruption 

𝑅! = 𝑂 ;<= '
>#$%

 

𝑅! = 𝑂 𝑇 log𝑁  

𝑅! = 𝑂 ? ? ?  

Stochastic + adversarial environment model
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Adversarial   (𝐶 = 𝑇)

Stochastic (𝐶 = 0)
𝑅! = 𝑂 ;<= '

>#$%
 

𝑅! = 𝑂 𝑇 log𝑁  

𝑅! = 𝑂 ? ? ?  

𝐶: Small 𝐶: Large

Stochastic + adversarial environment model

Stochastic with 𝐶-corruption 
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Assumptions (stochastic environment model with corruption) :
    There exists a distribution 𝐷 over 0,1 _ such that ℓ"` ∼ 𝐷	(iid) for each 𝑡 ∈ 𝑇
    and the actual loss ℓ" ∈ 0,1 _ satisfies ∑"#$! ℓ" − ℓ"` a ≤ 𝐶 for some 𝐶

    In other words, loss is decomposed as ℓ" = ℓ"` + 𝑐"  where  ∑"#$! 𝑐" a ≤ 𝐶

    What we can actually observe is only ℓ", and ℓ"`  and 𝑐" cannot be observed 
    Suppose the corruption level 𝐶 is not given

Stochastic Adversarial



• Denote the expected value of ℓ"` ∼ 𝐷 as 𝜇 = E ℓ"`
• Optimal expert is denoted as 𝑖∗ ∈ arg min

%∈ '
	 𝜇%

• Δ% ≔ 𝜇% − 𝜇%∗ (Expected regret for choosing 𝑖), Δ567 ≔ min
%∈ ' ∖%∗

Δ% > 0

Theorem: For any 𝐶, CBMS achieves 𝑅! = 𝑂 ;<= '
>#$%

+ b ;<= '
>#$%

99

The effects of corruption 
is bounded by 𝑂 𝐶

Analysis for corrupted environments
Assumptions (stochastic environment model with corruption) :
    There exists a distribution 𝐷 over 0,1 _ such that ℓ"` ∼ 𝐷	(iid) for each 𝑡 ∈ 𝑇
    and the actual loss ℓ" ∈ 0,1 _ satisfies ∑"#$! ℓ" − ℓ"` a ≤ 𝐶 for some 𝐶



100

(Proof sketch)
• Let 𝑅#C  denote the regret for loss ℓ!C  before corruption. Then 𝑅# − 𝑅#C ≤ 2𝐶 from assumptions.

• CBMS achieves 𝑅# = 𝑂 567 (
3=>?

𝑅#C  (similar to the proof for stochastic environments)

• From the above two points, 𝑅# = 𝑂 567 (
3=>?

(𝑅# + 2𝐶) , which implies 𝑅#0 = 𝑂 567 (
3=>?

(𝑅# + 2𝐶)

• This can be seen as a quadratic inequality in variable 𝑅#, leading to 𝑅# = 𝑂 567 (
3=>?

+ 0D 567 (
3=>?

Assumptions (stochastic environment model with corruption) :
    There exists a distribution 𝐷 over 0,1 _ such that ℓ"` ∼ 𝐷	(iid) for each 𝑡 ∈ 𝑇
    and the actual loss ℓ" ∈ 0,1 _ satisfies ∑"#$! ℓ" − ℓ"` a ≤ 𝐶 for some 𝐶

Theorem: For any 𝐶, CBMS achieves 𝑅! = 𝑂 ;<= '
>#$%

+ b ;<= '
>#$%

Analysis for corrupted environments
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stochastic environment Stochastic with corruption hostile environment
FTL 𝑂 /01 2

3&'(
 𝑂 𝑇  𝑂 𝑇  

M.W.U. 𝑂 𝑇 log𝑁  𝑂 𝑇 log𝑁 𝑂 𝑇 log𝑁  

CBMS 𝑂 /01 2
3&'(

 𝑂 /01 2
3&'(

+ A /01 2
3&'(

 𝑂 𝑇 log𝑁  

regret lower bound Ω /01 2
3&'(

 Ω /01 2
3&'(

+ A /01 2
3&'(

 Ω 𝑇 log𝑁  

Table 1: Regret bounds for expert problems

(almost) tight upper 
bound

• CBMS is optimal even in stochastic environments with corruption!
• Together with best-of-both-worlds regret bounds, it is sometimes called 

best-of-three-worlds (BOTW)

[CBMS07] [GSVE14] [I21]

[I21]

[CBMS07] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for prediction with expert advice. 2007.
[GSVE14] Pierre Gaillard, Gilles Stoltz, and Tim Van Erven. A second-order bound with excess losses. COLT. 2014.
[I21] Shinji Ito. On optimal robustness to adversarial corruption in online decision problems. NeurIPS. 2021.
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(almost) tight upper 
bound

Stochastic setting Stochastic with corruption adversarial setting
UCB etc. [ACBF02] 𝑂 ∑454∗

/01 6
3*

 𝑂(𝑇) 𝑂 𝑇  

Exp3 [ACBFS02] 𝑂 𝑇𝑁 log𝑁  𝑂 𝑇𝑁 log𝑁  𝑂 𝑇𝑁 log𝑁  

Tsallis-INF 𝑂 ∑454∗
/01 6
3*

 𝑂 ∑454∗
/01 6
3*

+ ∑454∗
A	/01 6
3*

 𝑂 𝑇𝑁  

regret lower bound Ω ∑454∗
/01 6
3*

 Ω ∑454∗
/01 6
3*

+ A
3&'(

 Ω 𝑇𝑁  

Table 2: Regret bounds for multi-armed bandit problem

Best-of-three-worlds algorithm

• Tsallis-INF algorithm
• Best-of-three-worlds for the multi-armed bandit problem
• Based on the FTRL framework similarly to (adaptive) Hedge
• Employing Tsallis entropy regularizers instead of Shannon entropy

[ZS21]

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47:235–256, 2002. 
[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.
[ZS21] Julian Zimmert and Yevgeny Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 22(28):1–49, 2021.  
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• 𝑧!, ℎ! changes depending on the regularization function 𝜓

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

ℎ!,& +
1
𝜂&
ℎ&

FTRL: set the distribution of arm selection by 𝑝! ∈ arg min2∈3.
∑4%&!1& jℓ4 , 𝑝 + &

9!
𝜓 𝑝

(jℓ!: unbiased estimator of ℓ!, 𝜓(𝑝): regularization function)

• The regret is decomposed into stability 𝑧! and penalty ℎ! by the standard analysis of FTRL:
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• 𝑧!, ℎ! changes depending on the regularization function 𝜓

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

ℎ!,& +
1
𝜂&
ℎ&

• Exp3 algorithm:
• Defined 𝜓 by 𝜓 𝑝 = −𝐻(𝑝) similarly to Hedge. Then 𝑧! ≤ 𝑁	and	ℎ! ≤ log𝑁 hold.

• Therefore we have 𝑅$ ≤ 𝑁∑!"#$ 𝜂! +
+,- '
.!"#

. Setting 𝜂! =
+,- '
'$

  leads to 𝑅$ = 𝑂 𝑇𝑁 log𝑁

[ACBFS02]

FTRL: set the distribution of arm selection by 𝑝! ∈ arg min2∈3.
∑4%&!1& jℓ4 , 𝑝 + &

9!
𝜓 𝑝

(jℓ!: unbiased estimator of ℓ!, 𝜓(𝑝): regularization function)

• The regret is decomposed into stability 𝑧! and penalty ℎ! by the standard analysis of FTRL:
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• 𝑧!, ℎ! changes depending on the regularization function 𝜓

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

ℎ!,& +
1
𝜂&
ℎ&

• Exp3 algorithm:
• Defined 𝜓 by 𝜓 𝑝 = −𝐻(𝑝) similarly to Hedge. Then 𝑧! ≤ 𝑁	and	ℎ! ≤ log𝑁 hold.

• Therefore we have 𝑅$ ≤ 𝑁∑!"#$ 𝜂! +
+,- '
.!"#

. Setting 𝜂! =
+,- '
'$

  leads to 𝑅$ = 𝑂 𝑇𝑁 log𝑁

• In expert problems, stability is 𝑧! ≤ (1 − 𝑝!(∗) However, in multi-armed bandit 𝑧! ≤ 𝑁. This is doe 
to the larger variance of kℓ! 

• Due to this worsening of the bound on 𝑧!, learning rates depending on 𝑧! is not effective for 
achieving BOBW

[ACBFS02]

FTRL: set the distribution of arm selection by 𝑝! ∈ arg min2∈3.
∑4%&!1& jℓ4 , 𝑝 + &

9!
𝜓 𝑝

(jℓ!: unbiased estimator of ℓ!, 𝜓(𝑝): regularization function)

• The regret is decomposed into stability 𝑧! and penalty ℎ! by the standard analysis of FTRL:
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• Tsallis-INF algorithm:
• Define regularization function with 1/2-Tsallis entropy : 𝜓 𝑝 = −∑("#' 𝑝( − 𝑝( = −∑("#' 𝑝( +
1

[ZS21]

• 𝑧!, ℎ! changes depending on the regularization function 𝜓

𝑅# ≤L
!%&

#

𝜂!𝑧! +
1
𝜂!,&

−
1
𝜂!

ℎ!,& +
1
𝜂&
ℎ&

FTRL: set the distribution of arm selection by 𝑝! ∈ arg min2∈3.
∑4%&!1& jℓ4 , 𝑝 + &

9!
𝜓 𝑝

(jℓ!: unbiased estimator of ℓ!, 𝜓(𝑝): regularization function)

• The regret is decomposed into stability 𝑧! and penalty ℎ! by the standard analysis of FTRL:



FTRL approach 

107

• Tsallis-INF algorithm:
• Define regularization function with 1/2-Tsallis entropy : 𝜓 𝑝 = −∑("#' 𝑝( − 𝑝( = −∑("#' 𝑝( + 1
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• Tsallis-INF algorithm:
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(jℓ!: unbiased estimator of ℓ!, 𝜓(𝑝): regularization function)

• The regret is decomposed into stability 𝑧! and penalty ℎ! by the standard analysis of FTRL:
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Corollary 1: Tsallis-INF Achieves 𝑅! = 𝑂 𝑁𝑇  in adversarial environments

Theorem: Tsallis-INF achieves 𝑅! = 𝑂 ∑"#$! $
"
∑%l%∗ 𝑝"%

Corollary 2: Tsallis-INF achieves 𝑅! = 𝑂 ∑%l%∗
;<= !
>'

	 in stochastic environments
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Corollary 1: Tsallis-INF Achieves 𝑅! = 𝑂 𝑁𝑇  in adversarial environments

Theorem: Tsallis-INF achieves 𝑅! = 𝑂 ∑"#$! $
"
∑%l%∗ 𝑝"%

Corollary 2: Tsallis-INF achieves 𝑅! = 𝑂 ∑%l%∗
;<= !
>'

	 in stochastic environments

(proof ) ∑!%&# &
!
∑$?$∗ 𝑝!$ ≤ ∑!%&# &

!
𝑁 − 1 ∑$?$∗ 𝑝!$ ≤ ∑!%&# &

!
𝑁 − 1 = 𝑂 𝑁𝑇

Cauchy–Schwarz
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Corollary 1: Tsallis-INF Achieves 𝑅! = 𝑂 𝑁𝑇  in adversarial environments

Theorem: Tsallis-INF achieves 𝑅! = 𝑂 ∑"#$! $
"
∑%l%∗ 𝑝"%

Corollary 2: Tsallis-INF achieves 𝑅! = 𝑂 ∑%l%∗
;<= !
>'

	 in stochastic environments

(proof ) ∑!%&# &
!
∑$?$∗ 𝑝!$ ≤ ∑!%&# &

!
𝑁 − 1 ∑$?$∗ 𝑝!$ ≤ ∑!%&# &

!
𝑁 − 1 = 𝑂 𝑁𝑇

Cauchy–Schwarz

(proof ) ∑!%&# &
!
∑$?$∗ 𝑝!$ = ∑!%&# ∑$?$∗

&
!3*

Δ$𝑝!$

                                            ≤ ∑!%&# ∑$?$∗
&
!3*
⋅ ∑!%&# ∑$?$∗ Δ$𝑝!$ = ∑$?$∗

&
3*
∑!%&# &

! ⋅ 𝑅#

                                            ≤ ∑$?$∗
567 #
3*

⋅ 𝑅#	
Cauchy–Schwarz

• This can be extended to corrupted  
environments as well
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• Self-bounding technique
• If we obtain a bound of 𝑅! = 𝑂 𝐴 ⋅ 𝑅! + 𝐵  for some 𝐴 and 𝐵, 

we have 𝑅! = 𝑂 𝐴 + 𝐵
• This approach is called self-bounding technique
• In recent years, it is often used in the design and analysis of BOBW/BOTW 

algorithms
• There are similar analysis techniques in the context of gradient descent in 

convex optimization (e.g., improving convergence rate for strongly 
convex functions).

Key points in proofs for (corrupted) stochastic environment
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• Self-bounding technique
• If we obtain a bound of 𝑅! = 𝑂 𝐴 ⋅ 𝑅! + 𝐵  for some 𝐴 and 𝐵,             

we have 𝑅! = 𝑂 𝐴 + 𝐵
• This approach is called self-bounding technique
• In recent years, it is often used in the design and analysis of BOBW/BOTW 

algorithms
• There are similar analysis techniques in the context of gradient descent in 

convex optimization (e.g., improving convergence rate for strongly 
convex functions).

• My own impressions
• I was surprised that it was possible to obtain a tight upper bound in stochastic 

environments without using concentration inequalities (e.g., Hoeffding’s).

Key points in proofs for (corrupted) stochastic environment
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Progress in research on BOBW (1)
2012 • Concept of BOBW in multi-armed bandit [Bubeck & Slivkins , COLT'12]

• Expert problems [de Rooij +, JMLR'14] [Gaillard, Stoltz & Van Erven, COLT'14] [Luo & Schapire , COLT'15]

• Improved BOBW for MAB [Seldin & Slivkins , ICML'14] [Auer & Chiang, COLT'16] [Seldin & Lugosi, COLT'17]
• Multi-armed bandit self-bounding technique [Zimmert & Seldin, AISTATS'18, JMLR'21] [Wei & Luo, COLT'18]

• Best-arm identification [Abbasi- Yadkori , COLT'18]

• Combinatorial semi-bandit [Zimmert , Luo & Wei, ICML'19]

• Multi-armed bandit with data-dependent bound [I, COLT'21]
• Multi-armed bandit stochastic/adversarial mixture [Masoudian & Seldin, COLT'21]
• Linear bandit [Lee+, ICML'21]
• Problems with switch cost [Rouyer, Seldin & Cesa-Bianchi, ICML'21]
• MDP (unknown transition model) [Jin , Huang & Luo, NeurIPS'21]
• Graph bandit [Erez & Koren, NeurIPS'21]
• Combination semi-bandit data-dependent bounds [I, NeurIPS'21]
• Expert problems stochastic/adversarial mixture [I, NeurIPS'21]

• Decoupled multi-armed bandit [Rouyer & Seldin, COLT'20]

• MDP (known transition model) [Jin & Luo, NeurIPS'20]

2018

2019

2020

2021

2017

~

Highlight : self-bounding technique
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• Multi-armed bandit variance-dependent bound [I, Tsuchiya & Honda, COLT'22]

• Submodular function minimization [I, ICML'22]

• Dueling bandit [Saha & Gaillard, ICML'22]

• Graph bandit [I, Tsuchiya & Honda, NeurIPS'22] , [Kong, Zhou & Li, ICML'22], [Rouyer +, NeurIPS'22]

• Problem with switching cost [Amir+, NeurIPS'22]

• Delayed feedback MAB [Masoudian, Zimmert & Seldin, NeurIPS'22]

• Partial observation problem [Tsuchiya, I & Honda, ALT'23]
• FTPL analysis [Honda, I & Tsuchiya, ALT'23]

• Combination semi-bandit variance-dependent bound [Tsuchiya, I & Honda, AISTATS'23]

• MDP (policy optimization) [Dann, Wei & Zimmert , COLT'23]

• Linear bandit [I & Takemura , COLT'23] [I & Takemura , NeurIPS'23] , [Kong, Zhao & Li, COLT'23]

• Black-box conversion [Dann, Wei & Zimmert , COLT'23]
• Sparse multi-armed bandit [Tsuchiya, I & Honda, NeurIPS'23]

• Relaxing the optimal solution uniqueness assumption [Jin , Liu & Luo, NeurIP'23]

• MDP (adversarial transition) [Jin +, NeurIPS'23]

2022

2023

Highlight : self-bounding techniqueProgress in research on BOBW (1)
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• For the expert problem, CBMS achieves BOTW

• For the multi-armed bandit problem Tsallis-INF achieves BOTW

• For both the expert problem and the multi-armed bandit problem,  
algorithm design and regret analysis are based on FTRL and self-bounding 
technique.

• By appropriately designing the regularization function and learning rates, 
BOTW algorithms can be constructed for various online learning / Bandit 
problems, including combinatorial semi-bandits, linear bandits, dueling 
bandits, graph-feedback problems, episodic MDPs, …



Open question: gaps of constant factors
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1.Stochastic environment model :

time

regret

2. Algorithms for adv. 

1. Algorithms for sto. 

L

J

2. Adversarial environment model :

time

regret

L

1. Algorithms for sto.

J

2. Algorithms for adv.
3. BOBW alg.

3. BOBW alg.

• Ideal results of BOBW:
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1.Stochastic environment model :

time

regret

2. Algorithms for adv. 

1. Algorithms for sto. 

L

J

2. Adversarial environment model :

time

regret

L

1. Algorithms for sto.

J

2. Algorithms for adv.3. BOBW alg.

3. BOBW alg.

• Real (current state-of-the-art):

Question: Can we remove these gaps of constant factors? How?

Gap of constant factor

Gap of constant factor
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Recommended references for further understanding
• Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. 

Cambridge university press.
• Shalev-Shwartz, S. (2012). Online learning and online convex 

optimization. Foundations and Trends® in Machine Learning, 4(2), 107-
194.

• Hazan, E. (2022). Introduction to online convex optimization. MIT Press.
• Orabona, F., & Pál, D. (2018). Scale-free online learning. Theoretical 

Computer Science, 716, 50-69.
• Orabona, F. (2019). A modern introduction to online learning. arXiv 

preprint arXiv:1912.13213.
• Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge 

University Press.
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